[1]IEEE Std 802.11b, Part11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specification: Higher-speed Physical Layer Extension in the 2.4GHz Band, 1999.
[2]K.-H. Chen, J.-H. Lu, B.-J. Chen, and S.-I. Liu, “An ultra-wide-band 0.4–10-GHz LNA in 0.18-um CMOS,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 54, no. 3, pp. 217–221, Mar. 2007.
[3]IEEE Std 802.11a, “Part11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specification: Higher-speed Physical Layer in the 5GHz Band, 1999.
[4]M. Hassan et al., “A Wideband CMOS/GaAs HBT Envelope Tracking Power Amplifier for 4G LTE Mobile Terminal Applications Modulator and Demodulator using,” IEEE Trans. Microw. Theory Tech, vol. 60, no. 5, pp. 1321–1330, May. 2012.
[5]J. B. Johnson, “Thermal Agitation of Electricity in Conductors,” Phys. Rev., vol. 32, pp. 97-109, July 1928.
[6]H. Nyquist, “Thermal Agitation of Electric Charge in Conductors,” Phys. Rev., vol. 32, pp. 110-113, July 1928.
[7]Y. Tsividis, Operation and modeling if the MOS Transistor, Second Ed., Boston:McGraw-Hill, 1999.
[8]W. Schottky, “Uber spontane Stromschwankungen in verschiedenen Elektrizitatsleitern,” Ann. Phys., Germany, vol. 57, pp. 541-567, 1918.
[9]嚴守中,寬頻低雜訊放大器之研製,國立臺北科技大學,碩士論文,臺北, 2009。[10]D. M. Pozar, Microwave and RF Design of Wireless Systems, Wiley & Sons, Inc, New York, 2000.
[11]J. M. Rollet, “Stability and Power Gain Invariants of Linear Two-ports,” IRE Transaction. on Circuit Theory, vol. CT-9, pp. 29-32, 1962.
[12]M. L. Edwards et al., “A New Criterion for Linear 2-Port Stability Using a Single Geometrically Derived Parameter,” IEEE Trans. on Microw. Theory and Tech. vol. 40, no. 12, pp. 2303-2311, 1992.
[13]張盛富、張嘉展,無線通訊射頻晶片模組設計射頻系統篇,全華書局, 2008。
[14]呂學士編譯,本城何彥原著,微波通訊半導體電路,全華科技圖書公司,台北, 2001。
[15]張盛富、張嘉展,無線通訊射頻晶片模組設計射頻晶片篇,全華書局, 2008。
[16]Q. Li and Y. P. Zhang, “A 1.5-V 2-9.6 GHz inductorless low noise amplifier in 0.13 μm CMOS,” IEEE Trans. on Microwave theory and techniques, vol. 55, no. 10, pp. 2015-2023, Oct. 2007.
[17]F. Gatta, E. Sacchi, F. Svelto, P. Vilmercati, and R. Casrello, “A 2-dB noise figure 900 MHz differential CMOS LNA,” IEEE J. Solid-State Circuits, vol. 36, no. 10, pp. 1441-1452, Oct. 2001.
[18]A. Amer, E. Hegazi and H. F. Ragaie, “A 90 nm wideband merged CMOS LNA and mixer exploiting noise cancellation,” IEEE J. Solid-State Circuits, vol. 42, no. 2, pp. 323-328, Feb. 2007.
[19] B. Razavi, RF Microelectronics, Second Ed., PEARSON, Los Angeles, 2011.
[20] Shih-Fong Chao, Jhe-Jia Kuo, Chong-Liang Lin, Ming-Da Tsai, and Huei Wang, “A dc-11.5 GHz low-power, wideband amplifier using splitting-load inductive peaking technique,” IEEE Microw. Wireless Compon. Lett, vol. 18, no. 7, pp. 482-484, Jul. 2008.
[21] G. Sapone, and G. Palmisano, “A 3-10GHz Low Power CMOS Low-Nosie Amplifier for ultra-wideband Communication,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 3, pp. 678-686, Mar. 2011.
[22] B. Park, S. Choi, and S. Hong, “A low-noise amplifier with tunable interference rejection for 3.1- to 10.6-GHz UWB systems,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 1, pp. 40–42, Jan. 2010.
[23]C.-F. Liao and S.-I. Liu, “A broadband noise-canceling CMOS LNA for 3.1–10.6-GHz UWB receivers,” IEEE J. Solid-State Circuits, vol. 42, no. 2, pp. 329–339, Feb. 2007.
[24]H. Hashemi and A. Hajimiri, “Concurrent multiband low-noise amplifier-theory, design, and applications,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 1, pp. 288-301, Jan. 2002.
[25] Dehqan A. R. et al., “Design of Low-power Dual-Band LNA with Using DS Method to Improve Linearity,” in proc. (ICEE), Electrical Engineering 2012 20th Iranian Conference, Tehran, May 2012, pp. 15 – 17.
[26] W. Zhuo, X. Li, S. Shekhar, S. H. K. Embabi, J. P. D. Gyvez, D. J. Allstot, and E. S. Sinencio, “A capacitor cross-coupled common-gate low-noise amplifier,” IEEE Trans. Circuits and Systems II: Express Briefs, vol. 52, no. 12, pp. 875-879, Dec. 2005.
[27]X. Fan, H. Zhang, and E. S. Sinencio, “A noise reduction and linearity improvement technique for a differential cascode LNA,” IEEE J. Solid-State Circuits, vol. 43, no. 3, pp. 588-599, Mar. 2008.
[28]D. J. Allstot, L. Xiaoyong, and S. Shekhar, “Design considerations for CMOS low-noise amplifiers,” in IEEE Radio Frequency Integrated Circuits (RFIC) Symp., Jun. 2004. pp. 97-100.
[29]B. Razavi, Design of Analog CMOS Integrated Circuit, McGraw-Hill, Boston, 2001.
[30]Nathan M. Neihart et al., “A Dual-Band 2.45/6 GHz CMOS LNA Utilizing a Dual- Resonant Transformer-Based Matching Network,” IEEE Trans. Circuit Syst. I, Reg. Papers, vol. 59, no. 8, pp. 1743 – 1751, Aug. 2012.
[31] M. A. Martins, J. R. Fernandes, and M. M. Silva, “Techniques for dual-band LNA design using cascode switching and inductor magnetic coupling,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), 2007, pp. 1449–1452.
[32] L.-H. Lu et al., “A compact 2.4/5.2-GHz CMOS dual-band low-noise amplifier,” IEEE Microwave and Wireless Components Letters, vol. 15, no. 10, pp. 685-687, Oct. 2005.
[33]林正偉,應用於LTE發射機之高增益混頻器與低電壓返馳式轉換器設計,國立臺北科技大學,電腦與通訊研究所,碩士論文,臺北,2011。[34] 林奐竹,應用於LTE發射機之低雜訊混頻器與低電壓三角積分調變器設計, 國立臺北科技大學, 電腦與通訊研究所,碩士論文,臺北,2011。[35]J.H Tsai, “Design of 1.2-V broadband high data-rate MMW CMOS I/Q Modulator and Demodulator using modified Gilbert-Cell mixer,” IEEE Transaction On Microwave Theory And Techniques, vol. 59, no. 5, pp. 1350–1360, May 2011.
[36]S. Ziabakhsh et al., “A CMOS down-conversion mixer with high linearity and low noise figure in 0.18-μm technology,” in 5th European Conference on Circuits and Systems for Communications (ECCSC), serbia, Nov. 2010, pp. 23-25.
[37]C.-H. Chen and P.-Y. Chiang, “A low voltage mixer with improved noise figure,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 2, pp. 92–94, Feb. 2009.
[38]H. Darabi and Chiu.J, “A noise cancellation technique in active RF-CMOS mixer,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2628–2632, Dec. 2005.