跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2024/12/04 06:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐啟峰
研究生(外文):Chi-Feng Hsu
論文名稱:使用熱回收裝置於恆溫恆濕系統的研發
論文名稱(外文):Research and development of constant temperature and humidity system using heat recovery device
指導教授:卓清松
指導教授(外文):Ching-Song Jwo
口試委員:鄭龍嶽陳輝俊李達生
口試日期:2013-07-17
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:冷凍空調工程系所
學門:工程學門
學類:其他工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:68
中文關鍵詞:恆溫恆濕系統直膨式熱回收變頻節能效益
外文關鍵詞:constant temperature and humidity systemdirect expansionheat recoveryfixed-frequencyenergy-saving performance
相關次數:
  • 被引用被引用:2
  • 點閱點閱:313
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的為藉由冷凝廢熱來取代恆溫恆濕的電熱再熱方式,藉此達到節省能源與降低運轉成的效益。實驗中使用一套熱回收裝置,使冷凝熱能供給恆溫恆濕系統其再熱過程所需之能量,並與傳統電熱再熱方式、定頻與變頻壓縮系統所匹配的四種運轉模式 (變頻電熱再熱方式、變頻熱回收再熱方式、定頻電熱再熱方式、定頻熱回收再熱方式)於相同的外氣、室內負載條件下,做一系列效益分析、運轉測試的比較。實驗結果顯示,於室內負載為50%(顯熱85W;潛熱20W)時,恆溫恆濕系統使用定頻熱回收較定頻電熱之再熱方式,COPCTHS可提升51.3%;整體耗電比較約提高23%,其中再熱裝置的能源消耗節省了81.4%。綜合上述四種運轉模式之測試結果,恆溫恆濕系統在整體耗電量上,使用變頻熱回收的運轉模式擁有較低的耗電量,其次為定頻熱回收的模式,再考慮系統的建置成本、運轉費用與穩定性下,本研究選用定頻熱回收的運轉模式做為一個較經濟的運轉模式。本實驗之冷凝熱回收裝置確實能供給恆溫恆濕系統其再熱過程之能量,並達到節省能源消耗的目標。

The objective of the study is to use condensing waste heat to replace electric reheating way under direct-expansion constant temperature and humidity so as to achieve the effect of energy saving and operation reduction. A set of heat recovery device is used in an experiment to make condensing heat energy supply the required energy to constant temperature and humidity system in its reheating process, and make a series of effectiveness analysis and comparison of operation test results of 4 operation models (inverter electric reheating way, inverter heat recovery reheating way, fixed-frequency electric reheating way, and fixed-frequency heat recovery reheating way) attached to traditional electric reheating way, fixed-frequency and inverter compression system under the same outside air and indoor loading conditions. Experimental results show that when indoor load is 50% (sensible heat 85W; latent heat 20W), the COPCTHS of fixed-frequency heat recovery used by constant temperature and humidity system can be increased by 51.3% comparing to reheating way of fixed-frequency electric heat, and overall power consumption is increased by around 23%, with the power consumption of reheating device saved by 81.4%. After synthesis of test results of the above 4 operation models, in the aspect of overall power consumption of constant temperature and humidity system, the operation model using inverter heat recovery has lower power consumption, and the next power-saving operation model is fixed-frequency heat recovery model. Also in consideration of the establishment cost, operation expenses and stability of system, the study selects fixed-frequency heat recovery operation model as a more economical operation model. The condensing heat recovery device used in the experiment can really supply energy to constant temperature and humidity system in its reheating process, and achieve the objective of saving energy consumption.

目錄

ABSTRACT ii
誌 謝 iv
目錄 v
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 3
1.3 文獻回顧 4
1.4 研究特色 7
1.5 論文架構 8
第二章 相關理論分析 9
2.1 蒸氣壓縮循環理論 9
2.1.1 理想蒸氣壓縮循環 9
2.1.2 實際蒸氣壓縮循環 11
2.2 空氣之相關理論 12
2.2.1 露點溫度 12
2.2.2 濕度 12
2.2.3 濕度比 13
2.2.4 焓 13
2.2.5 乾球溫度與濕球溫度 14
2.2.6 空氣中的熱 14
2.2.7 性能係數與盤管能力 15
2.2.8 空氣處理程序 16
2.3 PID控制器 20
第三章 實驗裝置與方法 22
3.1 恆溫恆濕系統之節能效益分析實驗 23
3.1.1 恆溫恆濕系統效益分析 25
3.2 恆溫恆濕系統之成本效益分析實驗 27
3.3 實驗設備與量測儀器介紹 27
第四章 實驗結果與討論 39
4.1 恆溫恆濕系統節能效益分析之結果與討論 39
4.1.1 恆溫恆濕系統效益分析實驗之結果 39
4.2 恆溫恆濕系統成本效益分析結果 60
第五章 結論與後續研究 63
5.1 結論 63
5.2 後續研究 64
參考文獻 65
符號整理 68

參考文獻
[1]經濟部能源局 http://www.moeaboe.gov.tw/
[2]經濟部能源局 http://www.moeaboe.gov.tw/
[3]L.T. Yeh, “Review of heat transfer technologies in electronic equipment,” ASME. Electronic Packaging, 1995, pp.333-339.
[4]翰寧股份有限公司 ”空調加濕技術概論”。
[5]M. Zaheer-Uddin, J.C.Y. Wang, “Modelling and control of an air-to-air heat recovery system”, 1994.
[6]Hou Liquan, Wang Jianqiang, Hou Yanfen, Zhang Weijie, “Development of test device for recovering condensate heat from air conditioners”, Industrial Construction Vol.36, Supplement, 2006.
[7]Zhaolin Gu, Hongjuan Liu, Yun Li, “Thermal energy recovery of air conditioning system-heat recovery system calculation and phase change materials development”, Applied Thermal Engineering 24, 2006, pp.2511-2526.
[8]陳志球,硬膠囊生產線空調系統熱回收節能探討,碩士論文,國立臺北科技大學能源與冷凍空調系統工程系,2008。
[9]Guangcai Gong, Wei Zeng, Liping Wang, ChihWub, “A new heat recovery technique for air-conditioning/heat-pump system”, Applied ThermalEngineering, 28, 2008, pp.2360–2370.
[10]S. C. Kaushik, N. L. Panwar, V. Siva Reddy, “Thermodynamic evaluation of heat recovery through a Canopus heat exchanger for vapor compression refrigeration (VCR) system”, Journal of Thermal Analysis and Calorimetry Vol.110, Issue 3, 2012, pp.1493-1499.
[11]Zeng Hua-wen, Zhu Bin-xiang, Li Jin-rong, “Constant Temperature & Constant Humidity Air Conditioning Unit Energy Saving Case Analysis and Exploration”, FLUID MACHINERY Vol.39, 2011, No.10.
[12]Chingsong Jwo, Tingyu Chen, Chifeng Hsu, Lingyu Chien, “Energy Saving Analysis on Application of Condensing Heat Recovery to Constant Temperature/Humidity System”, Applied Mechanics and Materials Vols.291-294, 2013, pp.1805-1811.
[13]B.J. Huang, Y.C. Liao, T.C. Kuo, “Study of a new environmental chamber design“, Applied Thermal Engineering, 27, 2007, pp.1967–1977.
[14]CAO. F, Wang. K, Xing. Z, Shu. P, Xue. J, “Experimental study on constant temperature and humidity air-conditioner with recovering condensing heat”, Journal of Xi''an Jiaotong University, Volume 42, Issue 5, 2008, pp.524-527.
[15]Maria La Gennusa, Gianfranco Rizzo, GianlucaScaccianoce, Francesco Nicoletti, “Control of indoor environments in heritage buildings: experimental measurements in an old Italian museum and proposal of a methodology“, Journal of Cultural Heritage, 6, 2005, pp.147–155.
[16]G. Pavlogeorgatos, “Environmental parameters in museums“, Building and Environment, 38, 2003, pp.1457–1462.
[17]C.X. Jia, Y.J. Dai, J.Y. Wu, R.Z. Wang, “Analysis on a hybrid desiccant air-conditioning system”, Applied Thermal Engineering, 26, 2006, pp.2393–2400.
[18]Kamel Ghali, “Energy savings potential of a hybrid desiccant dehumidification air conditioning system in Beirut”, Energy Conversion and Management, 49, 2008, pp.3387–3390.
[19]Li Yutong, Yang Hongxing, “Investigation on solar desiccant dehumidification process for energy conservation of central air-conditioning systems”, Applied Thermal Engineering, 28, 2008, pp.1118–1126.
[20]X.J. Zhang, C.Y. Yu, S. Li, Y.M. Zheng, F. Xiao, “A museum storeroom air-conditioning system employing the temperature and humidity independent control device in the cooling coil”, Applied Thermal Engineering, 2011, pp.1–5.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top