(3.238.88.35) 您好!臺灣時間:2021/04/11 17:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林坤毅
研究生(外文):Kun-Yi Lin
論文名稱:多輸入多輸出正交分頻多工系統於移動環境下的干擾消除與效能提升
論文名稱(外文):ICI Cancellation and Capacity Enhancement for Mobile MIMO-OFDM Systems
指導教授:林信標林信標引用關係
口試委員:莊嶸騰曾銘健杜鴻國曾柏軒鄭獻勳林丁丙
口試日期:2013-07-20
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:電腦與通訊研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:91
中文關鍵詞:子載波間干擾消除都卜勒效應直視波通道適應性傳輸機制混合式自動重傳機制多輸入多輸出通道容量
外文關鍵詞:ICI cancellationDoppler effectLoS channelLink adaptationhybrid ARQMIMO capacity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:138
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要針對多輸入多輸出正交分頻多工系統於高速移動通道下以及高鐵的直視波通道環境,提出干擾消除與傳輸效能改善演算法。在高速移動過程中,都卜勒效應會破壞正交分頻多工系統子載波之間的正交性,引起子載波間干擾問題,造成資料位元錯誤率上升,因此,本論文第一部分主要針對都卜勒擴散造成之子載波間干擾,提出兩種子載波間干擾消除方法;而在高鐵直視波較強的通道環境下,都卜勒效應主要由單一的都卜勒頻率偏移構成,可由一般頻率同步演算法進行補償更正,所以,第二部分主要在探討直視波通道因為空間通道關聯性,對於多輸入多輸出系統的資料傳輸效能影響,提出適用於高鐵直視波通道環境的適應性傳輸機制與通道容量效能提升方案。
在子載波間干擾消除上,首先針對時變通道,提出一等效平緩時變通道之時域上子載波間干擾自我消除演算法,由線性時變通道模型的假設下,設計出一組可用以平緩相對信號區間內等效通道變化之視窗係數,藉此降低由時變通道變化引起之子載波間干擾,模擬結果顯示本方法可改善子載波間干擾功率大小與位元錯誤率效能,並證明與所推導之理論值結果相符,與4階視窗函數、張氏等效視窗法相比,使用所提出之方法,可在8%的最大正規化都卜勒偏移和0.25的可用CP情境下,提供5 dB的子載波間干擾功率改善。擴展至多輸入多輸出的架構下,都卜勒效應除了會造成子載波間干擾外,還會引起天線間干擾,本論文進一步提出基於混合式自動重傳機制之子載波間干擾消除方法,此設計藉由封包信號在重傳時進行編碼,透過展頻的概念,將信號在時域、頻域與天線間進行編碼,讓信號可由干擾中分離出來,達到提升信號訊雜比以及子載波間與天線間干擾消除的效果,與傳統追蹤結合法之混合式自動重傳機制相比,本方法不會特別增加系統複雜度,理論分析與數值模擬結果顯示,所提出之方法在時變通道下,可提供比傳統追蹤結合法更佳之干擾改善與資料位元錯誤率效能。
其次,本論文探討高鐵列車通訊效能。相較於一般都市內的無線電波傳播,高鐵的無線通道環境,容易出現相對較強的直視波路徑,在傳統單一天線收發的適應性傳輸機制中,較強的直視波通道具有較佳的通道品質,可使用較高的調變位階與錯誤更正碼碼率來提升資料傳輸吞吐量,但是,在多輸入多輸出天線架構中,較強的直視波通道可能隱含較大的天線間空間通道關聯性,造成多輸入多輸出系統的空間多工增益下降的問題。本論文首先透過模擬方式建立一多輸入多輸出適應性傳輸切換表,由通道狀態的萊斯通道K參數與信號訊雜比,選擇適合之傳輸參數,此外,由於高速通道狀態的變化,容易造成傳輸參數選擇過時的問題,本論文進一步由高鐵實測的通道資料,建立一隱藏式馬可夫通道模型,透過預測通道的K參數變化,藉以改善因通道回傳延遲造成傳輸參數選擇失準問題,模擬結果顯示加入K參數預測功能,可提升系統平均約5 Mbps之資料傳輸吞吐量。
最後,針對高鐵列車上的直視波通道,提出一分散式多天線架構,藉由適當地設計天線擺放位置,以滿足最佳空間通道矩陣,獲得最大空間通道容量效能,改善一般多輸入多輸出架構在直視波通道環境下,因空間通道間關聯性,形成低秩空間通道矩陣,造成空間多工增益效能下降之問題,模擬結果顯示,所提出之分散式多天線佈建方式,在信號訊雜比及萊斯通道K參數為20 dB的2傳2收多輸入多輸出架構下,可將平均通道容量由8 Mbps提升至13 Mbps。


This dissertation aims to improve the BER and data throughput performance of MIMO-OFDM systems over high-mobility environments and the LoS channel of high-speed rail. Some algorithms for interference cancellation and data throughput improvement are proposed in this dissertation. During high speed mobile reception, the Doppler effect destroys the orthogonality of OFDM systems among subcarriers which leads the ICI and degrades the error rate performance. In the first part of this dissertation, two ICI cancellation schemes are proposed to reduce ICI caused by the Doppler spread. For the high-speed rail LoS channel, the Doppler effect can be simplified to a Doppler shift which is usually compensated by performing frequency synchronization. Thus, the second part of this dissertation is focus on investigating the MIMO data throughput performance and the channel capacity over the LoS channel. Considering the high-speed rail LoS channel, a link adaptation scheme and a capacity enhancement of MIMO systems are proposed to improve the MIMO data throughput and channel capacity.
For the ICI cancellation, this dissertation firstly proposed a time domain low-complex ICI self-cancellation method from the view of equivalent channel time variation mitigation. A set of window coefficients is derived to equivalently mitigate the channel time-variation of the corresponding information symbol interval under the assumption of linear time-varying multipath channel. It outperforms the 4-step window shape and Chang’s ICI self-cancellation method. The improvement of ICI power cancellation as well as noise power is analyzed. A 5 dB improvement of ICI power can be provided for the scenario of a useful CP ratio of 0.25 with a maximum normalized Doppler frequency of 8%. A nearly ICI-free BER performance can be further obtained for the case of useful CP ratio of 1 on the moving speed of 120 km/hr. Secondly, this dissertation discusses the cross layer performance of an MIMO-OFDM system with the adoption of HARQ over a time-varying channel. In the MIMO-OFDM systems, the Doppler effect not only induces ICI but also IAI. This dissertation proposed a HARQ based interference cancellation coding scheme by encoding the retransmitted signals to reduce ICI and IAI. The interference is mitigated based on the principle of spread spectrum for MIMO-OFDM systems to spread the transmitting signals in time, frequency, and spatial domain to separate the desired signals from interferences. The proposed enhanced chase combining HARQ provides a better BER performance over time-varying channels with the advantages of no spectral efficiency scarification and system complexity increment compared to the conventional HARQ.
The second part of this dissertation discusses the MIMO data throughput performance of high-speed rail communications. Compared to the mobile communications in the urban city, it is more possible to experience a strong LoS channel for high-speed rail communications. The strong LoS channel implies a better channel quality and the higher modulation order as well as error correction coding rate can be applied to increase data throughput in the SISO transceiver. However, the strong LoS may also imply a high MIMO channel correlation which degrades the spatial multiplexing gain of MIMO systems. This dissertation proposes a link adaptation scheme of MIMO-OFDM systems based on the Ricean channel K-factor to save the additional channel feedback information overheads like channel correlations for MIMO transmission modes selection. Besides, a hidden Markov model of Ricean K-factor based on the real channel data measured on the high-speed rail train is developed for the prediction of Ricena K-factor to improve the inaccurate MCS and MIMO modes selection caused by the feedback delay. Simulation result shows that an average throughput of 5 Mbps can be achieved.
The last of this dissertation proposes a distributed MIMO system for high-speed rail communications to improve MIMO channel capacity over the LoS channel. By specially deploying the antenna elements, a full rank channel matrix can be achieved to maximize spatial channel multiplexing gain for the condition of the lack of scatterings which usually leads a low rank channel matrix. Simulation result shows that the average channel capacity can be improved form 8 Mbps to 13 Mbps for the 2x2 MIMO systems with a Ricean K-factor value of 20 dB and the SNR of 20 dB.


摘 要 i
Abstract iii
Acknowledgements vi
Contents vii
List of Figures ix
List of Tables xi
Chapter 1 INTRODUCTION 1
1.1 Backgrounds 1
1.2 Organization of this Dissertation 4
Chapter 2 INTERFERENCE CANCELLATION AND PERFORMANCE ENHANCEMENT FOR MOBILE COMMUNICATIONS 6
2.1 Review of ICI Cancellation 6
2.2 Review of HARQ 9
2.3 Review of MIMO Link Adaptation 10
2.4 Review of MIMO Channel Capacity Improving 12
Chapter 3 ICI REDUCTION IN TIME DOMAIN 14
3.1 Signal Model of ICI Effect 14
3.2 Low-complex receiver windowing method 16
3.3 Proposed Equivalent Channel Time Variation Mitigation 20
3.3.1 System Model 21
3.3.2 Window Coefficients Design 23
3.4 Analysis of ICI Power and Noise Power 27
3.5 Numerical results 32
Chapter 4 ENHANCED CHASE COMBINING HARQ WITH ICI AND IAI MITIGATION FOR MIMO-OFDM SYSTEMS 36
4.1 ICI Analysis and the Conventional HARQ Scheme 36
4.2 Proposed HARQ Scheme 38
4.3 Numerical Simulations 46
Chapter 5 LINK ADAPTATION OF MIMO-OFDM SYSTEMS FOR HSR COMMUNICATIONS 50
5.1 Link Adaptation by Exploiting Ricean K-Factor 50
5.2 Channel Modeling of Ricean K-Factor for High Speed Rail 61
5.3 Simulation Results 65
Chapter 6 MIMO CHANNEL CAPACITY OPTIMIZATION FOR HSR RADIO COMMUNICATIONS 70
6.1 Distributed MIMO Systems for HSR Scenarios 70
6.2 Derivation of Capacity Maximizing Criterion 73
6.3 Simulation Results 74
6.4 Seamlessly Maximizing MIMO Capacity 77
Chapter 7 CONCLUSION 80
References 83



[1]L. Rugini and P. Banelli, “BER of OFDM systems impaired by carrier frequency offset in multipath fading channels,” IEEE Trans. Wireless Commun., vol. 4, no. 5, pp. 2279- 2288, Sept. 2005.
[2]Y. Li and L. J. Cimini Jr. “Bounds on the interchannel interference of OFDM in time-varying impairments,” IEEE Trans. Commun., vol. 49, no. 3, pp. 401-404, Mar. 2001.
[3]L. Rugini and P. Banelli, “BER of OFDM systems impaired by carrier frequency offset in multipath fading channels,” IEEE Trans. Wireless Commun., vol. 4, no. 5, pp. 2279- 2288, Sept. 2005.
[4]S. Lin, D. J. Costello. Jr. and M. J. Miller, “Automatic-Repeat-Request Error-Control Schemes,” IEEE Commn. Magazine, vol. 22, no. 12, Dec. 1984.
[5]Babich, F., “Performance of hybrid ARQ schemes for the fading channel,” IEEE Trans. Commun., vol. 50, no. 12, pp. 1882-1885, Dec. 2002.
[6]B. K. Chung, D. Angela, and A. Simon, “Performance Evaluation of hybrid arq schemes of 3GPP LTE OFDMA System,” in Proc. IEEE Personal, Indoor and Mobile Radio Communications (PIMRC), pp. 1-5, Sept. 2007.
[7]Jung-Fu Cheng, “Coding performance of hybrid ARQ schemes,” IEEE Trans. Commun., vol. 54, no. 6, pp. 1017-1029, June 2006.
[8]D. Chase, “Code combining—a maximum-likelihood decoding approach for combining an arbitrary number of noisy packets,” IEEE Trans. Commun., vol. 33, pp. 385-393, May 1985.
[9]S. Lin, D. J. Costello. Jr., and M. J. Miller, “Automatic-repeat-request error-control schemes,” IEEE Commun. Mag., vol. 22, no. 12, Dec. 1984.
[10]G. J. Foschini, “Layered space-time architecture for wireless communication in a fading environment using multi-element antennas,” Bell Labs Tech. J., vol. 1, no. 2, pp. 41-59, 1996.
[11]Qinghua Li, et al., "MIMO techniques in WiMAX and LTE: a feature overview," Communications Magazine, IEEE , vol.48, no.5, pp.86,92, May 2010.
[12]L. Zheng, D. Tse, “Diversity and multiplexing: a fundamental tradeoff in multiple-antenna channels,” IEEE Trans. Inform. Theory, vol. 49, no. 5, pp. 1073-1096, May 2003.
[13]G. Lebrun, M. Faulkner, M. Shafi, and P. J. Smith, MIMO Ricean channel capacity: an asymptotic analysis, IEEE Trans. Wireless Commun., vol. 5, no. 6, pp.1343-1350, June 2006.
[14]S. Jin, X. Gao, and X. You, On the ergodic capacity of Rank-1 Ricean-fading MIMO channels, IEEE Trans. Inf. Theory, vol. 53, no. 2, pp.502-517, Feb. 2007.
[15]Ming Kang; Alouini, M.-S., “Capacity of MIMO Rician channels,” IEEE Trans. Wireless Commun., vol. 5, no. 1, pp. 112-122, Jan. 2006.
[16]H.-C. Wu, "Analysis and characterization of intercarrier and interblock interferences for wireless mobile OFDM systems," IEEE Trans. Broadcast., vol. 52, no. 2, pp. 203-210, June 2006.
[17]M. Russell and G. L. Stüber, “Interchannel interference analysis of OFDM in a mobile environment,” in Proc. IEEE Veh. Technol. Conf., vol. 2, pp. 820-824, Jul. 1995.
[18]L. Yang, G. Ren, and Z. Qiu, “A novel Doppler frequency offset estimation method for DVB-T system in HST environment,” IEEE Trans. Broadcast., vol. 58, no. 1, pp. 139-143, Mar. 2012.
[19]T. Wang, J.G. Proakis, E. Masry, and J.R. Zeidler, “Performance degradation of OFDM systems due to Doppler spreading,” IEEE Trans. Wireless Communications, vol. 5, no. 6, pp. 1422-1432, June 2006.
[20]S. R. Herlekar, C. Zhang, H.-C. Wu, A. Srivastava, and Y. Wu, “OFDM performance analysis in the phase noise arising from the hot-carrier effect,” IEEE Trans. Consum. Electron., vol. 52, no. 3, pp. 757-765, Aug. 2006.
[21]T. Yucek and H. Arslan, “Carrier Frequency Offset Compensation with Successive Cancellation in Uplink OFDMA Systems,” IEEE Trans. Wireless Commun., vol. 6, no. 10, pp. 3546-3551, Oct. 2007.
[22] K.A. Hamdi, “Exact SINR analysis of wireless OFDM in the presence of carrier frequency offset,” IEEE Trans. Wireless Commun., vol. 9, no. 3, pp. 975-979, Mar. 2010.
[23]J. Armstrong, “Analysis of new and existing methods of reducing intercarrier interference due to carrier frequency offset in OFDM,” IEEE Trans. Commun., vol. 47, no. 3, pp. 365-369, Mar. 1999.
[24]K. Sathananthan and C. Tellambura, “Probability of error calculation of OFDM systems with frequency offset,” IEEE Trans. Commun., vol. 49, no. 11, pp. 1884-1888, Nov. 2001.
[25]J. Zheng and Z. Wang, “ICI Analysis for FRFT-OFDM Systems to Frequency Offset in Time-Frequency Selective Fading Channels,” IEEE Commun. Letters, vol. 14, no. 10, pp. 888-890, Oct. 2010.
[26] Y. Zhao and S.-G. Haggman, "Intercarrier interference self-cancellation scheme for OFDM mobile communication systems," IEEE Trans. Commun., vol. 49, no. 7, pp. 1185-1191, Jul. 2001.
[27] A. Seyedi and G. J. Saulnier, "General ICI self-cancellation scheme for OFDM systems," IEEE Transactions on Veh. Technol., vol. 54, no. 1, pp. 198-210, Jan. 2005.
[28] L. Yang, C. Ming, S. Cheng, and H. Wang, "Intercarrier interference cancellation of OFDM for time-varying channels," in Proc. IEEE Global Telecommunications Conference, vol. 6, Nov. 2004, pp. 3753- 3757.
[29] H.-G. Ryu, Y. Li and J.-S. Park, "An improved ICI reduction method in OFDM communication system," IEEE Trans. Broadcast., vol. 51, no. 3, pp. 395-400, Sept. 2005.
[30] H.-C. Wu, X. Huang, and D. Xu, "Pilot-free dynamic phase and amplitude estimations for wireless ICI self-cancellation coded OFDM systems," IEEE Trans. Broadcast., vol. 51, no. 1, pp. 94-105, Mar. 2005.
[31] S. R. Herlekar, K. Z. Matarneh, H.-C. Wu, Y. Wu and X. Wang, "Performance evaluation of an ICI self-cancellation coded transceiver for mobile DVB-T applications," IEEE Trans. Consum. Electron., vol. 51, no. 4, pp. 1110-1120, Nov. 2005.
[32] H.-C. Wu and X. Huang, "Robust ICI self-cancellation OFDM receiver with dynamic phase and amplitude estimations," International Journal of Wireless Information Networks, vol. 12, no. 3, pp. 169-177, July 2005.
[33] H.-C. Wu, X. Huang, and D. Xu, "Pilot-free dynamic phase and amplitude estimations for wireless ICI self-cancellation coded OFDM systems," IEEE Trans. Broadcast., vol. 51, no. 1, pp. 94-105, Mar. 2005.
[34] H.-C. Wu and X. Huang, "Joint phase/amplitude estimation and symbol detection for wireless ICI self-cancellation coded OFDM systems," IEEE Trans. Broadcast., vol. 50, no. 1, pp. 49-55, Mar. 2004.
[35] C. Muschallik, "Improving an OFDM reception using an adaptive Nyquist windowing," IEEE Trans. Consum. Electron., vol. 42, no. 3, pp. 259-269, Aug. 1996.
[36] P. Tan and N. C. Beaulieu, "Reduced ICI in OFDM systems using the "better than" raised-cosine pulse," IEEE Commun. Lett., vol. 8, no. 3, pp. 135-137, Mar. 2004.
[37] R. Song and S.-H. Leung, "A novel OFDM receiver with second order polynomial Nyquist window function," IEEE Communications Letters, vol. 9, no. 5, pp. 391-393, May 2005.
[38]S. H. Muller-Weinfurtner, "Optimum Nyquist windowing in OFDM receivers," IEEE Trans. Commun., vol. 49, no. 3, pp. 417-420, Mar. 2001.
[39] N. C. Beaulieu and P. Tan, "On the effects of receiver windowing on OFDM performance in the presence of carrier frequency offset," IEEE Trans. Wireless Commun., vol. 6, no. 1, pp. 202-209, Jan. 2007.
[40] L. Franks, "Further results on Nyquist''s problem in pulse transmission," IEEE Trans. on Commun. Technol., vol. 16, no. 2, pp. 337-340, Apr. 1968.
[41] X. Wang, Y. Wu, J.-Y. Chouinard, and H.-C. Wu, "On the design and performance analysis of multisymbol encapsulated OFDM systems," IEEE Trans. Veh. Technol., vol. 55, no. 3, pp. 990-1002, May 2006.
[42] W. G. Jeon, K. H. Chang, and Y. S. Cho, "An equalization technique for orthogonal frequency-division multiplexing systems in time-variant multipath channels," IEEE Trans. Commun., vol. 47, no. 1, pp. 27-32, Jan. 1999.
[43] H.-C. Wu, X. Huang, Y. Wu, and X. Wang, "Theoretical studies and efficient algorithm of semi-blind ICI equalization for OFDM," IEEE Trans. Wireless Commun., vol. 7, no. 10, pp. 3791-3798, Oct. 2008.
[44] X. Huang and H.-C. Wu, "Robust and efficient intercarrier interference mitigation for OFDM systems in time-varying fading channels," IEEE Trans. Veh. Technol., vol. 56, no. 5, pp. 2517-2528, Sept. 2007.
[45] H.-C. Wu, X. Huang, and D. Xu, "Novel semi-blind ICI equalization algorithm for wireless OFDM systems," IEEE Trans. Broadcast., vol. 52, no. 2, pp. 211-218, June 2006.
[46]P. Schniter, "Low-complexity equalization of OFDM in doubly selective channels," IEEE Trans. Signal Process., vol. 52, no. 4, pp. 1002-1011, Apr. 2004.
[47] X. Huang and H.-C. Wu, "Robust and efficient intercarrier interference mitigation for OFDM systems in time-varying fading channels," IEEE Trans. Veh. Technol., vol. 56, no. 5, pp. 2517-2528, Sept. 2007.
[48] S. U. Hwang, J. H. Lee, and J. Seo, "Low complexity iterative ICI cancellation and equalization for OFDM systems over doubly selective channels," IEEE Trans. Broadcast., vol. 55, no. 1, pp. 132-139, Mar. 2009.
[49] H.-C. Wu and Y. Wu, "Distributive pilot arrangement based on modified M-sequences for OFDM intercarrier interference estimation," IEEE Trans. Wireless Commun., vol. 6, no. 5, pp. 1605-1609, May 2007.
[50] H.-C. Wu and Y. Wu, "A new ICI matrices estimation scheme using Hadamard sequences for OFDM systems," IEEE Trans. Broadcast., vol. 51, no. 3, pp. 305-314, Sept. 2005.
[51] Y. Mostofi and D.C. Cox, "ICI mitigation for pilot-aided OFDM mobile systems," IEEE Trans. Wireless Commun., vol. 4, no. 2, pp. 765-774, Mar. 2005.
[52] M. Faulkner, L. R. Wilhelmsson, and J. Svensson, "Low-complex ICI cancellation for improving Doppler performance in OFDM systems," in Proc. IEEE Veh. Technol. Conf., pp. 1-5, Sept. 2006.
[53] M.-X. Chang, "A novel algorithm of inter-subchannel interference self-cancellation for OFDM systems," IEEE Trans. Wireless Commun., vol. 6, no. 8, pp. 2881-2893, Aug. 2007.
[54] M. Gidlund and P. Ahag, “Enhanced HARQ scheme based on rearrangement of signal constellations and frequency diversity for OFDM systems,” IEEE Conf. Veh. Technol., vol. 1, pp. 500-504, May 2004.
[55] E.W. Jang, J. Lee, H.L. Lou, and J.M. Cioffi, “On the combining schemes for MIMO systems with hybrid ARQ,” IEEE Trans. Wireless Commun., vol. 8, no. 2, pp. 836-842, Feb. 2009.
[56] E.W. Jang, J. Lee, L. Song, and J.M. Cioffi, “An efficient symbol-level combining scheme for MIMO systems with hybrid ARQ,” IEEE Trans. Wireless Commun., vol. 8, no. 5, pp. 2443-2451, May 2009.
[57] Y. Gao, G. Li, K. Chen, H. Zheng, and Xi. Wu, “Novel MIMO HARQ Schemes Jointly Utilizing Chase Combining,” in Porc. IEEE Commun. Technol. Conf., pp. 1-5, Nov. 2006.
[58] K. Zheng, H. Long, L. Wang, W. Wang, and Y.I. Kim, “Design and Performance of Space–Time Precoder With Hybrid ARQ Transmission,” IEEE Trans. Veh. Technol., vol. 58, no. 4, pp. 1816-1822, May 2009.
[59] P.F. Driessen and G.J. Foschini, “On the capacity formula for multiple input-multiple output wireless channels: a geometric interpretation,” IEEE Trans. Commun., vol. 47, no. 2, pp. 173-176, Feb. 1999.
[60] P.B. Rapajic and D. Popescu, “Information capacity of a random signature multiple-input multiple-output channel,” IEEE Trans. Commun., vol. 48, no. 8, pp. 1245-1248, Aug. 2000.
[61] P.W. Wolniansky, G. J. Foschini, G. D. Golden, and R. A. Valenzuela, “V-BLAST: An Architecture for Realizing Very High Data Rates Over the Rich-Scattering Wireless Channel,” in Proc. International symposium on signals, systems and Electronics, pp. 295-300, Sept. 1998.
[62]S.M. Alamouti, “A simple transmit diversity scheme for wireless communications,” IEEE J. Select. Areas Commun., vol. 16, pp. 1415-1458, Oct. 1998.
[63] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-time block codes from orthogonal designs,” IEEE Trans. Info. Theory, vol.5, pp.1456-1467, Jul 1999.
[64] T. Luo, J. Li, and K. Hao, “Performance analysis for orthogonal space-time block codes in the absence of perfect channel state information,” in Proc. IEEE PIMRC, Vol. 2, pp. 1012-1016, Sept. 2003.
[65] S. Catreux, V. Erceg, D. Gesbert, and R. W. Heath Jr.,“Adaptive modulation and MIMO coding for broadband wireless data networks,” IEEE Comm. Mag., Vol. 2, pp. 108-115, June 2002.
[66] S. Shim, J. S. Choi, C. Y. Lee, and D. H. Youn, “Rank adaptive transmission to improve the detection performance of the BLAST in spatially correlated MIMO channel,” in Proc. Veh. Technol. Conf., vol. 1, pp. 195-198., Sep. 2002.
[67] A. Forenza, A. Pandharipande, H. Kim and R. W. Heath, “Adaptive MIMO transmission scheme: exploiting the spatial selectivity of wireless channels,” in Proc. Veh. Technol. Conf., Vol. 5, pp. 3188-3192, May 2005.
[68] J. Yu, F. Lin, Y. Teng, and G. Yue, “MIMO-OFDM Transmission Adaptation using Rank,” in Proc. IEEE PIMRC, pp. 1-5, Sept. 2007.
[69] Kwan, R. and Leung, C., “Performance of a CDMA system employing AMC and multicodes in the presence of channel estimation errors,” IEEE Trans. on Comm., Vol. 56, pp. 189-1963, Feb. 2008.
[70] Y. Wang, Q. Cui, X. Tao and M. Zhou, “Robust AMC Scheme Against Feedback Delay in Vehicular Environment,” in Proc. IEEE International Commun. Conf., pp. 1-5, June 2009.
[71] F. Huaping, F. Chen, and T. Tingjie, “A Threshold Optimizing Method Based on Markov in AMC Combined with HARQ,” in Proc. IEEE International WiCOM Conf., pp. 1-5, Sept. 2006.
[72]B. T. Walkenhorst, T. G. Pratt, and M. A. Ingram, Improving MIMO Capacity in a Line-of-Sight Environment, in Proc. IEEE GLOBECOM, pp. 3623-3628, Nov. 2007.
[73]M. Matthaiou, P. de Kerret, G. K. Karagiannidis, and J. A. Nossek, “Mutual information statistics and beamforming performance analysis of optimized LoS MIMO Systems,” IEEE Tran. Commun., vol. 58, no. 11, pp. 3316-3329, Nov. 2010.
[74]M. Matthaiou, Y. Kopsinis, D. I. Laurenson, and A. M. “Sayeed, Ergodic capacity upper bound for dual MIMO Ricean systems: simplified derivation and asymptotic tightness,” IEEE Trans. Commun., vol. 57, no. 12, pp. 3589-3596, Dec. 2009.
[75]L.-S. Tsai and D.-S. Shiu, “Capacity scaling and coverage for repeater-aided MIMO systems in line-of-sight environments,” IEEE Trans. Wireless Commun., vol. 9, no. 5, pp. 1617-1627, May 2010.
[76] Y. Zhao, L. Huang, T.-Y. Chi, S.-Y. Kuo, and Y. Yao, “Capacity analysis for multiple-input multiple-output relay system in a low-rank line-of-sight environment,” IET Commun., vol. 6, no. 6, pp. 668-675, Apr. 2012.
[77] I. Sarris and A. Nix, “Design and performance assessment of high capacity MIMO architectures in the presence of a line-of-sight component,” IEEE Trans. Veh. Technol., vol. 56, no. 4, pp. 2194-2202, Jul. 2007.
[78] F. Bohagen, P. Orten, and G. E. Oien, “Design of capacity-optimal high-rank line-of-sight MIMO channels,” IEEE Trans. Wireless Commun., vol. 6, no. 4, pp. 1420-1425, Apr. 2007.
[79] I. Sarris and A. Nix, “Design and performance assessment of maximum capacity MIMO architectures in line-of-sight,” IET Communications, vol. 153, no. 4, pp. 482-488, Aug. 2006.
[80] B. Chow, M.-L. Yee, M. Sauer, A. Ng''Oma, M.-C. Tseng, and C.-H. Yeh, Radio-over-Fiber distributed antenna system for WiMAX bullet train field trial, in Proc. IEEE Mobile WiMAX Symposium, 2009, pp.98-101, 9-10 July 2009.
[81] I. Sarris and A. R. Nix, A line-of-sight optimised MIMO architecture for outdoor environments, in Proc. IEEE Veh. Technol. Conf, pp. 1-5, 25-28 Sept. 2006.
[82] P. Dent, G.E. Bottomley, and T. Croft, “Jakes fading model revisited,” Electronics Letters, vol. 29, pp. 1162-1163, June 1993.
[83]C.-R. Sheu, M.-C. Tseng, C.-Y. Chen, and H.-P. Lin, "A low-complexity concatenated ICI cancellation scheme for high-mobility OFDM systems," in Proc. IEEE WCNC, Mar. 2007, pp. 1389-1393.
[84] J. C. Moreira and P. G. Farrell, Essentials of Error-Control Coding, John Wiley & Son, 2006.
[85] “Project 802.16m Evaluation Methodology Document (EMD)” http://www.ieee802.org/16/tgm/
[86] W.H. Chin, Y. Wu, Patrick Fung and, S. Sun “Performance Analysis of Hybrid STBC in MIMO-OFDM-Based Wireless LANs,” in Proc. IEEE Veh.Technol. Conf., Apr. 2007, pp. 2460-2464.
[87] H. Bunke and T. Caelli, Hidden Markov Models Applications in Computer Vision, World Scientific, New Jersey, 2001.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔