(3.231.230.175) 您好!臺灣時間:2021/04/16 02:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林峻丞
研究生(外文):Chun-Cheng Lin
論文名稱:真空燒結法對鈦銅鉬合金添加不同碳化物之顯微組織與強化機制探討
論文名稱(外文):Study on the Microstructure and Strengthening Mechanisms of Various Carbides Added to Ti-Cu-Mo Alloys through the Vacuum Sintering Process
指導教授:張世賢張世賢引用關係
指導教授(外文):Shih-Hsien Chang
口試委員:黃國聰宋大崙陳貞光
口試日期:2013-06-28
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料及資源工程系研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:140
中文關鍵詞:粉末冶金鈦銅鉬合金真空燒結橫向破裂強度碳化鋯
外文關鍵詞:Powder MetallurgyTi-Cu-Mo alloysvacuum sinteringTRSZrC
相關次數:
  • 被引用被引用:4
  • 點閱點閱:283
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
鈦合金發展至今已有200餘年歷史,其優異的物理、抗腐蝕與生醫相容性,可應用於航太與生醫材料上。鈦合金的粉末冶金產品通常會導致比其它製造方式的相對密度和強度來得低,故改善粉末冶金製造的鈦合金性質,變成相當地重要。
本實驗利用鈦粉、銅粉與鉬粉三種不同金屬粉末,經由混合後製造出鈦銅鉬合金,其分別為: Ti-6Cu-8Mo, Ti-9Cu-8Mo與Ti-12Cu-8Mo三種不同配比;此外,鈦銅鉬合金並於1150°C、1175°C與1200°C三種溫度下進行真空燒結。為評估經由真空燒結製程的鈦銅鉬合金之組織與機械性質,本實驗利用燒結密度、硬度、橫向破裂強度(TRS),以及XRD與SEM等方式判斷其性質之優劣。同時為改善燒結鈦銅鉬合金之微結構與性質,研究中將最佳的燒結合金參數,添加不同的碳化物(WC, TaC與ZrC)以做為強化相之改良。
實驗結果顯示Ti-12Cu-8Mo合金於1200°C燒結下,可得到較高之密度(94.7%)、硬度(38.79 HRC)與橫向破裂強度(1204 MPa),其主要為提升銅的含量,可以有效改善及抑制孔洞成長。而在添加碳化物的部分,以添加5 wt%碳化鋯(ZrC)具有較佳的效果,其燒結密度(98%)、硬度(45.13 HRC)與橫向破裂強度(1068 MPa) 都可以明顯地提高;然而由於晶界缺陷的影響,將使添加5 wt% ZrC的鈦銅鉬合金(Ti-12Cu-8Mo)之抗蝕性下降。


Titanium alloys have been developed and applied in the last 200 years, which exhibit unique physical properties, corrosion resistance and biocompatibility, mostly applied to aerospace and biomedical materials. Powder Metallurgy (P/M) of titanium and its alloys may lead to relative density and strength lower than that from common processes. For this reason, improving the P/M of titanium alloy properties becomes more important.
In this study, three different powders were mixed and used to produce Ti-Cu-Mo alloys. It contains three kinds of proportions: Ti-6Cu-8Mo, Ti-9Cu-8Mo and Ti-12Cu-8Mo, respectively. In addition, the Ti-Cu-Mo alloys underwent a vacuum sintering process in which the sintering temperatures were 1150°C, 1175°C and 1200°C. To evaluate the microstructure and mechanical properties of the Ti-Cu-Mo alloys via vacuum sintering processes sintering density, hardness and transverse rupture strength (TRS), XRD, SEM and microstructure inspections were performed. Moreover, this was used to improve the microstructure and properties of sintered Ti-Cu-Mo alloys. All of the optimally sintered specimens were subjected to various added carbides (WC, TaC and ZrC) after the vacuum sintering process.
The experimental results showed that a higher density (94.7%), hardness (38.79 HRC) and transverse rupture strength (1204 MPa) for Ti-12Cu-8Mo alloys were obtained after 1200°C vacuum sintering. This indicates that owing to the pores existing in the sintered Ti-Cu-Mo alloys the alloys can be effectively improved and inhibited by adding more copper content. Furthermore, adding 5 wt% ZrC carbide to Ti-12Cu-8Mo alloys creates optimal properties. Meanwhile, the sintered density was obviously increased to about 98%, hardness, the HRC was enhanced to 45.13 and the TRS increased to 1068 MPa, respectively. However, the influence of grain boundary defects result in a decrease in corrosion resistance of Ti-12Cu-8Mo alloys (5 wt% ZrC).


中文摘要 …………………………………………………………………i
英文摘要 ………………………………………………………………ii
誌謝 ……………………………………………………………………iv
目錄 ……………………………………………………………………vii
表目錄 ……………………………………………………………………x
圖目錄 …………………………………………………………………xii
第一章 前言 ……………………………………………………………1
1.1 前言 …………………………………………………………………1
1.2 研究動機與目的 ……………………………………………3
第二章 文獻回顧 ………………………………………………………5
2.1 鈦金屬歷史與應用 …………………………………………………5
2.2醫學應用 ……………………………………………………………8
2.3其他工業應用 ………………………………………………………10
2.3.1連結器的應用………………………………………10
2.3.2載具之輕量化………………………………………………10
2.3.3核能與其他應用……………………………………………11
2.3.4鈦合金之加工………………………………………………11
2.4 鈦合金未來發展 …………………………………………………12
第三章 基礎理論 ……………………………………………………16
3.1 合金性質 …………………………………………………………16
3.2 強化機制 …………………………………………………………21
3.2.1 固溶強化 ………………………………………………………21
3.2.2 散佈強化 ………………………………………………………26
3.2.3 碳化物添加之強化 ……………………………………………27
3.3 粉末冶金之技術 …………………………………………………27
3.3.1 粉末之製作 ……………………………………………………28
3.3.2 鈦粉之製作法 …………………………………………………30
3.3.3 粉末冶金製程簡介 ……………………………………………34
3.4 破斷面分析 ………………………………………………………38
3.4.1 鈦合金破斷面理論 ……………………………………………39
3.5 鈦合金腐蝕行為 …………………………………………………45
3.5.1 腐蝕形態 ………………………………………………………45
第四章 實驗步驟 ……………………………………………………48
4.1 實驗流程 …………………………………………………………48
4.1.1 配粉 ……………………………………………………………49
4.1.2 混粉 ……………………………………………………………49
4.1.3 成形 ……………………………………………………………51
4.1.4 燒結 ……………………………………………………………52
4.2 實驗原理 …………………………………………………………53
4.2.1 X-ray繞射 ……………………………………………………54
4.2.2 SEM ……………………………………………………………55
4.2.3 密度 ……………………………………………………………55
4.2.4 硬度 ……………………………………………………………57
4.2.5 雷射粒徑 ………………………………………………………58
4.2.6 橫向斷裂強度( Transverse Rupture Strength )…………58
4.2.7 動態電位極化試驗 ……………………………………………60
第五章 結果討論 ……………………………………………………61
5.1 粒徑分析 …………………………………………………………61
5.1.1 基材粉末 ………………………………………………………62
5.1.2 散佈強化粉末 …………………………………………………63
5.2 粉末混合分析 ……………………………………………………65
5.2.1 混合粉之成分分析 ……………………………………………65
5.2.2 強化相添加 ……………………………………………………66
5.3 Ti-Cu-Mo合金性質………………………………………………71
5.3.1 X-ray繞射分析 ………………………………………………71
5.3.2 微結構分析 ……………………………………………………75
5.3.3 燒結緻密性 ……………………………………………………84
5.4 機械性質 …………………………………………………………87
5.4.1 硬度 ……………………………………………………………87
5.4.2 橫向斷裂強度 …………………………………………………89
5.4.3 斷面分析 ………………………………………………………91
5.5 腐蝕特性 …………………………………………………………95
5.6 碳化物之散佈強化 ………………………………………………99
5.6.1 X-ray繞射分析(碳化物添加後) ……………………………99
5.6.2 微結構分析(碳化物添加後) …………………………………105
5.6.3 燒結緻密性(碳化物添加後) …………………………………115
5.7 機械性質(碳化物添加後) ………………………………………118
5.7.1 硬度(碳化物添加後) …………………………………………118
5.7.2 橫向斷裂強度(碳化物添加後) ………………………………119
5.7.3 斷面分析(碳化物添加後) ……………………………………121
5.8 腐蝕特性(碳化物添加後) ………………………………………125
結論 ……………………………………………………………………129
參考文獻 ………………………………………………………………130


1.ASM International. Handbook Committee, ASM Handbook Volume 02: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, Asm International, 1990, pp. 1770-1946.
2.Mehmet N.Gungor, M.Ashraf Imam, F. H. (Sam) Froes, Innovations in Titanium Technology, Florida: TMS, 2007, pp. 3-264.
3.Mathew A. Kuttolamadom, Joshua J. Jones, M. Laine Mears, Thomas R. Kurfess and Aditya S. Choragudi, "Investigation of the Machining of Titanium Components for Lightweight Vehicles," SAE 2010 World Congress & Exhibition, Detroit, Michigan, United, no. 2010-01-0022, 2010, pp. 1-14.
4.W. Chen, Y. Yamamoto, W. H. Peter, M. B. Clark, S. D. Nunn, J. O. Kiggans, T. R. Muth, C. A. Blue, J. C. Williams and K. Akhtar, "The investigation of die-pressing and sintering behavior of ITP CP-Ti and Ti-6Al-4V powders," Journal of Alloys and Compounds, vol. 541, 2012, pp. 440-447.
5.L.F. L.Gasperetti, "Usage of Titanium Alloys in Airframes: Current Situation and Future," XX SAE BRASIL International Congress and Exhibition São Paulo, Brasil, no. 2011-36-0248, 2011, pp. 1-7.
6.S. G. Keener, "Advanced Low-cost Titanium-alloy Materials for Aerospace Fastener Applications," AeroTech Congress & Exhibition Los Angeles, California, no. 2007-01-3839, 2007, pp. 1-10.
7.Vinicius André Rodrigues Henriques, Cosme Roberto Moreira da Silva, Carlos Alberto Alves Cairo and Carlos de Moura Neto, "Developing of New Titanium Alloys by Powder Metallurgy for Aeroespace Applicattions," 12º Congresso e Exposição Internacionais de Tecnologia da Mobilidade São Paulo, Brasil, no. 2003-01-3605, 2003, pp. 1-6.
8.Toshiya Yamaguchi, Hiroyuki Morishita, Satoru Iwase, Sigeki Yamada, Tadahiko Furuta and Takashi Saito, "Development of P/M Titanium Engine Valves," SAE 2000 World Congress, Detroit, Michigan, United States, no. 200-01-0905, 2000, pp. 1-9.
9.R. R. Boyer, "An overview on the use of titanium in the aerospace industry," Materials Science and Engineering, vol. A213, 1996, pp. 103-114.
10.M. Geetha, A. K. Singh, R. Asokamani and A. K. Gogia, "Ti based biomaterials, the ultimate choice for orthopaedic implants - A review," Progress in Materials Science, vol. 54, 2009, pp. 397-425.
11.A. Cremasco, A.D. Messias, A.R. Esposito, E. A. de Rezende Duek and R. Caram, "Effects of alloying elements on the cytotoxic response of titanium alloys," Materials Science and Engineering C, vol. 31, 2011, pp. 833-839.
12.M.A. Mihaela1, G. Brânduşa, G. Nicolae and A. Iuliac, "Corrosion Behaviour in Ringer Solution of Ti-Mo Alloys used for Orthopaedic Biomedical Applications," Solid State Phenomena, vol. 188, 2012, pp. 98-101.
13.Z. Gao, Q. Li, F. He, Y. Huang and Y. Wan, "Mechanical modulation and bioactive surface modification of porous Ti-10Mo alloy for bone implants," Materials and Design, vol. 42, 2012, pp. 13-20.
14.W.F. Ho, S.C. Wu, S.K. Hsu, L.S. Fang and H.C. Hsu, "Bond strength of Ti-5Cr based alloys to dental porcelain with Mo addition," Materials and Design, vol. 43 2013, pp. 233-236.
15.V.D. Cojocaru, D. Raducanu, T. Gloriant, E. Bertrand and I. Cinca, "Structural observation of twinning deformation mechanism in a Ti-Ta-Nb alloy," Solid State Phenomena, Vol. 188, 2012, pp. 46-51.
16.Y.L. Zhou, M. Niinomi, T. Akahori, H. Fukui and H. Toda, "Corrosion resistance and biocompatibility of Ti-Ta alloys for biomedical applications," Materials Science and Engineering A, vol. 398, 2005, pp. 28-36.
17.H.M. Grandin, S. Berner and M. Dard, "A Review of Titanium Zirconium (TiZr) Alloys for Use in Endosseous Dental Implants," Materials, vol. 5, 2012, pp. 1348-1360.
18.M.T. Mathew, S. Abbey, N.J. Hallab, D.J. Hall, C. Sukotjo and M.A.Wimmer, "Influence of pH on the tribocorrosion behavior of CpTi in the oral environment: Synergistic interactions of wear and corrosion," Journal of Biomedical Materials Research Part B: Applied Biomaterials, vol. 100, 2012, pp. 1662-1671.
19.N.T.C.Oliveira, E.A. Ferreira, L.T. Duarte, S.R. Biaggio, R.C. Rocha-Filho and N. Bocchi, "Corrosion resistance of anodic oxides on the Ti-50Zr and Ti-13Nb-13Zr alloys," Electrochimica Acta, vol. 51, 2006, pp. 2068-2075.
20.R. Nishio, T.J. Konno and S. Semboshi, "Transmission Electron Microscopy Observations on Cu-Ti Alloy Systems," Materials Science Forum, vol. 502, 2005, pp. 163-168.
21.S. Semboshi, T. Nishida, H. Numakura, T. Al-Kassab and R. Kirchheim, "Effects of aging temperature on electrical conductivity and hardness of Cu−3 at. pct Ti alloy aged in a hydrogen atmosphere," Metallurgical and Materials Transactions A, vol. 42A, 2011, pp. 2136-2143.
22.S. Saroja, M. Vijayalakshmi and B. Raj, "Ti-5Ta-1.8Nb: An Advanced Structural Material for High Performance Application in Aggressive Oxidising Environments," Transactions of the Indian Institute of Metals, vol. 65, 2012, pp. 111-133.
23.Y. Sano, M. Takeuchi, Y. Nakajima, H. Hirano, G. Uchiyama, Y. Nojima, S. Fujine and S. Matsumoto, "Effect of metal ions in a heated nitric acid solution on the corrosion behavior of a titanium-5% tantalum alloy in the hot nitric acid condensate," Journal of Nuclear Materials, vol. 432, 2013, pp. 475-481.
24.E.B. Taddei, V.A.R. Henriques, C.A.A Cairo and C.R.M. Silva, "Obtainment of Beta Titanium Alloys for Aerospace Applications by Powder Metallurgy," XV Congresso e Exposição Internacionais da Tecnologia da Mobilidade São Paulo, Brasil, no. 2006-01-2639, 2006, pp. 1-6.
25.M.A. Hady and K. Hinoshita, "Masahiko Morinaga, General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters," Scripta Materialia, vol. 55, 2006, pp. 477-480.
26.M.A. Hady, H. Fuwa, K. Hinoshita, H. Kimura, Y. Shinzato and M. Morinaga, "Phase stability change with Zr content in β-type Ti-Nb alloys," Scripta Materialia, vol. 57, 2007, pp. 1000-1003.
27.D.N. Williams, "Using electron/atom ratio in titanium alloy design," Journal of Materials Science, vol. 10, 1975, pp. 1239-1241.
28.S.H. Lee, M. Todai, M. Tane, K. Hagihara, H. Nakajima and T. Nakano, "Biocompatible low Young’s modulus achieved by strong crystallographic elastic anisotropy in Ti-15Mo-5Zr-3Al alloy single crystal," Journal of the Mechanical Behavior of Biomedical Materials, vol. 14, 2012, pp. 48-54.
29.C. Li, D.G. Lee, X. Mi, W. Ye, S. Hui and Y. Lee, "Phase transformation and age hardening behavior of new Ti-9.2Mo-2Fe alloy," Journal of Alloys and Compounds, vol. 549, 2013, pp. 152-157.
30.V.A. Joshi, Titanium Alloys An Atlas of Structures and Fracture Features, Taylor & Francis Group, 2006, pp. 1-205.
31.J.R.S.M. Jr and C.R. Grandini, "Structural characterization of Ti-15Mo alloy used as biomaterial by Rietveld method," J. Appl. Phys, vol. 111, 2012, 083535, pp. 1-8.
32.X. Zhao, M. Niinomi, M. Nakai and J. Hieda, "Beta type Ti-Mo alloys with changeable Young’s modulus for spinal fixation applications," Acta Biomaterialia, vol. 8, 2012, pp. 1990-1997.
33.W.F Ho, W.K. Chen, S.C. Wu and H.C. Hsu, "Structure, mechanical properties, and grindability of dental Ti-Zr alloys," Journal of Materials Science: Materials in Medicine, vol. 19 2008, pp. 3179-3186.
34.A. Wadood, T. Inamura, H. Hosoda and S. Miyazaki, "Ageing behavior of Ti-6Cr-3Sn β titanium alloy," Materials Science and Engineering A, vol. 530, 2011, pp. 504-510.
35.R. Jing, S.X. Liang, C.Y. Liu, M.Z. Ma, X.Y. Zhang and R.P. Liu, "Structure and mechanical properties of Ti-6Al-4V alloy after zirconium addition," Materials Science and Engineering A, vol. 552, 2012, pp. 295-300.
36.X. Zhao, M. Niinomi, M. Nakai, J. Hieda, T. Ishimoto and T. Nakano, "Optimization of Cr content of metastable b-type Ti-Cr alloys with changeable Young’s modulus for spinal fixation applications," Acta Biomaterialia, vol. 8, 2012, pp. 2392-2400.
37.L. Bolzoni, P.G. Esteban, E.M.R. Navas and E.Gordo, "Mechanical behaviour of pressed and sintered titanium alloys obtained from master alloy addition powders," Journal of the mechanical behavior of biomedical materials, vol. 15, 2012, pp. 33-45.
38.J. Malek, F. Hnilica, J. Vesely, B.l Smola, S. Bartakova and J. Vanek, "The influence of chemical composition and thermo-mechanical treatment on Ti-Nb-Ta-Zr alloys," Materials and Design, vol. 35, 2012, pp. 731-740.
39.D. Qin, Y. Lu, Q. Liu and L. Zhou, "Effects of Si addition on mechanical properties of Ti-5Al-5V-5Mo-3Cr alloy," Materials Science & Engineering A, vol. 561, 2013, pp. 460-467.
40.Y. Xia, S.D. Luo, X. Wu, G.B. Schaffer and M. Qian, "The sintering densification, microstructure and mechanical properties of gamma Ti-48Al-2Cr-2Nb alloy with a small addition of copper," Materials Science & Engineering, vol. A559, 2013, pp. 293-300.
41.F.F. Cardoso, A. Cremasco, R.J. Contieri, E.S.N. Lopes, C.R.M. Afonso and R. Caram, "Hexagonal martensite decomposition and phase precipitation in Ti-Cu alloys," Materials and Design, vol. 32, 2011, pp. 4608-4613.
42.T. Okabe, M. Kikuchi, C. Ohkubo, M. Koike, O. Okuno and Y. Oda, "The grindability and wear of Ti-Cu alloysfor dental applications," JOM, vol. 56, Issue 2, 2004, pp. 46-48.
43.S. Sun, M. Wang, L. Wang, J. Qin, W. Lu and D. Zhang, "The influences of trace TiB and TiC on microstructure refinement and mechanical properties of in situ synthesized Ti matrix composite," Composites: Part B, vol. 43, 2012, pp. 3334-3337.
44.E. A. Levashov, V. V. Kurbatkina, A. A. Zaitsev, S. I. Rupasov, E. I. Patsera, A.A. Chernyshev, Ya.V. Zubavichus and A.A. Veligzhanin, "Structure and Properties of Precipitation_Hardening Ceramic Ti-Zr-C and Ti-Ta-C Materials," The Physics of Metals and Metallography, Vol. 109, No. 1, 2010, pp. 95-105.
45.H.W. Wang, J.Q. Qi, C.M. Zou, D.D. Zhu and Z.J. Wei, "High-temperature tensile strengths of in situ synthesized TiC/Ti-alloy composites," Materials Science and Engineering A, vol. 545, 2012, pp. 209-213.
46.T. Ma, L. Zhang, Z. Zhao and Y. Zhang, "Fusion-induced Diffusion Joints of Solidified TiC-TiB2 Ceramic with Stainless Steel and Ti-6Al-4V Alloy Achieved by Combustion Synthesis in high-gravity Field," Key Engineering Materials, vol. 512-515, 2012, pp. 354-359.
47.A. Ota, H. Egawa, H. Izui, "Mechanical properties and wear resistances of TiC or B4C reinforced Ti-6Al-4V prepared by spark plasma sintering," Materials Science Forum, vol. 706-709, 2012, pp. 222-227.
48.H. Choe, S. Abkowitz, S.M. Abkowitz and D.C. Dunand, "Mechanical properties of Ti-W alloys reinforced with TiC particles," vol. 485, 2008, pp. 703-710.
49.T. Thotsaphon, O. Katsuyoshi, U. Junko and I. Hisashi, "Friction and Wear Behavior of Titanium Matrix Composite Reinforced with Carbon Nanotubes under Dry Conditions," Transactions of JWRI, vol. 37, 2008, pp. 51-56.
50.W. Chen, Y. Yamamoto, W.H. Peter, S.B. Gorti, A.S. Sabau, M.B. Clark, S.D. Nunn, J.O. Kiggans, C.A. Blue, J.C. Williams, B. Fuller and K. Akhtar, "Cold compaction study of Armstrong Process® Ti-6Al-4V powders," Powder Technology, vol. 214, 2011, pp. 194-199.
51.V.A.R. Henriques, E.T. Galvani, E.B. Taddei, J.C. Bressiani and C.A.A. Cairo, "Porosity Control in Ti-13Nb-13Zr Alloy Produced by Powder Metallurgy," XV Congresso e Exposição Internacionais da Tecnologia da Mobilidade São Paulo, Brasil, no. 2006-01-2545, 2006, pp. 1-5.
52.A. Ossowska, A. Zieliński and M. Supernak, "Formation of High Corrosion Resistant Nanotubular Layers on Titanium Alloy Ti13Nb13Zr," Solid State Phenomena, vol. 183, 2012, pp. 137-142.
53.P.M. Ashraf and L. Edwin, "Corrosion behaviour of nanometre sized cerium oxide and titanium oxide incorporated aluminium in NaCl solution," Journal of Alloys and Compounds, vol. 548, 2013, pp. 82-88.
54.Y. Zhan, C. Li and W. Jiang, "β-type Ti-10Mo-1.25Si-xZr biomaterials for applications in hard tissue replacements," Materials Science and Engineering C, vol. 32, 2012, pp. 1664-1668.
55.B. Guo, Y. X. Tong, F. Chen, Y. F. Zheng, L. Li and C. Y. Chung, "Effect of Sn addition on the corrosion behavior of Ti-Ta alloy," Materials and Corrosion, vol. 63, No. 3, 2012, pp. 259-263.
56.Y.L. Zhou, M. Niinomi and T. Akahori, "Effects of Ta content on Young’s modulus and tensile properties of binary Ti-Ta alloys for biomedical applications," Materials Science and Engineering A, vol. 371, 2004, pp.283-290.
57.A. Hynowska, E. Pellicer, J. Fornell, S. González, N.v. Steenberge, S. Suriñach, A. Gebert, M. Calin, J. Eckert, M.D. Baró and J. Sort, "Nanostructured β-phase Ti-31.0Fe-9.0Sn and sub-μm structured Ti-39.3Nb-13.3Zr-10.7Ta alloys for biomedical applications: Microstructure benefits on the mechanical and corrosion performances," Materials Science and Engineering C, vol. 32, 2012, pp. 2418-2425.
58.H. Yanga, P. Zhub, S. Zhou, J. Xu, H. Ma and J. Guo, "Preliminary Research on Interfacial Evolution Behavior of Ti-Cu Laminated Composite Materials, " Advanced Materials Research, vol. 194-196, 2011, pp. 1615-1619.
59.V.A.R. Henriques, J.L. Oliveira, E.F. Diniz and T.G. Lemos, "Densification of titanium alloys obtained by powder metallurgy," Journal of Materials Science: Materials in Medicine, no. 2010-36-0235, 2010, pp. 1-6.
60.P. Majumdar, S.B. Singh and M. Chakraborty, "The role of heat treatment on microstructure and mechanical properties of Ti-13Zr-13Nb alloy for biomedical load bearing applications," Journal of the Mechanical Behavior of Biomedical Materials, vol. 4, 2011, pp. 1132-1144.
61.V.A.R. Henriques, C.A.A. Cairo and C.M. Neto, "Sintering of Titanium Alloys for Advanced Aerospace Systems," Transactions of The Indian Institute of Metals, no. 2005-01-4180, 2005, pp. 1-5.
62.D. Mareci, R. Chelariu, D.M. Gordin, G. Ungureanu and T. Gloriant, "Comparative corrosion study of Ti-Ta alloys for dental applications," Acta Biomaterialia, vol. 5, 2009, pp. 3625-3639.
63.C.L. Li, X.J. Mi, W.J. Ye, S.X. Hui, Y. Yu and W.Q. Wang, "A study on the microstructures and tensile properties of new beta high strength titanium alloy," Journal of Alloys and Compounds, vol. 550, 2013, pp. 23-30.
64.W. Xu, D.P. Edwards, X. Wu, M. Stoica, M. Calin, U. Kuhn, J. Eckert and K. Xia, "Promoting nano/ultrafine-duplex structure via accelerated α precipitation in a β-type titanium alloy severely deformed by high-pressure torsion," Scripta Materialia, vol. 68, 2013, pp. 67-70.
65.S. Gollapudi, R. Sarkar, U.C. Babu, R. Sankarasubramanian, T.K. Nandy and A.K. Gogia, "Microstructure and mechanical properties of a copper containing three phase titanium alloy," Materials Science and Engineering A, vol. 528, 2011, pp. 6794-6803.
66.G. Srinivasu, R.N. Rao, T.K. Nandy and D.K. Gupta, "Finite element modelling of α particle size on the stress strain curve of near beta Ti alloy," Materials and Design, vol. 46, 2013, pp. 8-15.
67.A. Devaraj, S. Nag, B. C. Muddle and R. Banerjee, "Competing Martensitic, Bainitic, and Pearlitic Transformations in a Hypoeutectoid Ti-5Cu Alloy," Metallurgical and Materials Transactions A, vol. 42, Issue 5, 2011, pp. 1139-1143.
68.H.P. Ng, A. Devaraj, S. Nag, C.J. Bettles, M. Gibson, H.L. Fraser, B.C. Muddle and R. Banerjee, "Phase separation and formation of omega phase in the beta matrix of a Ti-V-Cu alloy," Acta Materialia, vol. 59, 2011, pp. 2981-2991.
69.J. Wang, C. Leinenbach, L.B. Liu, H.S. Liu, and Z.P. Jin, "Assessment of the Atomic Mobilities in fcc Cu-Fe and Cu-Ti Alloys," Journal of Phase Equilibria and Diffusion, vol. 32, Issue 1, 2011, pp. 30-38.
70.W.R. Osórioa, C.M. Freire, R. Caramb and A. Garciab, "The role of Cu-based intermetallics on the pitting corrosion behavior of Sn-Cu, Ti-Cu and Al-Cu alloys," Electrochimica Acta, vol. 77, 2012, pp. 189-197.
71.D. Kent, G. Wang, W. Wang and M.S. Dargusch, "Influence of ageing temperature and heating rate on the properties and microstructure of β-Ti alloy, Ti-6Cr-5Mo-5V-Al," Materials Science and Engineering A, vol. 531, 2012, pp. 98-106.
72.D. Raducanu, V.D. Cojocaru, I. Cinca and I. Dan, "Thermomechanical processing of a biocompatible Ti-Ta-Nb alloy," Solid State Phenomena, Vol. 188, 2012, pp. 59-64.
73.J. Wang, J. Chen, B. Chen, F. Yan and Q. Xue, "Wear behaviors and wear mechanisms of several alloys under simulated deep-sea environment covering seawater hydrostatic pressure," Tribology International, vol. 56, 2012, pp. 38-46.
74.J. Ou, M. Liu, W. Li, F. Wang, M. Xue and C. Li, "Corrosion behavior of superhydrophobic surfaces of Ti alloys in NaCl solutions," Applied Surface Science, vol. 258, 2012, pp. 4724-4728.
75.Y. Li, Z. Cui, X. Yang and S. Zhu, "Corrosion behavior of porous Ti-24Nb-4Zr alloy in different simulated body fluids," Advanced Materials Research, vol. 399-401, 2012, pp. 1577-1581.
76.B. Pelic, D. Rafaja, Patrick J. Masset, H.J. Seifert, L. Bortolotto, Michael Schütze and G. Wolf, I. Loeh, "Corrosion behaviour of Ti-48Al-2Nb-2Cr alloys," Defect and Diffusion Forum, vol. 323-325, 2012, pp. 301-307.
77.C. Vasilescu, S.I. Drob, E.I. Neacsu and J.C.M. Rosca, "Surface analysis and corrosion resistance of a new titanium base alloy in simulated body fluids," Corrosion Science, vol. 65, 2012, pp. 431-440.
78.M. Karthega, V. Raman and N. Rajendran, "Influence of potential on the electrochemical behaviour of β titanium alloys in Hank’s solution," Acta Biomaterialia, vol. 3, 2007, pp. 1019-1023.
79.I. Milošev and B. Kapun, "The corrosion resistance of Nitinol alloy in simulated physiological solutions Part 1: The effect of surface preparation," Materials Science and Engineering C, vol. 32, 2012, pp. 1087-1096.
80.D.M. Gordin, T. Gloriant, G. Nemtoi, R. Chelariu, N. Aelenei, A. Guillou and D. Ansel, "Synthesis, structure and electrochemical behavior of a beta Ti-12Mo-5Ta alloy as new biomaterial," Materials Letters, vol. 59, 2005, pp. 2936-2941.
81.A. Takeuchi and A. Inoue, "Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element," Materials Transactions, vol. 46, 2005, pp. 2817-2829.
82.S.K. Jha, C. J. Szczepanski, P.J. Golden, W.J. Porter III and R.John, "Characterization of fatigue crack-initiation facets in relation to lifetime variability in Ti-6Al-4V," International Journal of Fatigue, vol. 42, 2012, pp. 248-257.
83.Q. Wu, W. Li and N. Zhong, "Corrosion behavior of TiC particle-reinforced 304 stainless steel," Corrosion Science, vol. 53, 2011, pp. 4258-4264.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔