(100.25.42.117) 您好!臺灣時間:2021/04/21 16:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:廖文祥
研究生(外文):Wen-Hsiang Liao
論文名稱:以聚焦微波電漿束合成超微細鑽石奈米結構在光電及生醫植入元件上之應用
論文名稱(外文):Synthesis of Ultra-Fine Diamond Nanostructures by Using Focused Microwave Plasma Jets for Applications in Optoelectronic and Bioimplantable Devices
指導教授:林啟瑞林啟瑞引用關係魏大華
口試委員:王英郎洪新欽張合朱瑾郭正次
口試日期:2013-01-24
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:機電科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:229
中文關鍵詞:超奈米晶鑽石聚焦微波電漿束光電元件植入式生醫元件
外文關鍵詞:UNCDFocused microwave plasma jetsOptoelectronic devicesBioimplamtable devices
相關次數:
  • 被引用被引用:0
  • 點閱點閱:246
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:43
  • 收藏至我的研究室書目清單書目收藏:0
鑽石擁有極其優異的材料特性,被認為具有極高的應用潛力,但是一般化學氣相沉積所合成的微米晶鑽石(Microcrystalline diamond, MCD)膜,因其表面粗糙、高合成溫度及不易摻雜形成正或負型半導體等問題存在,所以限制了鑽石膜於工業上之應用。為了提升鑽石於多功能性(如光電與生醫)元件上之實際應用,合成晶粒尺寸為奈米/超奈米等級之鑽石膜(Nanocrystalline/ultrananocrystalline diamond, NCD/UNCD),被視為最佳解決方法之一。本研究發展出一獨特的聚焦微波電漿束(Focused microwave plasma jet)技術用以改善UNCD薄膜之合成並完成UNCD薄膜之成長、改質、特徵及其功能性(光電及植入式生醫)元件應用之探討。研究結果顯示使用微波電漿束化學氣相沉積(Microwave plasma jet chemical vapor deposition, MPJCVD) 可有效促進UNCD薄膜之初始成核與成長。此製程所合成之UNCD薄膜具有的特性與典型的微波氬氣(Ar-rich)電漿成長之UNCD薄膜十分相同,但卻可在較低的Ar氣濃度(90%)、溫度(460 ℃)、工作壓力(35 Torr)及微波功率(700 W)下以更快的沉積速率 (315 nm/h)成長更平滑之UNCD薄膜。研究中將MPJCVD製程之Ar氣濃度、合成壓力、甲烷(CH4)濃度及氮氣(N2)濃度對於UNCD薄膜之合成與特性之影響進行系統性地探討,並進一步提出其可能的成長機制了解其成長條件-結構-特性之關聯。
在UNCD薄膜之功能性元件應用方面,研究中完成其製作成紫外光感測器與植入式生醫元件的可行性之探討。研究結果指出UNCD薄膜搭配金膜指狀電極所製備之紫外光感測器在紫外光輻射照度 (10-4-10-2 W/cm-2) 改變下展現出明顯的電流值變化(10-103 times),並具備良好的時間響應性能與穩定的再現性。體外細胞(Human osteosarcoma cell line MG63)培養證實UNCD薄膜具有較類鑽碳(Diamond-like carbon, DLC)薄膜及矽基板更佳的生物相容性與生物體內穩定性,大有希望應用於植入式生醫元件之封裝。UNCD薄膜之生物相容性可經由摻雜氮(nitrogen doping)而明顯地提升,然而,生物惰性卻會因UNCD薄膜摻氮導致的結構鬆散與較低的附著度而下降。
MPJCVD合成之UNCD薄膜已被證實具有極高潛力應用於開發多功能性元件,因此我們進一步探討低維度鑽石奈米結構之MPJCVD合成、特形及應用。本研究成功地直接以MPJCVD完成鑽石奈米粒子(Diamond nanoparticles, DNPs)、頂端披附上DLC奈米點的直立矽奈米柱 (DLC nanodots-coated Si nanopillars)及直立且高細長比鑽石奈米線(Diamond nanowires, DNWs)之製作。DNPs之合成乃藉由拉長MPJCVD製程之工作距離至15 mm,導至奈米鑽石同質氣相成核與成長被優先地發生,待其於氣相中成長或團聚至一定大小(~100 nm)與重量進而掉落於基板上形成均勻尺寸之DNPs。DLC nanodots-coated Si nanopillars之製備是藉由Focused microwave plasma jet直接於矽基板上同時增強蝕刻與合成之技術所完成。 MPJCVD製程所合成之DLC nanodots直接做為直立Si nanopillars結構化之蝕刻遮罩。直立且高細長比之DNWs伴隨著奈米鑽石及石磨複合薄膜被證實具備極佳的電子場發射特性,作為場發射源可展現出極低的起始電場(3.2 V/μm)與高的電流密度。此外,由DNWs試片中抽取出之單一根鑽石奈米線的特性分析證實DNWs仍保有與一般鑽石相同的電絕緣特性,然而,其結構卻同時可展現出新穎的可撓性(bended ~87.5°)特徵。


The unique combination of excellent physical and chemical properties makes diamond a potential material candidate for applications in the fabrication of multifunctional devices. However, the rough surface morphology, high-temperature synthesis, and difficult P- and N-type doping of typical microcrystalline diamond (MCD) films grown from chemical vapour deposition (CVD) methods restricted the practical applications of diamond. One way of synthesizing nanocrystalline/ultrananocrystalline diamond (NCD/UNCD) films is regarded as the effective method for resolving those restrictions. The grain size of UNCD films is less than 10 nm, therefore the effect of diamond facet characteristics on their applications can be greatly decreased. The study describes a new CVD technique underlying the improved synthesis of UNCD films from focused microwave plasma jets and completes investigations of the growth, modification, characterization, and function applications in the optoelectronic and bioimplantable devices of the synthesized UNCD films. The research results demonstrated that the nucleation and growth of UNCD films could be really improved by using the microwave plasma jet chemical vapor deposition (MPJCVD). The MPJCVD yields smoother UNCD films identical to thoses produced with Ar-1%CH4 chemistry by microwave plasma chemical vapor deposition (MPCVD), but using relatively low Ar introduction (90%), low temperature (460 ℃), low pressure (35 Torr), and low microwave power (700 W) during synthesis with higher deposition rate (315 nm/h). The effects of Ar concentration, deposition pressure, CH4 concentration, and N2 concentration on UNCD film synthesis from the MPJCVD were systematically investigated. The poteintial synthesis mechanisms were proposed to understand the relationships between the deposition conditions, structures, and properties of the films.
The fabrication of UNCD films-based UV photodetector and in vitro cell (Human osteosarcoma cell line MG63) cultivation experiments have been performed for investigation on functional device applications of UNCD films grown by MPJCVD. The results indicated that the device made of UNCD films combined with Au interdigital finger (IDF) electrodes exhibited obvious changes (10-103 times) in current under a range of UV irradiances (10-4-10-2 W/cm-2) with fast response and stable reproducibility. In vitro MG63 cell culture study demonstrated that UNCD-based films are better than diamond-like carbon (DLC)-based films and Si substrates for promoting the cell attachment and the stability within human body. The UNCD films are promising for the the fabrication and encapsulation of in vivo devices without induced immune response in the human body.
In this study, we further investigated the MPJCVD synthesis, characterization, and application of low-dimension diamond nanostructures. The MPJCVD has been successfully developed to direct fabrication diamond nanoparticles (DNPs), DLC nanodots-coated Si nanopillar arrays, and vertical diamond nanowires (DNWs) with uitra-high aspect ratio. The DNPs synthesis was induced by preferentially homogeneous nucleation and growth of nanodiamonds in the vapor during synthesis with a prolonged plasma jet working distance of 15 mm. The nanodiamonds were grew and aggregated until to achieve a specific size with sufficient weight in the plasma jet for further landing on Si substrates coated with UNCD films. DLC nanodots-coated Si nanopillars were directly structured fom Si substrates via a specific fabrication scheme under focused microwave H2-4%CH4 plasma jet simultaneously enhanced etching and growth technique. The DLC nanodots in-situ synthesized from seeding sites on treated Si substrates, which serve as masks during the simultaneous etching process. The vertical DNWs grown accompanying nanodiamond-graphite-amorphous carbon films have been demonstrated to possess marvellous EFE properties with a low turn-on field (E0) of around 3.2 V/μm and a high current density. Moreover, the one-dimension nanowire extracted from the sample of hybrid DNWs which has been demonstrated to keep the electrically insulating property of buck diamond, but exhibited a novel flexibility (bended ~87.5°) in mechanical properties. These experimental finding provided some thinking to associated with the process of nanodiamond related materials for further controlling and obtaining the required diamond nanostructures.

ABSTRACT IN CHINESE i
ABSTRACT IN ENGLISH iii
ACKNOWLEDGEMENTS vi
CONTENTS viii
LIST OF TABLE xii
LIST OF FIGURE xiii
Charpter 1: INTRODUCTION 1
1.1 Background and motivation 1
1.2 Nanonization/ultra-nanonization effect of diamond crystals 4
1.3 Aims of This Study 7
Charpter 2: LITTERATURE REVIEW 10
2.1 Structure and property of diamond and graphite 10
2.2 Synthesis of diamond…....………………………………………… 15
2.2.1 Synthesis of diamond at HPHT 17
2.2.2 Synthesis of diamond using CVD technique 18
2.3 Initial nucleation of diamond films 20
2.3.1 Nucleation theory 20
2.3.2 Pretreatments for enhanced initial nucleation 21
2.4 Ultrananocrystalline diamond (UNCD) films 25
2.4.1 MCD films 25
2.4.2 NCD/UNCD films 27
2.4.3 Synthesis of NCD/UNCD films 29
2.4.4 Potential applications of UNCD films 37
2.5 In-situ optical emission spectroscopy (OES) 40
2.5.1 In-situ plasma diagnosis using OES 40
2.5.2 Calculation of plasma species concentration by OES 41
Charpter 3: EXPERIMENTAL DETAILS 43
3.1 Experimental flowchart 43
3.2 Home-made MPJCVD system 44
3.3 Raw materials 48
3.3.1 Substrates 48
3.3.2 Source gases and raw diamond particles 48
3.4 Structure and characterization analyses 49
3.4.1 Scanning electron microscopy (SEM) 49
3.4.2 Atomic force microscopy (AFM) 49
3.4.3 Transmission electron microscopy (TEM) 50
3.4.4 Raman spectroscopy 51
3.4.5 X-ray diffraction (XRD) 51
3.4.6 X-ray absorption near-edge structure (XANES) spectroscopy 52
3.4.7 UV-A/Visible/near-IR spectrophotometer 53
3.4.8 Contact angle (CA) goniometry 53
3.4.9 UV photosensing 54
3.4.10 In vitro cell culture 55
3.4.11 Electrochemical (EC) tests 56
3.4.12 Films adhesive strength tests 56
Charpter 4: SYNTHESIS AND CHARACTERIZATION OF UNCD FILMS BY USING MPJCVD SYSTEM 58
4.1 Improvement on the synthesis technique of UNCD films by using MPJCVD 58
4.1.1 Introduction 58
4.1.2 Synthesis of UNCD films with various Ar additions on Si substrates 60
4.1.3 Improvement on growth of UNCD films 60
4.1.4 Improvement on initial nucleation of UNCD films 67
4.1.5 Summary 69
4.2 Fabrication of highly transparent UNCD films from focused microwave plasma jets 70
4.2.1 Introduction 70
4.2.2 Synthesis of UNCD films with various Ar additions on quartz substrates 72
4.2.3 Atomic bonding nature characterized by using the XANES spectroscopy 72
4.2.4 Surface morphology and roughness 75
4.2.5 Growth mechanism of diamond films synthesized by MEG technique at various Ar additions 77
4.2.6 Optical transparency and mechanical properties 79
4.2.7 Summary 82
4.3 Synthesis of highly transparent UNCD films from low-pressure, low-temperature focused microwave plasma jets 83
4.3.1 Introduction 83
4.3.2 Synthesis of diamond films at various working pressures 84
4.3.3 Surface and cross-section morphology 85
4.3.4 Atomic bonding nature 89
4.3.5 TEM and XANES analyses of LPLT MEG UNCD film 91
4.3.6 Growth mechanism of diamond films synthesized by MEG technique at various pressures 93
4.3.7 Optically transparent properties of LPLT MEG UNCD films coated on glass substrates 94
4.3.8 Atomic bonding nature characterized by the XANES spectroscopy 96
4.3.9 Inner nanostructures observed by the HRTEM 97
4.3.10 Summary 100
4.4 Effect of CH4 concentration on the growth behavior, structure, and properties of UNCD films synthesized by focused microwave Ar/CH4/H2 plasma jets 101
4.4.1 Introduction 101
4.4.2 Synthesis of diamond films with various CH4 concentrations 102
4.4.3 Surface morphology 103
4.4.4 Atomic bonding nature 105
4.4.5 TEM and XANES analyses 107
4.4.6 Growth mechanism of diamond films synthesized by MEG technique with various CH4 concentrations 109
4.4.7 Optically transparent and electrochemical properties 112
4.4.8 Summary 115
4.5 Formation of UNCD films with nitrogen doping 116
4.5.1 Introduction 116
4.5.2 Synthesis of nitrogen-doped UNCD films with various N2 concentrations 117
4.5.3 Species composition in the plasma jet 118
4.5.4 Surface morphology 120
4.5.5 TEM analysis 121
4.5.6 Chemical composition and atomic bonding nature 123
4.5.7 Summary 126
4.6 Visualization of cavity-defect formation in nitrogen-doped UNCD films grown from focused microwave plasma jets 127
4.6.1 Introduction 127
4.6.2 Synthesis of nitrogen-doped UNCD films with various N2 concentrations 128
4.6.3 TEM analysis 129
4.6.4 Atomic bonding nature characterized by using the XANES spectroscopy 132
4.6.5 XPS data and nanohardness analyses 134
4.6.6 Formation-development mechanism of the cavity-defect within the nitrogen-doped UNCD films 136
4.6.7 Summary 139
4.7 Applications of MEG UNCD films 140
4.7.1 Introduction 140
4.7.2 Fabrication of UNCD films-based PC UV detector 141
4.7.3 Performance in UV photodetection 143
4.7.4 Determination of bioimplantable application 151
Charpter 5: SYNTHESIS AND CHARACTERIZATION OF LOW-DIMENSIONAL DIAMOND NANOSTRUCTURES BY USING MPJCVD SYSTEM 160
5.1 Introduction 160
5.2 Synthesis and characterization of diamond nanoparticles (DNPs) by MPJCVD 162
5.3 Fabrication of vertical Si nanopillars coated with DLC nanodots by MPJCVD 168
5.4 Fabrication of diamond nanopillar arrays via inductively coupled plasma reactive ion etching 178
5.5 Vertical diamond nanowires with ultra-high aspect ratio synthesized by MPJCVD 185
Charpter 6: CONCLUSIONS 204
Charpter 7: FUTURE WORK 208
REFERENCES 210
LIST OF SYMBOLS 221
CURRICULUM VIATE 223
PUBLICATION 224


[1]O. A. Shenderova and D. M. Gruen, "Ultrananocrystalline diamond (UNCD): synthesis, properties, and applications of UNCD (2nd edition)," Elsevier, 2012.
[2]http://cnst.rice.edu/images/allotropes.tif.
[3]T. Sharda and S. Bhattacharyya, "Advances in nanocrystalline diamond," Encyclopedia of Nanoscience and Nanotechnology, X, 1, 2003.
[4]J. W. Baldwin, M. Zalalutdinov, T. Feygelson, J. E. Butler, and B. H. Houston, "Fabrication of short-wavelength photonic crystals in wide-band-gap nanocrystalline diamond films," J. Vac. Sci. Tecnol. B, vol. 24, no.1, 2006, pp. 50-54.
[5]P. Achatz, J. A. Garrido, M. Stutzmann, O. A. Williams, D. M. Gruen, A. Kromka, and D. Steinmuller, "Optical properties of nanocrystalline diamond thin films," Appl. Phys. Lett., vol. 88, 2006, pp. 101908.
[6]L. W. Jiang, L. J. Wang, J. M. Liu, J. F. Ruan, Q. F. Su, J. T. Cui , N. C. Wu, W. M. Shi, and Y. B Xia, "Optical properties of nano-crystalline diamond films," Int. J. Infrared Millimeter Waves, vol. 25, no. 3, 2006, pp. 195-198.
[7]K. H. Kim, N. Moldovan, C. Ke, H. D. Espinosa, X. Xiao, J. A. Carlisle, and O. Auciello, "Novel ultrananocrystalline diamond probes for high-resolution low-wear nanolithographic techniques," Small, vol. 1, 2005, pp. 866-874.
[8]A. Kriele, O. A. Williams, M. Wolfer, D. Brink, W. Muller-Sebert, and C. E. Nebel, "Tuneable optical lenses from diamond thin films," Appl. Phys. Lett., vol. 95, 2009, pp. 031905-1-031905-3.
[9]P. T. Joseph, N. H. Tai, Y. C. Chen, H. F. Cheng, and I. N. Lin, "Transparent ultrananocrystalline diamond films on quartz substrate, "Diamond Relat. Mater., vol.17, 2008, pp. 476-480.
[10]W. Zhu, G. P. Kochanski, and S, Jin, "Low-field electron emission from undoped nanostructured diamond," Science, vol. 282, 1998, pp. 1471-1473.
[11]J. M. Garguilo, F. A. M. Koeck, R. J. Nemanich, X. C. Xiao, J. A. Carlisle, and O. Auciello, "Thermionic field emission from nanocrystalline diamond-coated silicon tip arrays," Phys. Rev. B, vol. 72, 2005, pp. 165404-1-165404-6.
[12]S. Bhattacharyya, O. Auciello, J. Birrell, J. A. Carlisle, L. A. Curtiss, A. N. Goyette, D. M. Gruen, and P. Zapol, "Synthesis and characterization of highly-conducting nitrogen-doped ultrananocrystalline diamond films," Appl. Phys. Lett., vol. 79, 2001, pp. 1441-1443.
[13]O. A. Williams, S. Curat, J. E. Gerbi, D. M. Gruen, and R. B. Jackman, "n-type conductivity in ultrananocrystalline diamond films," Appl. Phys. Lett., vol. 85, 2004, pp. 1680-1682.
[14]P. Zapol, M. Sternberg, L. A. Curtis, T. Frauenheim, and D.M Gruen, "Tight-binding molecular dynamics simulation of impurities in ultrananocrystalline diamond grain boundaries," Phys. Rev. B, vol. 65, 2002, pp. 0454031-04540311.
[15]D. Zhou, T. G. McCauley, L. C. Qin, A. R. Krauss, and D. M. Gruen, "Synthesis of nanocrystalline diamond thin films from an Ar-CH4 microwave plasma," J. Appl. Phys., vol. 83, 1998, pp. 540-543.
[16]C. J. Tang, S. M. S. Pereira, A. J. S. Fernandes, A. J. Neves, J. Gracio, I. K. Bdikin, M. R. Soares, and M. C. Carmo, "Synthesis and structural characterization of highly (100)-oriented {100}-faceted nanocrystalline diamond films by microwave plasma chemical vapor deposition," J. Cryst. Growth, vol. 311, 2009, pp. 2258-2264.
[17]X. Xiao, J. Wang, C. Liu, J. A. Carlisle, B. Mech, R. Greenberg, D. Guven, and O. Auciello, "In vitro and in vivo evaluation of ultrananocrystalline diamond for coating of implantable retinal microchips," J .Biomed. Mater. Res. B, vol. 77, 2006, pp. 273-281.
[18]P. Bajaj, D. Akin, A. Gupta, D. Sherman, B. Shi, O. Auciello, and R. Bashir, "Ultrananocrystalline diamond film as an optimal cell interface for biomedical applications," Biomed. Microdevices, vol. 9, 2007, pp. 787-794.
[19]D. M. Gruen, "Nanocrystalline diamond films," Annu. Rev. Mater. Sci., vol. 29 1999, pp. 211-259.
[20]D. Zhou, D. M. Gruen, L.C. Qin, T. G. McCauley, and A. R. Krauss, "Control of diamond film microstructure by Ar additions to CH4/H2 microwave plasmas," J. Appl. Phys., vol. 84, 1998, pp. 1981-1989.
[21]A. V. Sumant, D. S. Grierson, J. E. Gerbi, J. A. Carlisle, O. Auciello, and R. W. Carpick, "Surface chemistry and bonding configuration of ultrananocrystalline diamond surfaces and their effects on nanotribological properties," Phys. Rev. B, vol. 76, 2007, pp. 235429.
[22]S. Srinivasan, J. Hiller, B. Kabius, and O. Auciello, "Piezoelectric/ultrananocrystalline diamond heterostructures for high-performance multifunctional micro/nanoelectromechanical systems," Appl. Phys. Lett., vol. 90, 2007, pp. 134101.
[23]X. Xiao, J. Birrell, J. E. Gerbi, O. Auciello, and J. A. Carlisle, "Low temperature growth of ultrananocrystalline diamond," J. Appl. Phys., vol. 96, 2004, pp. 2232-2239.
[24]H. O. Pierson, "Handbook of carbon, graphite, diamond and fullerenes- properties, processing and applications," William Andrew Publishing/Noyes, 1993.
[25]http://newton.ex.ac.uk/research/qsystems/people/sque/images/diamond-conventional-unit-cell.gif.
[26]Diamond growth and films, Universities’ Carbon Films And Materials Group, Elsevier, 1989.
[27]H. O. Pierson, "Handbook of chemical vapor deposition-principles, technology and applications (2nd edition)," William Andrew Publishing/Noyes, 1999.
[28]http://phycomp.technion.ac.il/~david/thesis/node3.html
[29]P. K. Bachmann and R. Messier, "Emerging technology of diamond thin films," Chemical and Engineering News, vol. 67, 1989, pp. 24-39.
[30]張靖郁, 利用電漿放射光譜診斷MPJCVD系統成長奈米晶鑽石膜及其光電導特性研究, 博士論文, 台北科技大學機電科技研究所,台北, 2008。
[31]M. Frenklash and K. Spear, "Growth Mechanism of Vapor Deposited Diamond," J. of Mat. Res., vol. 3, 1988, pp. 133–1406,
[32]W. L. Hsu, "Chemical Erosion of Grahite by Hydrogen Impaact: A Summary of the Database Relevant to Diamond Film Growth," J. Vac. Sci. Technol. A, vol. (6)3, 1988, pp. 1803–1811
[33]W. Kulisch, C. Popov, V. Vorlicek, P. N. Gibson, and G. Favaro, "Nanocrystalline diamond growth on different substrates," Thin Solid Films, vol. 515, 2006, pp. 1005-1010.
[34]K. Kobashi, "Diamond Films," Elsevier , 2005.
[35]http://www.unifr.ch/physics/fk/Research/Images/PLD4.gif.
[36]Y. Lifshitz, C.H. Lee, Y. Wu, W. J. Zhang, I. Bello, and S. T. Lee, "Role of nucleation in nanodiamond film growth," Appl. Phys. Lett., vol. 88, 2006, pp. 243114.
[37]L. J. Chen, N. H. Tai, C. Y. Lee, and I. N. Lin, "Effects of pretreatment processes on improving the formation of ultrananocrystalline diamond," J. Appl. Phys., vol. 101, 2007, pp. 064308.
[38]Y. Chakk, R. Brener, and A. Hoffman, "Enhancement of diamond nucleation by ultrasonic substrate abrasion with a mixture of metal and diamond particles," Appl. Phys. Lett., vol. 66, 1995, pp. 2819-2821.
[39]D. Pradhan and I. N. Lin, "Effect of titanium powder assisted surface pretreatment process on the nucleation enhancement and surface roughness of ultrananocrystalline diamond thin films," Appl. Surf. Sci., vol. 255, 2009, pp. 6907-6913.
[40]S. Iijima, Y. Aikawa, and K. Baba, "Early formation of chemical vapor deposition diamond films," Appl. Phys. Lett., vol. 57, 1990, pp. 2646-2648.
[41]M. Ihara, H. Komiama, and T. Okubo, "Correlation between nucleation site density and residual diamond dust density in diamond film deposition," Appl. Phs. Lett., vol. 65, 1994, pp. 1192-1194.
[42]P. A. Denning and D. A. Stevenson, "Influence of substrate topography on the nucleation of diamond thin films," Appl. Phys. Lett., vol. 59, 1992, pp. 1562-1564.
[43]S. Yugo, T. Kimura, and T. Muto, "Effects of electric field on the growth of diamond by microwave plasma CVD ," Vacuum, vol. 41, 1990, pp. 1364-1367.
[44]S. Yugo and T. Kanai et al., "Generation of diamond nuclei by electric field in plasma chemical vapor deposition," Appl. Phys. Lett., vol. 58, 1991, pp. 1036-1038.
[45]S. Yugo, T. Kanai, and T. Kimura, "A new method for the generation of diamond nuclei by plasma CVD," Diamond Relat. Mater., vol. 1, 1992, pp. 388-391.
[46]R. Stockel, M. Stammler, K. Janischowsky, L. Ley, M. Albrecht, and H. P. Strunk, "Diamond nucleation under bias conditions," J. Appl. Phys., vol. 83, 1998, pp. 531-539.
[47]R. Stockel, K. Janischowsky, S. Rohmfeld, J. Ristein, L. Hundhausen, and L. Ley, "Diamond growth during bias pre-treatment in the microwave CVD of diamond," Diamond Relat. Mater., vol. 5, 1996, pp. 321-325.
[48]J. C. Angus and C. C. Hayman, "Low-pressure, metastable growth of diamond and diamondlike phases," Science, vol. 241, 1988, pp. 913-921.
[49]K. Wu, E. G. Wang, Z. X. Cao, Z. L. Wang, and X. Jiang, "Microstructure and its effect on field electron emission of grain-size-controlled nanocrystalline diamond films," J. Appl. Phys., vol. 88, 2000, pp. 2967-2974.
[50]Q. Yang, S. Yang, Y. S. Li, X. Lu, and A. Hirose, "NEXAFS characterization of nanocrystalline diamond thin films synthesized with high methane concentrations," Diamond Relat. Mater., vol. 16, 2007, pp. 730-734.
[51]Y. Lifshitz and X. M. Meng et al., "Visualization of diamond nucleation and growth from energetic species," Phys. Rev. Lett., vol. 93, 2004, pp. 056101
[52]Y. Lifshitz, Th. Kohler, Th. Frauenheim, I. Guzmann, A. Hoffman, R. Q. Zhang, X. T. Zhou, and S. T. Lee, "The mechanism of diamond nucleation from energetic Species," Science, vol. 297, 2002, pp. 1531-1533.
[53]J. Birrell, J. A. Carlisle, O. Auciello, D. M. Gruen, and J. M. Gibson, "Morphology and electronic structure in nitrogen-doped ultrananocrystalline diamond," Appl. Phys. Lett., vol. 81, 2002, pp. 2235-2237
[54]H. J. Lee, H. Jeon, and W. -S. Lee, "Ultrathin ultrananocrystalline diamond film synthesis by direct current plasma-assisted chemical vapor deposition," J. Appl. Phys., vol. 110, 2011, pp. 084305.
[55]H. J. Lee, H. Jeon, and W. -S. Lee, "Synergistic Interaction between Substrate and Seed Particles in Ultrathin Ultrananocrystalline Diamond Film Nucleation on SiO2 with Controlled Surface Termination," J. Phys. Chem. C, vol. 116, 2012, pp. 9180-9188.
[56]A. Erdemir, C. Bindal, G. R. Fenske, C. Zuiker, A. R. Krauss, and D. M. Gruen, "Friction and wear properties of smooth diamond films grown in fullerene + argon plasmas," Diamond Relat. Mater., vol. 5, 1996, pp. 923-931.
[57]A. R. Krauss, O. Auciello, D. M. Gruen, A. Jayatissa, A. Sumant, J. Tucek, D. C. Mancini, and M. Q. Ding, "Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices," Diamond Relat. Mater., vol. 10, 2001, pp. 1952-1961.
[58]J. A. Carlisle and O.Auciello, "Ultrananocrystalline diamond. Properties and applications in biomedical devices," Electrochemical Society Interface, vol. 12 2003, pp. 28-31.
[59]K. Kobashi, K. Nishimura, Y. Kawate, and T. Horiuchi, "Synthesis of diamonds by use of microwave plasma chemical-vapor deposition: Morphology and growth of diamond films," Phys. Rev. B, vol. 38, 1988, pp. 4067-4084.
[60]http://www.awindiamond.com/image/Optics2.jpg
[61]K. Hayashi, Y. Yokota, T. Tachibana, K. Kobashil, J. Achard, A. Gicquel, C. Olivero, and A. Treshchalov, "Temporal response of UV sensors made of highly oriented diamond films by 193 and 313 nm laser pulses," Diamond Relat. Mater., vol. 10, 2001, pp. 1794-1798.
[62]M. Shamsa, S. Ghosh, I. Calizo, V. Ralchenko, A. Popovich, and A. A.Balandin, "Thermal conductivity of nitrogenated ultrananocrystalline diamond films on silicon," J. Appl. Phys., vol. 103, 2008, pp. 083538.
[63]Y. C. Lee, S. J. Lin, V. Buck, R. Kunze, H. Schmidt, C. Y. Lin, W. L. Fang, and I. N. Lin,, "Surface acoustic wave properties of natural smooth ultra-nanocrystalline diamond characterized by laser-induced SAW pulse technique," Diamond Relat. Mater., vol. 17, 2008, pp. 446-450.
[64]G. Lombardi, F. Benedic, F. Mohasseb, K. Hassouni, and A. Gicquel, "Determination of gas temperature and C2 absolute density in Ar/H2/CH4 microwave discharges used for nanocrystalline diamond deposition from the C2 Mulliken system," Plasma Sources Sci. Technol., vol. 13, 2004, pp. 375-386.
[65]M. A. Libeberman and A.J. Lichtenberg, "Principles of Plasma Discharges and Materials Processing," New York, John Wiley & Sons, 1994.
[66]P. Tristant and Z. Ding, "Microwave plasma enhanced CVD of aluminum oxide films: OES diagnostics and influence of the RF bias," Thin Solid Films, vol. 390, 2001, pp. 51-58.
[67]J. W. Coburn and M. Chen, "Optical emission spectroscopy of reactive plasmas: A method for correlating emission intensities to reactive particle density," J. Appl. Phys., vol. 51, 1980, pp. 3134-3136.
[68]C. L. Dong, S. S. Chen, J. W. Chiou, Y. Y. Chen, J. H. Guo, H. F. Cheng, I. N. Lin, and C. L. Chang, "Effect of surface treatments on the electronic properties of ultra-nanocrystalline diamond films," Diamond Relat. Mater., vol. 17, 2008, 1150-1153.
[69]W. H. Liao, C. R. Lin, D. H. Wei, Y. R. Shen, Y. C. Li, J. A. Lee, and C. Y. Liang, "Concurrent improvement in biocompatibility and bioinertness of diamond-like carbon films with nitrogen doping," J .Biomed. Mater. Res. A, vol. 100(A), 2012, pp. 3151-3156.
[70]B. R. Lawn, A. G. Evans, and D. B. Marshall, "Elastic/plastic indentation damage in ceramics: The median/radial crack system," J. Am. Ceram. Soc., vol. 63, 1980, pp. 574-581.
[71]S. Zhang, D. Sun, Y. Fu, and H. Du, "Toughness measurement of thin films: A critical review," Surf. Coat. Technol., vol. 198, 2005, pp. 74-84.
[72]C. S. Wang, H. C. Chen, W. C. Shih, H. F. Cheng, and I. N. Lin, "Effect of H2/Ar plasma on growth behavior of ultra-nanocrystalline diamond films: The TEM study," Diamond Relat. Mater., vol. 19, 2010, pp.138-142.
[73]A. C. Ferrari and J. Robertson, "Interpretation of Raman spectra of disordered and amorphous carbon," Phys. Rev. B, vol. 61, 2000, pp. 14095-14107.
[74]A. C. Ferrari and J. Robertson, "Origin of the 1150-cm-1 Raman mode in nanocrystalline diamond," Phys. Rev. B, vol. 63, 2001, pp. 1214051-1214054.
[75]M. T. Schulberg, C. A. Fox, G. D. Kubiak, and R. H. Stulen, "Hydrogen desorption from chemical vapor deposited diamond films," J. Appl. Phys., vol. 77, 1995, pp. 3484-3490.
[76]S. Jiao, A. Sumant, M. A. Kirk, D. M. Gruen, A. R. Krauss, and O. Auciello, "Microstructure of ultrananocrystalline diamond films grown by microwave Ar-CH4 plasma chemical vapor deposition with or without added H2," J. Appl. Phys., vol. 90, 2001, pp. 118-122.
[77]C. R. Lin, W. H. Liao, D. H. Wei, C. K.Chang, W. C. Fang, C. L.Chen, C. L. Dong, and J. H. Guo, "Improvement on the synthesis technique of ultrananocrystalline diamond films by using microwave plasma jet chemical vapor deposition," J. Cryst. Growth, vol. 326, 2011, pp. 212-217.
[78]M. S. You, F. C. N. Hong, Y. R. Jeng, and S. M. Huang, "Low temperature growth of highly transparent nanocrystalline diamond films on quartz glass by hot filament chemical vapor deposition," Diamond Relat. Mater., vol. 18, 2009, pp. 155-159.
[79]J. Birrell, J. E. Gerbi, O. Auciello, J. M. Gibson, D. M. Gruen, J. A. Carlisle, "Bonding structure in nitrogen doped ultrananocrystalline diamond," J. Appl. Phys., vol. 93, 2003, pp. 5606-5612.
[80]F. L. Coffman, R. Cao, P. A. Pianetta, S. Kapoor, M. Kelly, and L. J. Terminello, "Near‐edge x‐ray absorption of carbon materials for determining bond hybridization in mixed sp2/sp3 bonded materials," Appl. Phys. Lett., vol. 69, 1996, pp. 568-570.
[81]C. R. Lin and W. H. Liao, D. H. Wei, Y. R.Shen, C. L. Chen, C. L. Dong, and W. C. Fang, "Fabrication of highly transparent ultrananocrystalline diamond films from focused microwave plasma jets," Surf. Coat. Technol., doi: 10.1016/j.surfcoat.2012.01.052 (in press).
[82]M. Veres, S. Toth, and M. Koos, "Grain boundary fine structure of ultrananocrystalline diamond thin films measured by Raman scattering," Appl. Phys. Lett., vol. 91, 2007, pp. 031913-1-031913-3.
[83]K. L. Ma, J. X. Tang, Y. S. Zou, Q. Ye, W. J. Zhang, and S. T. Lee, "Photoemission spectroscopic study of nitrogen-incorporated nanocrystalline diamond films," Appl. Phys. Lett., vol. 90, 2007, pp. 092105-1-092105-3.
[84]H. F. Cheng, C. C. Horng, H. Y. Chiang, H. C. Chen, and I. N. Lin, "Modification on the microstructure of ultrananocrystalline diamond films for enhancing their electron field emission properties via a two-Step microwave plasma enhanced chemical vapor deposition process," J. Phys. Chem. C, vol. 115, 2011, pp. 13894-13900.
[85]K. Y. Teng, P. C. Huang, W. C. Shih, and I. N. Lin, "The induction of a graphite-like phase by Fe-The induction of a graphite-like phase by Fe-coating/post-annealing process -annealing process," Diamond Relat. Mater., vol. 24, 2012, pp. 188-194.
[86]W. H. Liao, D. H. Wei, and C.R. Lin, "Synthesis of highly transparent ultrananocrystalline diamond films from a low-pressure, low-temperature focused microwave plasma jet," Nanoscale Res. Lett., vol. 7, 2012, pp. 82-1-82-8.
[87]T. H. Borst and O. Weis, "Boron-doped homoepitaxial diamond layers: Fabrication, characterization, and electronic applications," Phys, Status Solidi (A) Appl. Res., vol. 154, 1996, pp. 423-444.
[88]B. D. Yu, Y. Miyamoto, and O. Sugino, "Efficient n-type doping of diamond using surfactant-mediated epitaxial growth," Appl. Phys. Lett., vol. 76, 2000, pp. 976-978.
[89]S. Koizumi, T. Teraji, and H. Kanda, "Phosphorus-doped chemical vapor deposition of diamond," Diamond Relat. Mater., vol. 9, 2000, pp. 935-940.
[90]H. Weishart, V. Heera, and W. Skorupa, "n-type conductivity in high-fluence Si-implanted diamond," J. Appl. Phys., vol. 97, 2005, pp. 103514-1-103514-6.
[91]H. Kato, S. Yamasaki, and H. Okushi, "n-type doping of (001)-oriented single-crystalline diamond by phosphorus," Appl. Phys. Lett., vol. 86, 2005, pp. 222111-1-222111-3.
[92]B. Bi, W. S. Huang, J. Asmussen, and B. Golding, "Surface acoustic waves on nanocrystalline diamond," Diamond Relat. Mater., vol. 11, 2002, pp. 677-680.
[93]D. Pradhan, Y. C. Lee, C. W. Pao, W. F. Pong, and I. N. Lin, "Low temperature growth of ultrananocrystalline diamond film and its field emission properties," Diamond Relat. Mater., vol. 15, 2006, pp. 2001-2005.
[94]K. L. Ma, W. J. Zhang, Y. S. Zou, Y. M. Chong, K. M. Leung, I. Bello, and S. T. Lee, "Electrical properties of nitrogen incorporated nanocrystalline diamond films," Diamond Relat. Mater., vol. 15, 2006, pp. 626-630.
[95]J. R. Rabeau, P. John, J. I. B. Wilson, and Y. Fan, "The role of C2 in nanocrystalline diamond growth," J. Appl. Phys., vol. 96, 2004, pp. 6724-6732.
[96]R. Arenal, G. Montagnac, P. Bruno, and D. M. Gruen, "Multiwavelength Raman spectroscopy of diamond nanowires present in n-type ultrananocrystalline films," Phys. Rev. B., vol. 76, 2007, pp. 245316-1-245316-6.
[97]T. Ikeda, K. Teii, C.Casiraghi, J. Robertson, and A. C. Ferrari, "Effect of the sp2 carbon phase on n-type conduction in nanodiamond films," J. Appl. Phys., vol. 104, 2008, pp. 073720-1-073720-7
[98]T. Ikeda and K. Teii, "Origin of low threshold field emission from nitrogen-incorporated nanocrystalline diamond films," Appl. Phys. Lett., vol. 94, 2009, pp. 143102-1-143102-3.
[99]S. Bhattacharyya, "Mechanism of high n-type conduction in nitrogen-doped nanocrystalline diamond," Phys. Rev. B, vol. 70, 2004, pp 125412-1-125412-10.
[100] C. R. Lin, W. H. Liao, D. H. Wei, J. S. Tsai, C. K.Chang, and W. C. Fang, "Formation of ultrananocrystalline diamond films with nitrogen addition," Diamond Relat. Mater., vol. 20, 2011, pp. 380-384.
[101] Y. K. Liu, P. L. Tso, D. Pradhan, I. N. Lin, M. Clark, and Y. Tzeng, "Structural and electrical properties of nanocrystalline diamond (NCD) heavily doped by nitrogen," Diamond Relat. Mater., vol. 14, 2005, pp. 2059-2063.
[102] R. Arenal, O. Stephan, P. Bruno, and D. M. Gruen, "Spatially resolved electron energy loss spectroscopy on n-type ultrananocrystalline diamond films," Appl. Phys. Lett., vol. 94, 2009, pp. 111905-1-111905-3.
[103] A. Kaiser, D. Kueck, P. Benkart, A. Munding, G. M. Prinz, A. Heittmann, H. Huebner, and E. Kohn, "Concept for diamond 3-D integrated UV sensor," Diamond Relat. Mater., vol. 15, 2006, pp. 1967-1971.
[104] M. D. Whitfield, S. P. Lansley, O. Gaudin, R. D. McKeag, N. Rizvi, and R. B. Jackman, "High Speed Diamond Photoconductive Devices for UV Detection," Phys. Stat. Sol., vol. 185, 2001, pp. 99-106.
[105] P. Bergonzo, D. Tromson, C. Mer, B. Guizard, F. Foulon, and A. Brambilla, "Particle and Radiation Detectors Based on Diamond," Phys. Stat. Sol., vol. 185, 2001, pp. 167-181.
[106]O. Auciello, J. Birrell, J. A. Carlisle, J. E. Gerbi, X. Xiao, B. Peng, and H. D. Espinosa, "Materials science and fabrication processes for a new MEMS technology based on ultrananocrystalline diamond thin films," J. Phys.: Condens. Matter., vol. 16, 2004, pp. R539-R552.
[107] W. J. Gillespie, C. M. A. Frampton, R. J. Henderson, and P. M. Ryan, "The incidence of cancer following total hip replacement," J. Bone. Joint Surg. Br., vol. 70 (4), 1988, pp. 539-542.
[108] K. Gutensohn, C. Beythien, J. Bau, T. Fenner, P. Grewe, R. Koester, K. Padmanaban, and P. Kuehnl, "In vitro analyses of diamond-like carbon coated stents: Reduction of metal ion release, platelet activation, and thrombogenicity," Thromb. Res., vol. 99, 2000, pp. 577-585.
[109] Y. Li, F. D. Valle, M. Simonnet, I. Yamada, and J. J. Delaunay, "High-performance UV detector made of ultra-long ZnO bridging nanowires," Nanotechnology, vol. 20, 2009, pp. 045501-1-045501-5.
[110] X. Guo and E.F. Schubert, "Current crowding and optical saturation effects in GaInN/GaN light-emitting diodes grown on insulating substrates," Appl. Phys. Lett., vol. 79, 2001, pp. 3337-3339.
[111] T. A. Horbett, "The role of adsorbed proteins in animal cell adhesion," Colloids Surf. B Biointerfaces, vol. 2, 1994, pp. 225-240.
[112] N. W. Khun, E. Liu, and X. T. Zeng, "Corrosion behavior of nitrogen doped diamond-like carbon thin films in NaCl solutions," Corros. Sci., vol. 51, 2009, pp. 2158-2164.
[113] R. O. Hynes, "Integrins: Bidirectional, allosteric signaling machines," Cell, vol. 110(6), 2002, pp. 673-687.
[114] A. Sen, S. Barizuddin, M. Hossain, L. Polo-Parada, K. D. Gillis, and S. Gangopadhyay, "Preferential cell attachment to nitrogen-doped diamond-like carbon (DLC:N) for the measurement of quantal exocytosis," Biomaterials, vol. 30, 2009, pp. 1604-1612.
[115] L. C. Xu and C. A. Siedlecki, "Effects of surface wettability and contact time on protein adhesion to biomaterial surfaces," Biomaterials, vol. 22, 2007, pp. 3273-3283.
[116] R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, Carbon nanotubes - The route toward applications, Science, vol. 297, 2002, pp. 787-792.
[117] O. A. Shenderova, V. V. Zhirnov, and D. W. Brenner, "Carbon nanostructures," Crit. Rev. Solid State Mater. Sci., vol. 27, 2002, pp. 227-356.
[118] H. W. Kroto, J. R. Heath, S. C. O''Brien, R. F. Curl, and R. E. Smalley, "C60: Buckminsterfullerene," Nature, vol. 318, 1985, pp. 162–163.
[119] S. Iijima, "Helical microtubules of graphitic carbon," Nature, vol. 354, 1991, pp. 56-58.
[120] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field in atomically thin carbon films," Science, vol. 306, 2004, pp. 666-669.
[121] B. V. Derjaguin, D. V. Fedoseev, V. M. Lukyanovich, B. V. Spitzin, V. A. Ryabov, and A. V. Lavrentyev, "Filamentary diamond crystals," J. Cryst. Growth, vol. 2, 1968, pp. 380-384.
[122] Y. S. Zou, Y. Yang, W. J. Zhang, Y. M. Chong, B. He, I. Bello, and S. T. Lee, "Fabrication of diamond nanopillars and their arrays," Appl. Phys. Lett., vol. 92, 2008, pp. 053105-1-053105-3.
[123] H. Masuda, T. Yanagishita, K. Yasui, K. Nishio, I. Yagi, T. N. Rao, and A. Fujishima, "Synthesis of well-aligned diamond nanocylinders," Adv. Mater., vol. 13, 2001, pp. 247-249.
[124] Z. L. Wang, Q. Wang, H. J. Li, J. J. Li, P. Xu, Q. Luo, A. Z. Jin, and C. Z. Gu, "The field emission properties of high aspect ratio diamond nanocone arrays fabricated by focused ion beam milling," Sci. Technol. Adv. Mater., vol. 6, 2005, pp. 799-803.
[125] L. Sun, J. Gong, D. Zhu, Z. Zhu, and S. He, "Diamond nanorods from carbon nanotubes," Adv. Mater., vol. 16, 2004, pp. 1849-1853.
[126] A. S. Barnard and I. K. Snook, "Phase stability of nanocarbon in one dimension: Nanotubes versus diamond nanowires," J. Chem. Phys., vol. 120, 2004, pp. 3817-3821.
[127] C. X. Wang and G. W. Yang, "Thermodynamics of metastable phase nucleation at the nanoscale," Mater. Sci. Eng., R, vol. 49, 2005, pp. 157-202.
[128] A. S. Barnard, S. P. Russo, and I. K. Snook, "Electronic band gaps of diamond nanowires," Phys. Rev. B, vol. 68, 2003, pp. 2354071-2354076.
[129] O. Shenderova, D. Brenner, and R. S. Ruoff, "Would diamond nanorods be stronger than fullerene nanotubes?," Nano Lett., vol. 3, 2003, pp. 805-809.
[130] J. T. Titantah and D. Lamoen, "Carbon and nitrogen 1s energy levels in amorphous carbon nitride systems: XPS interpretation using first-principles," Diamond Relat. Mater., vol. 16, 2007, pp. 581-588.
[131] K. Shimoda, J. S. Park, T. Hinoki, and A. Kohyama, "Influence of surface structure of SiC nano-sized powder analyzed by X-ray photoelectron spectroscopy on basis power characteristics," Appl. Surf. Sci., vol. 253, 2007, pp. 9450-9456.
[132] Y. S. Zou, Y. M. Chong, A. L. Ji, Y. Yang, Q. Ye, B. He, W. J. Zhang, and S. T. Lee, "The fabrication of cubic boron nitride nanocone and nanopillar arrays via reactive ion etching," Nanotechnology, vol. 20, 2009, pp.155305-1-155305-5.
[133] N. G. Shang, F. C. K. Au, X. M. Meng, C. S. Lee, I. Bello, and S. T. Lee, "Uniform carbon nanoflake films and their field emissions," Chem. Phys. Lett., vol. 358, 2002, pp. 187-191.
[134] C. H. Hsu, S. G. Cloutier, S. Palefsky, and J. Xu, "Synthesis of diamond nanowires using atmospheric-pressure chemical vapor deposition," Nano Lett., vol. 10, 2010, pp. 3272-3276.
[135] A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. S. Dresselhaus, and K. Jing, "Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition," Nano Lett., vol. 9, 2009, pp. 30-35.
[136] I. I. Vlasov, O. I. Lebedev, V. G. Ralchenko, E. Goovaerts, G. Bertoni, G. Van Tendeloo, and V. I. Konov, "Hybrid Diamond-Graphite Nanowires Produced by Microwave Plasma Chemical Vapor Deposition," Adv. Mater., vol. 19, 2007, pp. 4058-4062.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔