(3.236.231.14) 您好!臺灣時間:2021/04/11 23:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張華瑭
研究生(外文):Hua-Tang Chang
論文名稱:摻雜鉻及鋯離子改質Li4Ti5O12作為鋰離子電池負極材料之電化學性質研究
論文名稱(外文):The Electrochemical Properties of Chromium ion and Zirconium ion Double-doped Li4Ti5O12 As Anode for Lithium Ion Battery
指導教授:薛文景
口試委員:周瑞崇陳建仲陳適範
口試日期:2013-06-21
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料及資源工程系研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:60
中文關鍵詞:鋰離子電池負極材料鋰鈦氧離子摻雜
外文關鍵詞:Lithium ion batteryAnode materialLi4Ti5O12Ion doping
相關次數:
  • 被引用被引用:0
  • 點閱點閱:306
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在鋰離子電池(Lithium ion battery)負極材料的選擇上,傳統的石墨負極有不錯的比電容量(370 mAh/g)而廣泛使用,但過低的操作電壓平台(0.1~0.22V vs Li/Li+)使其電極在充放電過程容易變形,降低了使用的安全性。Li4Ti5O12較高的操作電壓平台(1.55V vs Li/Li+)可避免負極表面與電解質間的還原反應而避免電極的變形,為一極具潛力的替代負極材料,但過低的導電性及鋰離子擴散速率抑制了其實用性。本實驗以固相反應合成法,同時摻雜鉻及鋯離子於LTO中,取代鈦離子位置,提升其導電性以改善電池之速率能力及循環能力。鉻(Ⅲ)離子半徑(0.62Å)和鈦(Ⅳ)離子(0.61Å)相近;鋯(Ⅳ)離子半徑(0.72Å)大於鋯離子半徑,以不同摻雜比例作為實驗參數,藉由雙重離子摻雜探討價數或離子半徑對導電性提升何者較顯著。為了避免雜相生成影響電性,摻雜量不超過0.05莫耳分率。在不同充放電速率下觀察各參數電容量差異,並觀察各參數隨充放電循環次數增加電容量變化情形。
在高充放電速率20C下,Z4C1(Zr=0.04,Cr=0.01)及Z5(Zr=0.05)不論循環穩定性或電容量均高於C5(Cr=0.05)及純LTO,顯示摻雜鋯離子效果較摻雜鉻離子好,進一步顯示摻雜金屬離子粒徑差異比電荷差易對LTO導電度提升貢獻度較大。


Graphite is a popular material as anode for lithium ion battery(LIB) because of its low price and high theoretic capacity, but its low operate voltage reduces its safety since the formation of SEI layer. Li4Ti5O12 is a promising anode material due to the high enough operate voltage to avoid the formation of SEI layer, but it suffers from the problem of poor rate capability due to its low electronic conductivity. This study use the method of ion-doping to improve the conductivity. Chromium(Ⅲ) ion(0.62Å) and zirconium(Ⅳ) ion(0.72Å) are simultaneously doped into and substitute the titanium (Ⅳ) ion(0.61Å) site. The doping amount is limit to 0.05 mole fraction to avoid the formation of impurity. The Cycling test is conducted to test cycling life, also change the c-rate to test rate capability. Furthermore, to confirm either the size or the charge valance of doped ion is more contribute to the improvement of conductivity.
At high C-rate(20C), Z4C1(Zr=0.04, Cr=0.01) and Z5(Zr=0.05) have better rate capability and higher capacity than C5(Cr=0.05), indicating that the doping of zirconium ion is more effective than chromium ion, which further reveals the difference of ionic size of doped ion is more contributive to the difference of charge
valance of doped ion.


目錄

摘 要 i
ABSTRACT ii
誌謝 iv
第一章 緒論 1
1.1 前言 1
1.2 鋰離子電池簡介 2
1.2.1 鋰離子電池的發展 2
1.2.2 鋰離子電池的結構與工作原鋰 3
1.2.3 鋰離子電池的特性 6
第二章 文獻回顧及研究動機 7
2.1 正極材料 7
2.2 負極材料 10
2.2.1 鋰金屬 10
2.2.2 碳材 10
2.2.3 鋰氮化物 12
2.2.4 氧化物 13
2.2.5 鋰合金 13
2.2.6 磷化物 14
2.3 研究目的與研究動機 16
2.3.1 LTO作為鋰離子電池的負極材料 16
2.3.2 實驗動機 18
第三章 實驗方法 21
3.1 實驗藥品 21
3.2 實驗儀器 22
3.3 實驗流程 23
3.4 電池製備與分析方法 24
3.4.1 固相反應法製備負極材料 24
3.4.2 負極材料分析 24
3.4.2.1 X-ray繞射分析 24
3.4.2.2 掃描電子顯微鏡分析 25
3.4.2.3 拉曼分析 26
3.4.3 電性分析 26
3.4.3.1 鈕扣型半電池組裝 26
3.4.3.2 連續充放電循環測試 29
第四章 結果與討論 32
4.1 X-ray繞射分析 32
4.2 拉曼分析 35
4.3 SEM形貌觀察及EDS分析 42
4.4 電性測試分析 45
4.4.1 C-rate測試 45
4.4.2 充放電循環壽命測試 52
第五章 結論 55
參考文獻 56

表目錄

表2.1 三大正極材料系統優缺點分析 8
表2.2 不同石墨材料的特性 12
表2.3 實驗參數名稱與其對應之摻雜離子比例表 20
表4.1 各組參數之Li-O及Ti-O鍵之拉曼曲線最高峰值對應波數比較 41
表4.2 各組電池在不同C-rate下的首次放電容量(mAh/g) 50

圖目錄

圖1.1 鋰金屬負極表面樹枝狀析出物形成過程 2
圖1.2 圓筒形鋰離子電池結構 4
圖1.3 鋰離子電池工作原理圖 5
圖2.1 層間狀化合物LiMO2結構示意圖 7
圖2.2 正極材料的種類與特性 9
圖2.3 石墨結構圖 11
圖2.4 Li3-xMxN的結構圖 12
圖2.5 (a) 晶體結構Pb3(PO4)2 與 (b)非晶結構Pb3P2O8 之CV圖 15
圖2.6 電容量與庫倫效率隨充放電循環次數的變化曲線圖 15
圖2.7 (a)Li4Ti5O12尖晶石結構圖,藍色四面體為鋰,綠色四面體為無序之鋰和鈦(b)Li7Ti5O12岩鹽結構圖,藍色四面體為鈦,綠色四面體為無序之鋰和鈦 17
圖2.8 以溶液燃燒法得到之LTO粉末在不同充放電速率下,電容量隨循環次數變化圖 18
圖2.9 摻雜Mg之LTO中與純LTO充放電循環穩定性比較圖 19
圖2.10 Li4Ti5O11.8Br0.2在不同充放電速率下的電壓/電容量曲線 20
圖3.1 布拉格方程式之幾何關係 25
圖3.2 入射光與分子相互作用,產生散射示意圖 26
圖3.3 鈕扣型電池組裝示意圖 28
圖3.4 刮刀塗佈機 30
圖3.5 行星式球磨機 30
圖3.6 充放電測試儀 31
圖3.7 手套箱 31
圖4.1 純尖晶石相Li4Ti5O12之X-ray繞射圖譜 32
圖4.2 各組參數與純LTO之X-ray繞射圖譜比較圖 33
圖4.3 各組參數(111)晶面繞射峰值放大比較圖 34
圖4.4 純尖晶石相Li4Ti5O12之拉曼光譜圖 35
圖4.5 純LTO拉曼曲線圖 37
圖4.6 Z5拉曼曲線圖 37
圖4.7 Z4C1拉曼曲線圖 38
圖4.8 Z3C2拉曼曲線圖 38
圖4.9 Z2C3拉曼曲線圖 39
圖4.10 Z1C4拉曼曲線圖 39
圖4.11 C5拉曼曲線圖 40
圖4.12 LTO之EDS分析結果圖 42
圖4.13 純LTO之FE-SEM圖(5k) 43
圖4.14 C5之FE-SEM圖(5k) 43
圖4.15 LTO之FE-SEM圖(50k) 44
圖4.16 C5之FE-SEM圖(50k) 44
圖4.17 LTO在不同速率下之充放電曲線圖 47
圖4.18 C5在不同速率下之充放電曲線圖 47
圖4.19 Z4C1在不同速率下之充放電曲線圖 48
圖4.20 Z5在不同速率下之充放電曲線圖 48
圖4.21 各組電池在不同速率下首次放電容量曲線圖 51
圖4.22 四組組電池在不同速率下首次放電容量曲線圖 51
圖4.23 各組電池在3C速率下放電容量隨充放電循環次數變化曲線圖 53
圖4.24 各組參數在6C速率下電容量隨充放電循環次數曲線圖 53
圖4.25 四組電池在3C速率下放電容量隨充放電循環次數變化曲線圖 54
圖4.26 四組電池在6C速率下放電容量隨充放電循環次數變化曲線圖 54








參考文獻

[1] Yang Z.,Zhang J.,Kintner-Meyer MCW,Lu X.,Choi D.,Lemmon J.P.,Liu J.,
"Electrochemical Energy Storage for Green Grid" Chemical Reviews,2011
[2] Bruno Scrosati,Jurgen Garche, "Lithium Batteries: Status,Prospects and Future", Journal of Power Source,v195,9,2010,pp.2419~2430
[3] J.Yamaki,S.Tobishima,K.Hayashi,K.Saito,Y.Nemoto,M.Arakawa, "A
Consideration of the Morphology of Electrochemically Deposited Lithium in an Organic Electrolyte", Journal of Power Source,v74,1998,pp.219-227
[4] Kazunari Kobayashi(Sanyo Taiwan), "The Market Status & Technology
Trend for Lithium Battery", Proceedings of 2004 Taipei International
Power Forum
[5] Yi-Ruei Jhan, "Introduction and Future Perspective of Lithium Batteries", The presentation for the Meeting of Darfon Electronics Corp.,2012
[6] 李孟倫,"快速充電鋰離子二次電池負極覆合碳材之研究", 國立清華大學碩士論文,2009年6月,pp.2
[7] K.Mizushima, P.C.Jones, P.J.Wiseman, J.B.Goodenough,"Li//xCoO2// (O less than x less than equivalent to 1): A new cathod material for batteries of high energy density." Materials Research Bulletin,v15,n6,1980,
pp783-789
[8] 姚慶意,"鋰離子電池新技術簡介",工業材料,131期,1997,pp161-166
[9] Akira Yoshino,"These Ten Years and Feature of Rechargeable Battery Materials",2003,pp110
[10] H.Shi, J.Barker, M.Y.Saidi and R.Koksbang,"Stracture and Lithium Intercalation Properties of Synthetic and Natural Graphite", J.
Electrochem.Soc.,143,1996,pp3466
[11] H.Shi,J.Barker,M.Y.Saidi,R.Koksbang, "Graphite Structure and Lithium Intercalation", J.Power Source,v68,1997,pp291-295
[12] 吳典熹,"鋰離子二次電池負極材料一氧化錫的製備與特性研究",國立台灣大學化學工程研究所博士論文,88學年度
[13] T.Shodai,Y.Sakurai,T.Suzuki, "Reaction Mechanisms of Li2.6Co0.4N Anode Material", Solid State Ionics,122,1999,pp85
[14] T.Shodai,S.Kada,S.Tobishima,J.Yamaki, "Anode Performance of A New Layered Nitride Li3-xCoxN(x=0.2-0.6)",J.Power Source,68,1997,pp515
[15] Y.Sakurai,T.Shodai,H.Arai,S.Tobishima,M.Hasegawa,J.Yamaura, "The 40th Battery Symposium in Japan",November 14-16,1999
[16] Weibing Xing,R.Dahn, "Study of Irreversible Capacities for Li Insertion in Hard and Graphitic Carbons",J.Electrochem.Society,v144,
n4,1997,pp1195-1201
[17] Y.Idota,T.Kubota,A.Matsufuji,T.Miyasaka, "Tin-based Amorphous Oxide : A High-capacity Lithium-ion-storage Material",Science,276,
1997,pp1395
[18] Zhaolin Liu,Jim Yang Lee, "Electrochemical Performance of Pb3(PO4)2 Anode in Rechargeable Lithium Batteries", J.Power Source 97-98,2001,
pp247-250
[19] Schaner S.,Weppner W.,Schmid-Beurmann P."Evidence of Two-Phase Formation upon Lithium Insertion into the Li1.33Ti1.67O4 Spinel",
J.Electrochem.Society,146(3),1999,pp857-861
[20] Ohzuku T.,Ueda A.,Yamamoto N. "Zero-Strain Insertion Materials of Li{Li1/3Ti3/5}O4 for Rechargeable Lithium Cells" J.Electrochem.Society,
142(5),1995,pp1431-1435
[21] Taki S.,Kamata M,Fujine S.,Yoneda K.,Kanda K.,Esaka T., "
Diffusion Coefficient Measurement of Lithium Ion in Sintered
Li1.33Ti1.67O4 by Means of Neutron Radiography", Solid State Ionics,123(1-4),1999,pp165-172
[22] Takami N.,Hoshina K.,Inagaki H., "Lithium Diffusion in Li4/3Ti5/3O4 Particles during Insertion and Extraction" J.Electrochem.Society,158(6)
,2011,ppA725-A730
[23] Sorensen EM,Barry SJ,Jung H-K,Rondinelli JM,Vaughey JT,Poeppelmeier KR, "Three-Dimensionally Ordered Macroporous Li4Ti5O12: Effect of Wall Structure on Electrochemical Properties", Chemistry of Materials,18(2),
2005,pp482-489
[24] Guerfi A.,Sevigny S.,Lagace M.,Hovington P.,Kinoshita K.,Zaghib K., "Nano-particle Li4Ti5O12 Spinel as Electrode for Electrochemical Generators" J.Power Sources,119-121,2003,pp88-94
[25] Yang LX,Gao LJ, "Li4Ti5O12/C Composite Electrode Material Synthesized Involving Conductive Carbon Precursor for Li-ion Battery",
J.Alloys and Compounds,485(1-2),2009,pp93-97
[26] Jung HG,Myung ST,Yoon CS,Son SB,Oh KH,Amine K.,Scrosati B.,Sun YK, "Microscale Spherical Carbon-coated Li4Ti5O12 as Ultra High Power Anode Material for Lithium Batteries", Energy & Environmental Science,4(4),
2011,pp1345-1351
[27] Yoshimura M.,Byrappa K., "Hydrothermal Processing of Materials: Past,Present and Future" J.Materails Science,43(7),2008,pp2085-2103
[28] Shen C-m,Zhang X-g,Zhou Y-k,Li H-l, "Preparation and Characterization of Nanocrystalline Li4Ti5O12 by Sol-gel Method",
Materials Chemistry and Physics,78(2),2003,pp437-441
[29] Hao Y.,Lai Q.,Xu Z.,Liu X., "Synthesized by TEA Sol-gel Method and Electrochemical Properties of Li4Ti5O12 Anode Material for Lithium-ion Battery" Solid State Ionics,176(13-14),2005,pp1201-1206
[30] Fattakhova D.,Krtil P., "Electrochemical Activity of Hydrothermally Synthesized Li-Ti-O Cubic Oxides toward Li Insertion", J. The Electrochemical Society,149(9),2002,pp.A1224-A1229
[31] Prakash AS,Manikandan P.,Ramesh K.,Sathiya M.,Tarascon JM,Shukla AK, "Solution-Combustion Synthesized Nanocrystalline Li4Ti5O12 as High-Rate Performance Li-ion Battery Anode", Chemistry of Materails,22(9),2010,
pp.2857-2863
[32] Ogihara T.,Yamada M.,Fujita A.,Akao S.,Myoujin K., "Effect of Organic Acid on Electrochemical Properties of Li4Ti5O12/C Composite Powders Synthesized by Spray Pyrolysis" , Materials Research Bulletin,2011,In Press,Corrected Proof.
[33] Daotan Liu,Chuying Ouyang,Jie Shu,Jun Jiang,Zhaoxiang Wang,Liquan Chen, "Theoretical Study of Cation Doping Effect on The Electronic Conductivity of Li4Ti5O12", Original Paper,Phys.stat.sol.,(b)243.,No.8,
2006,pp.1835-1841
[34]C.H.Chen,J.T.Vaughey,A.N.Jansen,D.W.Dees,A.J.Kahaian,T.Goacher,M.M.Thackeray, "Structure of Mg-Substituted Li4-xMgxTi5O12 Spinel Electrodes (0≦x≦1) for Lithium Batteries", Journal of The Electrochemical Society,148(1),2001,pp.A102-A104
[35] Yanling Qi,Yudai Huang,Dianzeng Jia,Shu-Juan Bao,Z.P.Guo, "Preparation and Characterization of Novel Spinel Li4Ti5O12-xBrx Anode Materials", Electrochimica Acta,54,2009,pp.4772-4776
[36] L.Aldon,P.Kubiak,M.Womes,J.C.Jumas,J.Olivier-Fourcade,J.L.
Tirado,J.I.Corredor,C.Perez Vicente, "Chemical and Electrochemical Li-Insertion into the Li4Ti5O12 Spinel", Chem.Mater,16,2004,pp.5721-5725


電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔