(3.238.174.50) 您好!臺灣時間:2021/04/18 17:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳宏德
研究生(外文):Hung-Te Chen
論文名稱:空調送風機熱交換性能分析
論文名稱(外文):Performance analysis of Fan-Coil Unit heat exchanger
指導教授:李文興李文興引用關係
口試委員:柯明村陳希立
口試日期:2013-07-30
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:能源與冷凍空調工程系碩士班
學門:工程學門
學類:其他工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:46
中文關鍵詞:空調送風機熱交換
外文關鍵詞:Air conditioningFan-Coil Unitheat exchanger
相關次數:
  • 被引用被引用:1
  • 點閱點閱:249
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
近年來由於各式能源價格價格不斷往上飆漲,就台灣而言冷氣空調部份就是屬於高耗電量產品,而進出水高溫差已是冰水系統的趨勢許多文獻提到大溫差可以大幅降低流量減少泵浦的耗電,在低流量下空調產品的熱交換器如何設計就變的十分重要。本研究希望能將室內冷氣所使用的空調送風機設備,藉由改變其熱交換器冰水迴路配置實驗,以增加溫度分佈的均勻性,進而能提升熱交換器性能,增加整體空調送風機氣側方面及降低耗電等相關能力。
本研究主要分為兩個部份。第一部份是在相同的熱交換器銅管分流支數相同的情形下,量測三種不同冰水迴路配置的熱交換器,實驗採用ARI高溫差標準條件控制溫濕度及冰水進、出水溫度在相同的情況下,比較實驗量測的結果。經實驗結果發現,管路配置為Counter Flow型式的熱交換器其進風與經過熱交換器後的出風溫差加大表示焓值越大所以其氣側能力最佳,相較於效能最差的平行A-Type,送風機氣側能力可以提升30%。
第二個部份則延續探討第上述部分的三種不同迴路配置的熱交換器,改變其冰水進入熱交換器位置之實驗,研究空調送風機熱交換器會有何種影響。經實驗結果D、E型式Type熱交換器進出水位置對調時,氣側能力較沒對調前有6%的差異。然而差異最大的就是F-Type型式,經對調進出水位置後原本銅管內與風向原本是逆向流方式就完全變成順相流方式,使F-Type的熱交換能力降低出風溫度較原本逆相流的C-Type上升使得進出風焓差變小氣能側能力下降40%。因此本研究希望藉此找出送風機熱交換器最佳化的迴路配置,並藉由實驗對熱交換器進行迴路配置驗證,以便可以設計出高效能之熱交換器。


Prices of all kinds of energies have been rapidly rising in recent years. In Taiwan the air conditioner is regarded as a product with high power consumption, and the chilled water system with high temperature difference has become a trend. It has been addressed in numerous literatures that high temperature difference can lead to significant reduction of flow volume thus reducing the power consumption by the pump. This is why the design of heat exchanger has become extremely important for air conditioner products under low flow volume. In this study the chilled water loop configuration of heat exchanger of indoor air conditioner blower will be changed in order to improve the uniformity of temperature distribution, enhance the performance of heat exchanger, improve the capacity of air blower side of the entire air conditioner, and reduce power consumption.
This study is divided into two parts. The first part is to measure the heat exchangers with three different chilled water loop configurations yet same number of brass pipes. In this experiment the ARI high temperature difference standard conditions will be used to compare the measurement results under identical temperature, humidity, and the temperatures of incoming and outgoing chilled water. The experimental results indicate that the temperature difference between incoming and outgoing air of heat exchanger with Counter Flow type piping configuration has been increased thus indicating higher enthalpy and better air side capacity. Compared to parallel A-Type of which has the worst capacity, the air side capacity of the Counter Flow blower can be enhanced by 30%.
The second part of this study is to further investigate the aforementioned heat exchangers with three different loop configurations by changing the location of entrance of chilled water into the heat exchanger to see how it affects the heat exchanger of air conditioner blower. Based on the experimental results, there is a 6% difference in air side capacities of D and E Type heat exchangers after switching the locations of water inlet/outlet. However, the biggest difference takes place in the F-Type, where the air flow direction within the brass pipe will be changed from reverse flow to forward flow after switching the locations of water inlet and outlet, thus leading to reduced capacity of F-Type heat exchanger. The temperature of outgoing air is higher than the C-Type with original reverse flow such that the enthalpy difference of incoming/outgoing air has been reduced, and the air side capacity has dropped by 40%. Therefore, the purpose of this study is to figure out the optimal loop configuration for air blower heat exchangers based on experimental verification in order to design highly efficient heat exchangers.


中文摘要 i
英文摘要 iii
誌謝 v
目錄 vi
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 2
1.3 研究目的 3
第二章 研究方法 4
2.1 送風機實驗方法 4
2.2 送風機熱交換器研究方法 5
2.2.1 對數平均溫度差 6
2.2.2 有效度-NTU 法 6
2.3 送風機測試模式 7
2.4 送風機性能測試 8
2.4.1 室內空氣焓法 8
第三章 實驗設計及規劃 10
3.1 室內送風機操作介紹 10
3.1.1 室內送風機類型 11
3.1.2 風車 15
3.1.3 馬達 16
3.1.4 盤管(熱交換器) 17
3.1.5 水盤 18
3.2 空調送風機運轉前後注意事項及操作方法 19
3.2.1 運轉前注意事項 19
3.2.2 運轉測試 19
3.2.3 空調送風機操作方法及注意事項 20
3.2.4 空調送風機維護及保養 21
3.2.5 空調送風機常發生之故障原因及處理對策 22
3.3 實驗設備及量測儀器 23
3.3.1 實驗設備. 23
3.3.2 量測儀器.. 25
3.4 實驗步驟與量測. 30
3.4.1 實驗參數. 30
3.4.2 實驗流程. 30
第四章 結果與討論 35
4.1 空調送風機對熱交換器不同迴路性能之測試 35
4.2 改變送風機熱交換器進出水位置性能之測試 38
4.3 高溫差水溫與一般水溫差氣側能力之測試 41
第五章 結論與建議 42
5.1 結論 42
5.1.1 熱交換器不同迴路之性能研究 42
5.1.2 熱交換器改變進出水位置性能研究 43
5.2 建議 43
參考文獻 45


參考文獻

[1] M.R. Hogan, The development of a low-temperature heat pump grain dryer, Ph.D thesis, Purdue University, 1980.
[2] R.D. Ellison, F.D. Creswick, S.K. Fischer, W.L. Jackson, A computer model for air-cooled refrigerant condensers with specified refrigerant circuiting, ASHRAE Transactions, Vol.87/1, pp.1106-1124, 1981.
[3] Jame-Sunn Liaw and C.C. Wang, A Comperature model for coils,accounting the effect of complex circuity, the 11th international symposium of transport phenomena,Nov.29-Dec.3, National Tsing Hua University, Hsinchu, Taiwan, pp.138-143, 1998.
[4] Min-Sheng Liu and C.C. Wang, A Comperature model for air-cooled condenser including the effect of circuity, the 11th international symposium of transport phenomena, Nov.29-Dec.3, National Tsing Hua University, Hsinchu, Taiwan,pp.132-137, 1998.
[5] Luben Cabezas-Gomez, Helio Aparecido Navarro, Sergio Machado de Godoy,Antonio Campo, Jose Maria Saiz-Jabardo, Thermal characterization of a cross-flow heat exchanger with a new flow arrangement, International Journal of Thermal Sciences 48 pp.2165–2170, 2009.
[6] YUNUS A. CENGEL/ROBERT H.TURNER, Fundamentals of Thermal-Fluid Sciences, Mc Graw Hill, 2005
[7] 王啟川,熱交換器設計,五南出版社,2007.
[8] ANSI/AHRI Standard 440, Performance Rating of Room Fan-Coils,2008.
[9] 陸紀文 黃瑞隆 黃建民 謝文健 謝建興, 空調工程與設計-含暖通與通風, E高立圖書有限公司, 2003 .
[10] 蔡旻錦,「低溫差可變風量送風機性能檢測及送風特性研究」,碩士論文,國立台北科技大學冷凍空調工程系研究所, 2005.
[11] 經濟部中央標準局印行, 中國國家標準CNS 15173 接風管型空氣調節機及空氣對空氣熱泵之試驗法及性能等級,2000年9月30日修訂.
[12] 于丹, 空調冷凍水系統大溫差設計的影響及能耗分析(D),碩士論文,哈爾濱工業大學,2001.
[13] 林煒堯, 熱交換器管路配置與溫度分布均勻性之性能研究, 碩士論文,國立臺灣大學機械工程學研究所,2010.
[14] 宣晨晨,祝健,李躍萍,趙倫武, 冷凍水大溫差的節能性分析及應用, 建築熱能通風空調期刊, 合肥工業大學土木與水利工程學院,2011.



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔