(3.234.221.162) 您好!臺灣時間:2021/04/14 04:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳佳翰
研究生(外文):Chia-Han Wu
論文名稱:定量雷射超音波系統應用於全域性機械材料參數檢測
論文名稱(外文):A full-field mechanical property mapping with quantitative laser ultrasound visualization system
指導教授:楊哲化
口試委員:蘇春熺廖駿偉尹慶中盧中仁
口試日期:2013-06-06
學位類別:博士
校院名稱:國立臺北科技大學
系所名稱:機電科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:223
中文關鍵詞:結構健康監測定量雷射超音波系統全域性機械材料參數重建演算法熔射鎳鋁合金膜層之檢測
外文關鍵詞:Nondestructive inspectionguided wavequantitative laser ultrasound visualization system (QLUVS)mechanical property mapping reconstruction algorithmthermal sprayed coating manufacture
相關次數:
  • 被引用被引用:0
  • 點閱點閱:165
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究目標在於開發一套非破壞、高速、高準確及全域性檢測之定量雷射超音波掃描顯像系統,並結合全域性機械材料參數重建演算法,開發一套適用於全域性材料機械性質分析平台,針對待測物進行全面性機械材料參數檢測。另外為測試系統之穩定度,本研究將開發之系統應用於等向性材料、具厚度減薄之試片、鍍膜之試片及具溫度變化分佈之試片等進行量測,由系統穩定性研究結果顯示,全域性厚度檢測與雷射位移計掃描針對具厚度減薄之試片,其減薄厚度約為100~200 ?m,以及鍍膜之試片,其鍍膜厚度約為100~200 ?m結果相當吻合,且彈性係數及蒲松比量測亦相當穩定。則具溫度變化分佈之試片,藉由溫度上升,待測物之彈性係數下降之關係,本研究全域性溫度檢測與紅外線熱像儀檢測結果,溫差小於10oC。最後將量測之平台應用於熔射鎳鋁合金膜層之檢測,其研究結果顯示,大氣電漿熔射及高速火焰熔射之鎳鋁合金膜層製程中,當氣體流速越快時,其彈性係數隨之上升;其高速火焰熔射製程之膜層厚度增加時,膜層之彈性係數亦隨之上升,並由研究中得知膜層彈性係數及厚度關係可用雙曲正切函數(hyperbolic tangent)描述;且利用高速火焰熔射製程之膜層,其彈性係數高於利用大氣電漿熔射製程之膜層;且利用全域性機械材料參數檢測,熔射鎳鋁合金膜層之製程的不均勻性主要原因為厚度不均勻,並與熔射鎳鋁合金噴塗之路徑有關,量測結果顯示厚度不均勻性最高約為100 ?m左右。
藉由本研究針對全域性機械材料參數檢測技術的開發,其全域性機械材料參數量測可以藉由非破壞、高速且高精度量測獲得材料全域性定性及定量結果。對於待測物缺陷檢測及材料製程之機械材料參數檢測,將可提供全域性檢測之實質貢獻。


This research employs a nondestructive, rapid, high accuracy and full-field material characterization platform which integrates quantitative laser ultrasound visualization system (QLUVS) with mechanical property mapping reconstruction algorithm. The QLUVS uses a pulsed laser generate acoustic waves with fast scanning mechanical to research two dimensional scanning goal and then detected with a piezoelectric longitudinal transducer. By utilizing QLUVS, the spatial and temporal information of guided wave can be obtained with further signal processing. The theoretical models including guided waves propagating along single-layered plate, two-layered plate, surface wave for single-layered system and for two-layered system and signal processing including 2D spatial data interpolation, window shifting and 2D fast Fourier transform (2D FFT) will be integrated into mechanical property mapping reconstruction algorithm.
Finally this research is developed a novel full-field material characterization platform consisting of QLUS and mechanical property mapping reconstruction algorithm for full-field mechanical property mapping purpose. Further the accuracy and performance of developed platform will be investigated for full-field young’s modulus, Poisson’s ratio and thickness homogeneity inspection including isotropic plate, plate with defect, two-layered system with coating and bulk with temperature treating case. After platform performance testing, it is also applied for material characteristic in manufacturing Ni-Al thermal sprayed coating manufacture process. By means of this platform, the relationship between full-field mechanical property and thermal sprayed Ni-Al coatings of various manufacture conditions.
Utilizing the development of the full-field mechanical property inspection technology, full-field mechanical property measured by non-destructive, high-speed and high-precision measurements can be obtained in qualitative and quantitative results.


摘 要 i
ABSTRACT iii
誌 謝 v
目 錄 vi
表目錄 x
圖目錄 xii
第一章 緒論 1
1.1 研究動機 1
1.2 研究目標 2
1.3 研究背景 3
1.3.1 全域性超音波檢測技術 3
1.3.2 導波理論 6
1.3.3 最佳化演算法 7
1.3.4 超音波應用於材料性質量測 7
1.3.5 熔射技術 9
第二章 理論模型 13
2.1 單層平板蘭姆波理論模型 13
2.2 雙層平板導波理論模型 15
2.3 單層塊材表面波理論模型 18
2.4 多層結構表面波理論模型 19
第三章 實驗方法 25
3.1 全域性雷射超音波定量量測顯像系統 25
3.1.1 超音波激發機制 26
3.1.2 超音波接收機制 27
3.1.3 掃描機制 27
3.1.4 超音波顯像機制 28
3.2 全域性厚度形貌重建-雷射位移計 31
3.3 全域性溫度形貌重建-紅外線熱像儀 33
第四章 全域性機械材料參數重建演算法 35
4.1 理論之頻散關係 35
4.1.1 灰階法 35
4.1.2 爬尋法 37
4.2 實驗之頻散關係 39
4.2.1 二維spline內插法 39
4.2.2 移動式視窗函數 44
4.2.3 二維快速傅立葉轉換 45
4.3 全域性機械材料參數反算 48
4.3.1 頻散曲線資料庫建立 49
4.3.2 粒子群聚演算法(particle swarm optimization, PSO) 52
4.3.3 全域性反算技術之收斂函數及收斂條件建立 55
第五章 導波理論之資料庫平台與全域性機械材料參數重建之分析平台建立 57
5.1 導波理論之資料庫平台 57
5.2 全域性機械材料參數重建分析平台 60
5.2.1 超音波傳播影像重建模組 60
5.2.2 全域性二維spline內插法模組 61
5.2.3 移動式視窗函數及二維快速傅立葉轉換模組 63
5.2.4 粒子群聚最佳化演算法模組 65
第六章 設計實驗之材料性質量測結果與討論 67
6.1 等向性材料平板量測實驗 67
6.1.1 等向性材料平板試片準備及實驗參數 67
6.1.2 等向性材料平板定性量測結果-超音波波傳影像 69
6.1.3 等向性材料平板定量量測結果-全域性材料參數反算結果 70
6.2 具厚度減薄之試片量測實驗 78
6.2.1 具厚度減薄之試片準備及實驗參數 78
6.2.2 厚度改變之頻散關係參數探討 80
6.2.3 具厚度減薄之試片定性量測結果-超音波波傳影像 81
6.2.4 具厚度減薄之試片定量量測結果-全域性材料參數反算結果 82
6.3 鍍膜之試片量測實驗 97
6.3.1 鍍膜之試片準備及實驗參數 97
6.3.2 鍍層材料參數E, ?及h改變之頻散關係參數探討 98
6.3.3 鍍膜之試片定性量測結果-超音波波傳影像 101
6.3.4 鍍膜之試片定量量測結果-全域性材料參數反算結果 102
6.4 具溫度變化分佈之試片量測實驗 114
6.4.1 具溫度變化分佈之試片準備及實驗參數 114
6.4.2 溫度改變之頻散關係參數探討及建立楊氏係數及溫度關係 116
6.4.3 具溫度變化分佈之試片定性量測結果-超音波波傳影像 119
6.4.4 具溫度變化分佈之試片定量量測結果-全域性材料參數反算結果 120
第七章 鎳鋁合金膜層材料性質量測結果與討論 131
7.1 鎳鋁合金膜層的試片備製 131
7.2 鎳鋁合金膜層之頻散關係參數探討 136
7.3 電漿熔射技術之膜層材料參數量測-氫氣流速及噴塗原料製程參數探討 139
7.3.1 電漿熔射技術之膜層實驗參數 139
7.3.2 電漿熔射技術之膜層定性量測結果-超音波波傳影像 139
7.3.3 電漿熔射技術之膜層定量量測結果-全域性材料參數反算結果 141
7.4 氧氣燃料高速火焰熔射技術之膜層材料參數量測-氧氣流速製程參數及膜層厚度探討 160
7.4.1 氧氣燃料高速火焰熔射技術之膜層實驗參數 160
7.4.2 氧氣燃料高速火焰熔射技術之膜層定性量測結果-超音波波傳影像 161
7.4.3 氧氣燃料高速火焰熔射技術之膜層定量量測結果-全域性材料參數反算結果 164
7.5 電漿與氧氣燃料高速火焰熔射技術之綜合討論 204
7.5.1 膜層厚度及楊氏係數關係之預測模型 204
7.5.2 熔射技術之材料參數反算結果綜合比較 208
第八章 結論 213
參考文獻 217


1.M. J. Ehrlich and J. W. Wagner, "Transient Lamb wave velocity determining using holographic mapping of spatial features of propagating waves," Research in Nondestructive Evaluation, vol. 1, no. 3, 1989, pp. 151-166.
2.J. C. P. Mckeon and M. K. Hinders, "Lamb wave scattering from a through hole," Journal of Sound and Vibration, vol. 224, no. 5, 1999, pp. 843-862.
3.J. C. P. Mckeon and M. K. Hinders, "Parallel projection and crosshole Lamb wave contact scanning tomography," Journal of the Acoustical Society of America, vol. 106, no. 5, 1999, pp. 2568-2577.
4.E. V. Malyarenko and M. K. Hinders, "Fan beam and double crosshole Lamb wave tomography for mapping flaws in aging aircraft structures," Journal of the Acoustical Society of America, vol. 108, no. 4, 2000, pp. 1631-1639.
5.E. V. Malyarenko and M. K. Hinders, "Ultrasonic Lamb wave diffraction tomography," Ultrasonics, vol. 39, no. 4, 2001, pp. 269-281.
6.K. R. Leonard, E. V. Malyarenko and M. K. Hinders, "Ultrasonic Lamb wave tomography," Inverse Problems, vol. 18, no. 6, 2002, pp. 1795-1808.
7.K. R. Leonard and M. K. Hinders, "Guided wave helical ultrasonic tomography of pipes," Journal of the Acoustical Society of America, vol. 114, no. 2, 2003, pp. 767-774.
8.J. Hou, K. R. Leonard and M. K. Hinders, "Automatic multi-mode Lamb wave arrival time extraction for improved tomographic reconstruction," Inverse Problems, vol. 20, no. 6, 2004, pp. 1873-1888.
9.K. R. Leonard and M. K. Hinders, "Lamb wave tomography of pipe-like structures," Ultrasonics, vol. 43, no. 7, 2005, pp. 574-583.
10.K. R. Leonard and M. K. Hinders, "Multi-mode Lamb wave tomography with arrival time sorting," Journal of the Acoustical Society of America, vol. 117, no. 4, 2005, pp. 2028-2038.
11.T. H. Gan, D. A. Hutchins, P. W. Carpenter and W. M. D. Wright, "Simultaneous reconstruction of flow and temperature cross-section in gases using acoustic tomography," Journal of the Acoustical Society of America, vol. 114, no. 2, 2003, pp. 759-766.
12.T. H. Gan and D. A. Hutchins, "Air-coupled ultrasonic tomographic imaging of high-temperature flames," IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 50, no. 9, 2003, pp. 1214-1218.
13.R. A. Kline and Y. Q. Wang, "A technique for ultrasonic tomography in anisotropic media," Journal of the Acoustical Society of America, vol. 91, no. 2, 1992, pp. 878-884.
14.T. E. Michaels, J. E. Michaels, B. Mi and M. Ruzzene, "Damage detection in plate structures using sparse ultrasonic transducer arrays and acoustic wavefield imaging," Review of Progress in Quantitative Nondestructive, vol. 24, no. 9, 2005, pp. 938-945.
15.M. Ruzzene, S. M. Jeong, T. E. Michaels, J. E. Michaels and B. Mi, "Simulation and measurement of ultrasonic waves in elastic plates using laser vibrometry," Review of Progress in Quantitative Nondestructive, vol. 760, no. 9, 2005, pp. 172-179.
16.T. E. Michaels and J. E. Michaels, "Application of acoustic wavefield imaging to non-contact ultrasonic inspection of bonded components," Review of Progress in Quantitative Nondestructive, vol. 820 II, no. 6, 2006, pp. 1484-1491.
17.Z. M. Master, T. E. Michaels and J. E. Michaels, "Incident wave removal for defect enhancement in acoustic wavefield imaging," Review of Progress in Quantitative Nondestructive, vol. 894, 2007, pp. 665-672.
18.T. E. Michaels, M. Ruzzene and J. E. Michaels, "Frequency-wavenumber domain methods for analysis of incident and scattered guided wave fields," Processing of the International Society for Optics and Photonics (SPIE), vol. 7295, no. 729513, 2009, pp. 1-12.
19.T. E. Michaels, J. E. Michaels, S. J. Lee and X. Chen, "Chirp generated acoustic wavefield images," Processing of the International Society for Optics and Photonics (SPIE), vol. 7984, no. 79840J, 2011, pp. 1-11.
20.T. E. Michaels, J. E. Michaels and M. Ruzzene, "Frequency-wavenumber domain analysis of guided wavefields," Ultrasonics, vol. 51, no. 4, 2011, pp. 452-466.
21.J. E. Michaels, S. J. Lee, J. S. Hall and T. E. Michaels, "Multi-mode and Multi-frequency guided wave imaging via chirp excitations," Processing of the International Society for Optics and Photonics (SPIE), vol. 7984, no. 79840I, 2011, pp. 1-11.
22.J. Takatsubo, H. Tsuda and N. Toyama, "Method and device for imaging ultrasonic wave propagation," Japan Patent, Publication Number 2006-300634, 2006.
23.S. Yashiro, J. Takatsubo and N. Toyama, "An NDT technique for composite structure using visualized Lamb-wave propagation," Composite Science and Technology, vol. 67, no. 15-16, 2007, pp. 3202-3208.
24.J. R. Lee, J. Takatsubo, N. Toyama and D. H. Kang, "Health monitoring of complex curved structures using an ultrasonic wavefield propagation imaging system," Measurement Science and Technology, vol. 18, no. 12, 2007, pp. 3816-3824.
25.H. Nishino, T. Tanaka, K. Yoshida and J. Takasubo, "Simultaneous measurement of the phase and group velocities of Lamb waves in a laser-generation based imaging method," Ultrasonics, vol. 52, no. 4, 2012, pp. 530-535.
26.C. C. Chia, J. R. Lee and H. J. Shin, "Hot target inspection using a welded fibre acoustic wave piezoelectric sensor and a laser-ultrasonic mirror scanner," Measurement Science and Technology, vol. 20, no. 12, 2009, pp. 1-8.
27.J. R. Lee, H. Jeong, C. C. Ciang, D. J. Yoon and S. S. Lee, "Application of ultrasonic wave propagation imaging method to automatic damage visualization of nuclear power plant pipeline," Nuclear Engineering and Design, vol. 240, no. 10, 2010, pp. 3513-3520.
28.C. C. Chia, H. M. Jeong, J. R. Lee and G. Park, "Composite aircraft debonding visualization by laser ultrasonic scanning excitation and integrated piezoelectric sensing," Structural Control and Health Monitoring, vol. 19, no. 7, 2012, pp. 605-620.
29.I. H. Liu and C. H. Yang, "An investigation on wedge waves and the interaction with a defect using a quantitative laser ultrasound visualization system," Processing of IEEE Ultrasonics Symposium, 2010, pp. 817-820.
30.I. H. Liu and C. H. Yang, "Optical visualization of acoustic wave propagating along the wedge tip," Processing of the International Society for Optics and Photonics (SPIE), vol. 8321, no. 83211W, 2011, pp. 1-6.
31.T. Hayashi, M. Murase and M. N. Salim, "Rapid thickness measurements using guided waves from a scanning laser source," Journal of the Acoustical Society of America, vol. 126, no. 3, 2009, pp. 1101-1106.
32.J. P. Monchalin, J. D. Aussel P. Bouchard and R. Heon, "Laser-ultrasonics for industrial application," Review of Progress in Quantitative Nondestructive, vol. 7, 1988, pp. 1607-1614.
33.B. R. Tittmann, R. S. Linebarger and R. C. Addison, "Laser-based ultrasonic on Gr/expory composite," Journal of Nondestructive Evaluation, vol. 9, no. 4, 1990, pp. 229-238.
34.O. Petillon, J. P. Dupuis, D. David, H. Voillaume and H. Tretout, "Laser ultrasonics: a noncontacting NDT system," Review of Progress in Quantitative Nondestructive, vol. 4, 1995, pp. 1189-1195.
35.C. J. Fiedler and T. Ducharme, "The laser-ultrasonic inspection system (LUIS) at the Sacramento Air Logistics Center," Review of Progress in Quantitative Nondestructive, vol. 16, 1997, pp. 515-522.
36.T. Hayashi, M. Murase and M. N. Salim, "Rapid thickness measurements using guided waves from a scanning laser source," Journal of the Acoustical Society of America, vol. 126, no. 3, 2009, pp. 1101-1106.
37.L. Rayleigh, "On waves propagated along the plane surface of an elastic solid," Proceedings London Mathematical Society, vol. 17, 1885, pp. 4-11.
38.Viktorov, "I. A. Rayleigh and Lamb waves: physical theory and applications," Plenum Pres. New York, 1967.
39.N. A. Haskell, "The dispersion of surface wave on multilayered media," Bulletin of the Seismological Society of America, vol. 43, 1953, pp. 17-34.
40.H. Lamb, "On the flexure of an elastic plate," Proceedings London Mathematical Society, vol. 21, 1889, pp. 70-91.
41.R. D. Mindlin, "Waves and vibrations in isotropic, elastic plates," Pergamon Press, 1960, pp. 199-232.
42.E. Pan, J. Rogers, S. K. Datta and A. H. Shah, "Mode selection of guided waves for ultrasonic inspection of gas pipelines with thick coating," Mechanics of Materials, vol. 31, no. 3, 1999, pp. 165-174.
43.A. H. Fahmy and E. L. Adler, "Propagation of acoustic surface waves in multilayers: A matrix description," Applied Physics Letters, vol. 22, no. 10, 1973, pp. 495-497.
44.L. Wang and S. I. Rokhlin, "Recursive asymptotic stiffness matrix method for analysis of surface acoustic wave devices on layered piezoelectric media," Applied Physics Letters, vol. 81, no. 21, 2002, pp. 4049-4051.
45.L. Wang and S. I. Rokhlin, "A compliance / stiffness matrix formulation of general Green’s function and effective permittivity for piezoelectric multilayers," IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 51, no. 4, 2004, pp. 453-463.
46.J. A. Nelder and R. Mead, "A Simplex method for function minimization," The Computer Journal, vol. 7, no. 4, 1965, pp. 308-313.
47.Q. Y. Duan, V. K. Gupta and S. Sorooshian, "Shuffled complex evolution approach for effective and efficient global minimization," Journal of Optimization Theory and Application, vol. 76, no. 3, 1993, pp. 501-521.
48.R. Eberhart and J. Kennedy, "A new optimizer using particle swarm theory," Proceedings of the International Symposium on Micro Machine and Human Science, 1995, pp. 39-43.
49.R. Eberhart and J. Kennedy, "Particle swarm optimizat5tion," Proceedings of the IEEE International Conference on Neural Networks, vol. 4, 1995, pp. 1942-1948.
50.M. R. Karim, A. K. Mai and Y. B. Cohen, , "Inversion of leaky Lamb wave data by simplex algorithm," Journal of the Acoustical Society of America, vol. 88, no. 1, 1990, pp. 482-491.
51.T. T. Wu and Y. H. Liu, "Inverse determination of thickness and elastic properties of a bonding using laser-generated surface waves," Ultrasonics, vol. 37, no. 1 1999, pp. 23-30.
52.Y. C. Lee and S. W. Cheng, "Measuring Lamb wave dispersion curves of a bi-layered plate and its application on material characterization of coating," IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 48, no. 3, 2001, pp. 830-837.
53.B. Culshaw, G. Pierce and P. Jun, "Non-contact measurement of the mechanical properties of materials using an all-optical technique," IEEE Sensors Journal, vol. 3, no. 1, 2003, pp. 62-70.
54.黃敏峰,雷射超音波技術於化學汽相沉積鑽石薄膜材料參數之量測,博士論文,長庚大學,桃園縣,2005。
55.S. W. Tang and C. H. Yang, "Characterization of material properties in solid oxide fuel cells using a laser ultrasound technique," Review of Progress in Quantitative Nondestructive, vol. 1211, 2010, pp. 1301-1308.
56.B. Culshaw, B. Sorazu, S. G. Pierce, C. Mckee and G. Thursby, "Laser ultrasound for the noncontact characterization of the mechanical properties of materials," International Symposium on Laser Ultrasonics Science: Science, Technology and Applications, 2008.
57.T. Matsumoto, T. Nose, Y. Nagata, K. Kawashima, T. Yamada, H. Nakano and S. Nagai, "Measurement of high-temperature elastic properties of ceramics using a laser ultrasonic method," Journal of the American Ceramic Society, vol. 84, no. 7, 2001, pp. 1521-1525.
58.Z. L. Greer, "Temperature, frequency and young’s modulus of an aluminum tuning fork, "ISB Journal of Physics, 2011.
59.I. Ihara, H. Yamada, A. Kosugi and M. Takahashi, "New ultrasonic thermometry and its application to temperature profiling of heated materials," International Conference on Sensing Technology, 2011, pp. 60-65.
60."An American national standard code for pressure piping: power piping," The American Society of Mechanical Engineers, 1980.
61.D. Schneider, T. Schwarz, H.P. Buchkremer and D. Stover, "Non-destructive characterization of plasma-sprayed ZrO2 coating by ultrasonic surface waves," Thin Solid Films, vol. 224, no. 2, 1993, pp. 177-183.
62.S. Parthasarathi, B. R. Tittmann, K. Sampath and E. J. Onesto, "Ultrasonic characterization of elastic anisotropy in plasma-sprayed alumina coatings," Journal of Thermal Spray Technology, vol. 4, no. 4, 1995, pp. 367-373.
63.H. Li, K. A. Khor and P. Cheang, "Young’s modulus and fracture toughness determination of high velocity oxy-fuel-sprayed bioceramic coating," Science and Coating Technology, vol. 155, no. 1, 2002, pp. 21-32.
64.J. M. Piau, A. Bendada, X. Maldague and J. G. Legoux, "Nondestructive inspection of open micro-cracks in thermally-sprayed-coating using ultrasound excited vibrothermography," Processing of the International Society for Optical and Engineering (SPIE), vol. 6541, no. 654112, 2007, pp. 1-9.
65.T. Nakamura and Y. Liu, "Determination of nonlinear properties of thermal sprayed ceramic coatings via inverse analysis," International Journal of Solid and Structures, vol. 44, no. 6, 2007, pp. 1990-2009.
66.C. Bescond, S. E. Kruger, D. Levesque, R. S. Lima and B. R. Marple, "In-situ simultaneous measurement of thickness, elastic moduli and density of thermal sprayed WC-CO coating by laser-ultrasonics," Journal of Thermal Spray Technology, vol. 16, no. 2, 2007, pp. 238-244.
67.S. Kruger, D. Levesque, C. Bescond, R. Lima, B. Maple, B. Campagne, A. Blouin and J. P. Monchalin, "Laser-ultrasonic evaluation of thermal spray coatings," International Symposium on Laser Ultrasonics Science: Science, Technology and Applications, 2008.
68.X. F. Zhang, X. L. Zhang, A. H. Wang and Z. W. Huang, "Microstructure and properties of HVOF sprayed Ni-based submicron WS2/CaF2 self-lubricating composite coating," Transactions of Nonferrous Material Society of China, vol. 19, no. 1, 2009, pp. 85-92.
69.Y. Tan, A. Shyam, W. B. Choi, E. Lara-Curzio and S. Sampath, "Anisotropic elastic properties of thermal spray coatings determined via resonant ultrasound spectroscopy," Acta Materialia, vol. 58, no. 16, 2010, pp. 5305-5315.
70.C. H. Yeh, C. H. Yang, C. Y. Su and W. T. Hsiao, "Material characterization of thermal sprayed nickel aluminum coating using a laser ultrasound technique," Processing of IEEE Ultrasonics Symposium, 2011, pp. 1798-1801.
71.D. Alleyne and P. Cawley, "A two-dimensional Fourier transform method for the measurement of propagating multimode signals," Journal of the Acoustical Society of America, vol. 89, no. 3, 1991, pp. 1159-1168.
72.T. Bohien, S. Kugler, G. Klein and F. Theilen, "1.5D inversion of lateral variation of Scholte-wave dispersion," Geophysics, vol. 69, no. 2, 2004, pp. 330-344.
73.M. Ali, D. Magee and U. Dasgupta, "Signal processing overview of ultrasound systems for medical imaging," Texas Instruments White Paper, 2008.
74.http://boson4.phys.tku.edu.tw Spline interpolation and extrapolation.
75.蕭威典,添加氮化硼對鎳-鋁合金熔射膜層磨耗特性之研究,博士論文,台北科技大學,台北市,2012。


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔