跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2024/12/07 04:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐正茹
研究生(外文):Cheng-Ju Hsu
論文名稱:以化學溶液法製備摻雜氮及磷之石墨薄膜之性質研究
論文名稱(外文):Doping of nitrogen and phosphorous into the graphite films by chemical solution method
指導教授:王錫九
指導教授(外文):Shea-Jue Wang
口試委員:李文德雷健明陳世溥
口試日期:2013-07-17
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:材料及資源工程系研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:67
中文關鍵詞:石墨薄膜摻雜化學溶液法
外文關鍵詞:Graphite filmDopingNitrogenphosphorouschemical solution method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:278
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
本研究以交流濺鍍法鍍碳層薄膜於矽晶圓及二氧化矽基板上,將試片浸至隔水加熱至100℃的氨水、磷酸中,透過已經加熱的氨水、磷酸,使少量氮原子以及磷原子擴散進入試片內,再以交流濺鍍法覆蓋上銅薄膜,銅元素扮演控制使少量碳析出於銅膜與基材之間,銅膜可降低碳膜熱裂解所需之溫度,同時銅膜亦可扮演保護氮原子以及磷原子隨著加熱而逸出試片,最後將樣品加熱至於600℃、700℃、800℃、900℃,並持溫一分鐘再以氯酸鐵蝕刻。
而後以光學顯微鏡和場發式電子鏡觀察到其中幾組參數下之試片可以觀察到石墨薄膜以及可能多層石墨烯之生成,多層石墨烯為石墨層與層之間的凡得瓦爾力弱化使石墨薄膜具有石墨烯特性,同時由拉曼光譜儀測量樣品薄膜中的G band往高波數偏移以及G band 半高寬窄化之現象,間接證明所製作的碳層薄膜產生石墨化以及D band往高波數偏移可說明摻入氮原子以及磷原子使的石墨晶格產生曲應變之現象。由X-ray繞射光譜儀說明在直接以矽晶圓為基材的碳薄膜中,氨水沒有雜相隨著摻雜過程產生;磷酸則是有五氧化二磷相產生;最後以四點探針和霍爾量測,量測到摻雜之後有面電阻下降和載子濃度上升趨勢,皆已得證明此方法為以簡易的化學溶液法製備摻雜氮以及磷之石墨薄膜或多層石墨烯。
相對其他摻雜方式皆需要超過1000℃以上方能使氣體與石墨烯產生熱裂解進而摻雜,本研究透過簡易的製備方式製備摻雜氮以及磷原子於具有石墨烯特性石墨烯薄膜。


In the present study, we demonstrate the facile and green synthesis of nitrogen and phosphorus doped graphite films by using simple chemical solution method. We successfully doped nitrogen and phosphorus onto the graphite film by doping with ammonium hydroxide and phosphoric acid respectively. For a typical synthesis of composite, we used the silicon wafer as a substrate then it was oxidized to form silicon dioxide layer, and carbon thin film was deposited onto sample. Then it was immersed into the ammonium hydroxide and phosphoric acid solution followed by heated at 100℃ for various dwelling time. After the immersion the copper was deposited onto the obtained sample by using sputtering method; here copper is acting as a cap layer between the carbon layers for inhibiting the loss of doped material during the heat treatment process. Finally the product was annealed at 600℃, 700℃, 800℃ respectively, which leads to the formation of graphitic film. It should be noted that here we used copper as a control for the formation of graphite. The surface morphology of the composite was characterized by using optical microscope, which revealing that graphitic layers are formed as the combination of multiple graphene layers via Van der Waals interactions between individual graphite layers.
Raman spectroscopy has been used to determine the properties of graphitic layers and the disorder of graphitic structure after graphitization. The synthesized composite films have been confirmed XRD. Further, the nitrogen and phosphorus doped graphite films have shown to improved sheet resistance and carrier concentration, implying the nitrogen and phosphorus leads to the enhanced and synergetic activity onto the graphitic film rather than intrinsic graphite. Finally, the versatile route of composite preparation could be a promising route for other composite materials preparation in near future.


摘要 ii
Abstract iv
Acknowledge vi
Contents vii
Figure Caption ix
Table Caption xiii
Chapter 1 Introduction 1
1.1 Introduction 1
1.2 Motivation 3
Chapter 2 Literature Review 4
2.1 Introduction of carbon material 4
2.1.1 Graphite 4
2.1.2 Graphene 5
2.2 Raman spectroscopy 6
2.2.1 The fundamental of Raman spectroscopy 6
2.3 Various methods for preparation of Graphene 9
2.3.1 Mechanical Exfoliation 9
2.3.2 Epitaxial graphene growth on silicon carbide 10
2.3.3 Chemical vapor deposition (CVD) 11
2.3.4 Chemical reduction of graphene oxide 17
2.3.5 Solid carbon source 19
2.4 Doping of nitrogen on graphite films 23
Chapter 3 Experiment and Method 25
3.1 Materials 25
3.2 Fabrication process 25
3.2.1 Schematic of synthesis flow 25
3.2.2 The process of synthesis of nitrogen and phosphorous doped graphite 26
3.3 Analysis apparatus 27
3.3.1 XRD 27
3.3.2 Raman spectrum 27
3.3.3 OM 28
3.3.4 FESEM 29
3.3.5 Four Point Probe 30
3.3.6 Hall effect 30
Chapter 4 Result and Discussion 31
4.1 Design of the experiment 31
4.1.1 Optimization of the concentrations 31
4.1.2 Optimization of the parameters 34
4.1.2.1 Sheet Resistance 36
4.1.2.2 XRD 37
4.2 Analysis of graphite films characteristics 39
4.2.1 Raman spectroscopy 39
4.2.2 The morphology of graphite films 44
4.3 Investigation of the electric properties 49
4.3.1 Sheet resistance 49
4.3.2 Hall measurement 52
Charter 5 Conclusion 60
Reference 62



1. R.R. Nair, P. Blake, A.N. Grigorenko and K.S. Novoselov et al., “Fine Structure Constant Defines Visual Transparency of Graphene,” Science, 2008,Vol. 320, pp. 1308.
2. G.J. Radich, P.J. McGinn and P.V. Kamat, “Graphene-based Composites for Electrochemical Energy Storage,” J. Electrochem. Soc. Interface 2011, Spring, pp. 63–66.
3. Haibo Wang, Thandavarayan Maiyalagan, and Xin Wang, “Review on Recent Progress in Nitrogen-Doped Graphene: Synthesis, Characterization, and Its Potential Applications,” ACS Catal., 2012, Vol.2, pp.781−794.
4. Zhong-Shuai Wu, Wencai Ren, Li Xu, Feng Li, and Hui-Ming Cheng, “Doped Graphene Sheets As Anode Materials with Superhigh Rate and Large Capacity for Lithium Ion Batteries,” Acsnano, 2011, Vol. 5, NO. 7, pp.5463–5471.
5. Arava Leela Mohana Reddy, Anchal Srivastava, Sanketh R. Gowda and Hemtej Gullapalli et al., “Synthesis Of Nitrogen-Doped Graphene Films For Lithium Battery Application,” Acsnano, 2010, Vol 4, pp. 6337–6342.
6. Xuesong Li, Weiwei Cai, Jinho An, Seyoung Kim, Junghyo Nah and Dongxing Yang et al. “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science, 2009, Vol 324, pp.1312–1314.
7. Yong Jae Cho, Han Sung Kim, Hyungsoon Im and Yoon Myung, “Nitrogen-Doped Graphitic Layers Deposited on Silicon Nanowires for Efficient Lithium-Ion Battery Anodes,” J. Phys. Chem. C, 2011, Vol 115, pp.9451–9457.


8. Baeck Choi, Hyeonseok Yoon, In-Su Park and Jyongsik Jang et al.,“Highly dispersed Pt nanoparticles on nitrogen-doped magnetic carbon nanoparticles and their enhanced activity for methanol oxidation,” Carbon ,2007 , Vol 45, pp2496–2501.
9. Hyung Mo Jeong, Jung Woo Lee, Weon Ho Shin and Yoon Jeong Choi et al., “Nitrogen-Doped Graphene for High-Performance Ultracapacitors and the Importance of Nitrogen-Doped Sites at Basal Planes,” Nano Lett., 2011, Vol 11, pp.2472-2477.
10. Jian Li, Xiaoqian Cheng, Alexey Shashurin and Michael Keidar, “Review of Electrochemical Capacitors Based on Carbon Nanotubes and Graphene,” Appl. Sci. Res., 2012, Vol 1, pp.1-13.
11. Yaolun Yu, Yueping Hu, Xuewei Liu, Weiqiao Deng,, Xin Wang, “The study of Pt@Au electrocatalyst based on Cu under potential deposition and Pt redox replacement,’’ Electrochim. Acta. 2009, Vol 54, pp. 3092–3097.
12. Xuekun Lu, Hui Huang, Nikolay Nemchuk, and Rodney S. Ruoff, “Patterning of highly oriented pyrolytic graphite by oxygen plasma etching,” Appl. Phys. Lett., 1999, Vol 75, pp.193-195.
13. R. Kostić, M. Mirić, T. Radić and M. Radović et al., “Optical Characterization of Graphene and Highly Oriented Pyrolytic Graphite,” Acta Phys. Pol. A, 2009,Vol 11,pp.719-721.
14. Jin Gyu Park, Chuck Zhang, Richard Liang and Ben Wang, “Nano-machining of highly oriented pyrolytic graphite using conductive atomic force microscope tips and carbon nanotubes,” Nanotechnology, 2007, Vol 18, pp.1-6.
15. A. K. GEIM and K. S. NOVOSELOV, “The rise of graphene,” Nat. Mater.,2007, Vol 6, pp.183-191.
16. L.A. Falkovsky, “Optical properties of graphene,” Am. J. Phys., s,2008, Conference Series 129,pp.12004.
17. Alexander A. Balandin, “Thermal properties of graphene and nanostructured carbon materials,” Nat. Mater.,2011,Vol 110, pp.569-581.
18. S. Ghosh, D.L. Nika, S. Subrina, E.P. Pokatilov, C.N. Lau and A.A. Balandin, “Dimensional crossover of thermal transport in few-layer graphene,” Nat. Mater., 2010, Vol 9, pp.555.
19. A. C. Ferrari, J. C. Meyer, V. Scardaci and C. Casiraghi,, “Raman Spectrum of Graphene and Graphene Layers,” Phys. Rev. Lett., 2006, PRL97,pp.187401.
20. Andrea C. Ferrari and Denis M. Basko, “Raman spectroscopy as a versatile tool for studying the properties of graphene,” Nat. Nanotechnol.,2013, Vol 8, pp.235-246.
21. Axel Eckmann, Alexandre Felten, Artem Mishchenko, Liam Britnell, “Probing the Nature of Defects in Graphene by Raman Spectroscopy,” Nano Lett., 2012, Vol 12, pp.3925−3930.
22. Casiraghi. C., Pisana. S., Novoselov. K. S. and Geim. A. K, “Raman fingerprint of charged impurities in graphene,” Appl. Phys. Lett., 2007, Vol 91, pp.233108.
23. A. Zeng, E. Liu, S. N. Tan and S. Zhang et al., “Cyclic Voltammetry Studies of Sputtered Nitrogen Doped Diamond-Like Carbon Film Electrodes, ” Electroanalysis, Vol 14,pp.1110-1115.
24. Konstantin V. Emtsev, Aaron Bostwick, Karsten Horn and Johannes Jobst, “Towards wafer-size graphene layers by atmospheric,” Nat. Mater., 2009,Vol 8, pp.203-207.
25. Kyle A Ritter and Joseph W Lyding, “Characterization of nanometer-sized, mechanically exfoliated graphene on the H-passivated Si(100) surface using scanning tunneling microscopy,” Nanotechnology, 2009,Vol 19,pp.1-6.
26. TANG Jun, LIU Zhong-Liang, KANG Chao-Yang and PAN Hai-Bin, “Epitaxial Growth of Graphene on 6H-SiC (0001) by Thermal Annealing,” Chin. Phys. Lett., 2009, Vol. 26, pp.88104(1-3).
27. C. Riedl, C. Coletti and U. Stark, “Structural and electronic properties of epitaxial graphene on SiC(0001): A review of growth, characterization, transfer doping and hydrogen intercalation,” J. Phys. D: Appl. Phys., 2010, Vol 43,pp.374009-374026.
28. Junghun Choi, Hangil Lee and Sehun Kim, “Atomic-Scale Investigation of Epitaxial Graphene Grown on 6H-SiC(0001) Using Scanning Tunneling Microscopy and Spectroscopy,” J. Phys. Chem. C ,2010, Vol 114, pp.13344–13348.
29. Wei Liu, Hong Li, Chuan Xu, Yasin Khatami and Kaustav Banerjee, “Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition,” Carbon, 2011,Vol 49, pp.4122-4130.
30. Yimin. A., Wu. Ye Fan, Susannah Speller and Graham L. Creeth, “Large Single Crystals of Graphene on Melted Copper Using Chemical Vapor Deposition,” Acsnano, 2012,Vol 6,pp.5010-5017.
31. Cecilia Mattevi, Hokwon Kima and Manish Chhowalla, “A review of chemical vapour deposition of graphene on copper,” J. Mater. Chem., 2011,Vol 21, pp.3324–3334.
32. Ching-Yuan Su, Ang-Yu Lu, Chih-Yu Wu and Yi-Te Li, “Direct Formation of Wafer Scale Graphene Thin Layers on Insulating Substrates by Chemical Vapor Deposition,” Nano Lett., 2011, Vol 11, pp.3612–3616.
33. Qingkai Yu, Jie Lian, Sujitra Siriponglert, Hao Li, “Graphene segregated on Ni surfaces and transferred to insulators,” Appl. Phys. Lett., 2008,Vol 93,pp.113103(1-3).
34. Zhenhua Ni, Yingying Wang, Ting Yu, and Zexiang Shen, “Raman Spectroscopy and Imaging of Graphene,” Nano Res., 2008, Vol1 ,pp. 273-291.
35. Maria Losurdo, Maria Michela Giangregorio, Pio Capezzuto and Giovanni Bruno, “Graphene CVD growth on copper and nickel: role of hydrogen in kinetics
and structure,” : Phys. Chem. Chem. Phys., 2011,Vol 13, pp.20836–20843.
36. Ahmad Umair and Hassan Raza, “Controlled synthesis of bilayer graphene on nickel,” Nanoscale Res. Lett., 2012,Vol 7,pp.437-442.
37. Yung Ho Kahng, Sangchul Lee, Minhyeok Choe and Gunho Jo et al., “A study of graphene films synthesized on nickel substrates: existence and origin of small-base-area peaks,” Nanotechnology, 2011, Vol 22, pp.45706-45715.
38. Kian Ping Loh, Qiaoliang Bao, Goki eda and manish chhowalla ,“Graphene oxide as a chemically tunable platform for optical applications,” Nat. Chem., 2010, Vol 2, pp.1051-1024.
39. Malgorzata Wojtoniszak and Ewa Mijowska, “Controlled oxidation of graphite to graphene oxide with novel oxidants in a bulk scale,” J Nanopart Res., 2012, Vol 14, pp.1248-1255.
40. Regis Y N Gengler, Konstantinos Spyrou and Petra Rudolf, “A roadmap to high quality chemically prepared graphene,” J. Phys. D: Appl. Phys., 2010,Vol 43, pp.374015-374024.
41. Seung Hun Huh,“Thermal Reduction of Graphene Oxide,” Physics and Applications of Graphene, chapter 5.
42. Daniel R. Dreyer, Sungjin Park, Christopher W. Bielawski and Rodney S. Ruoff, “The chemistry of graphene oxide,” Chem. Soc. Rev., 2010, Vol 39, pp.228–240.
43. 蔡易霖,利用鐵鎳銅錳合金製備大面積石墨烯之研究, 碩士, 國立臺北科技大學, 台北, 100年。
44. 谷紹民,利用鐵鎳銅合金製備大面積石墨烯之研究, 碩士, 國立臺北科技大學, 台北, 99年。
45. 宋健民、胡紹中、林逸樵、甘明吉、徐開鴻、張坤諒、吳亭瑩,“液相催化生長大面積的石墨層(上)”,工業材料雜誌,第273期,2009,第 167-170頁。
46. 宋健民,胡紹中,林逸樵,甘明吉,徐開鴻,張坤諒,吳亭瑩,「液相催化生長大面積的石墨層 (下)」,工業材料,第274期,2009,第175頁。
47. Z. H. Ni, H. M. Wang, J. Kasim, H. M. Fan, T. Yu, Y. H. Wu,Y. P. Feng and Z. X. Shen,“Graphene Thickness DeterminationUsing Reflection and Contrast Spectroscopy”, Nano Lett., vol. 7, 2007, pp.2758-2763.
48. W. A. de Heer, C. Berger, X. Wu , P. N. First and E. H. Conrad, X. Li et al.,“Epitaxial graphene”, Solid State Commun., vol. 143, 2007, pp. 92-100.
49. Zhengzong Sun, Zheng Yan, Jun Yao, Elvira Beitler1 and Yu Zhu, “Growth of graphene from solid carbon sources,” Nature, 2 0 1 0, Vol4 6 8, pp. 549-552.
50. Ji Hoon Seo, Jae-Wook Kang, Dong-Ho Kim and Sungjin Jo,“Simple Wafer-Scale Growth and Transfer of Graphene Film Converted from Spin-Coated Fullerene Derivative,” ECS Solid State Letters, 2013, Vol2, pp. M13-M16.
51. Chaohua Zhang, Lei Fu, Nan Liu and Minhao Liu et al.,“Synthesis of Nitrogen-Doped Graphene Using Embedded Carbon and Nitrogen Sources,” Adv. Mater., 2011, Vol 23, pp. 1020–1024.
52. Beidou Guo, Qian Liu, Erdan Chen and Hewei Zhu et al., “Controllable N-Doping of Graphene,” Nano Lett., 2010, Vol 10, pp.4975–4980.
53. In-Yup Jeon, Dingshan Yu, Seo-Yoon Bae and Hyun-Jung Choi “Formation of Large-Area Nitrogen-Doped Graphene Film Prepared from Simple Solution Casting of Edge-Selectively Functionalized Graphite and Its Electrocatalytic Activity,” Chem. Mater., 2011, Vol 23, pp.3987–3992.
54. Bo Zheng, Jiong Wang, Feng-Bin Wang and Xing-Hua Xia “Synthesis of nitrogen doped graphene with high electrocatalytic activity toward oxygen reduction reaction,” Electrochem. Commun., 2013, Vol 28, pp.24–26.




連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top