(3.238.88.35) 您好!臺灣時間:2021/04/19 01:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許晉嘉
研究生(外文):XU,JIN JIA
論文名稱:蒸發冷凝式冰水機之灑水效率研究
論文名稱(外文):A study of water spraying efficiency in evaporative cooling chiller
指導教授:簡良翰簡良翰引用關係
口試委員:楊建裕楊安石
口試日期:2013-07-12
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:能源與冷凍空調工程系碩士班
學門:工程學門
學類:其他工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:70
中文關鍵詞:直接蒸發冷卻噴頭液滴噴灑
外文關鍵詞:Direct Evaporative CoolingNozzleDropletSpray
相關次數:
  • 被引用被引用:0
  • 點閱點閱:149
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
本研究主旨在探討蒸發冷凝式灑水效率之均勻度分析,以50個集水器測試水滴分佈,並利用可視化之實驗,觀察噴頭噴灑液滴現象,實驗在流量135LPM和176.4LPM,噴頭間距15公分與17公分,三種噴頭(1號噴頭開口長度和寬度分別為4公分和0.7公分,2號噴頭開口長度和寬度分別為4公分和1公分,3號噴頭開口長度和寬度分別為3.5公分和0.8公分),集水容器和噴頭高度差為16~32公分;測試在噴頭灑水時上述各參數對均勻度之影響。實驗結果顯示,於蒸發冷凝式冰水機灑水效率中,其噴頭開口之截面積設計與流量變化對於均勻度的影響非常大,若能有效控制噴嘴出口流速於1.2m/s左右,可減少液滴流失及增加撞擊飛濺情形,本研究透過改變流量之測試而歸納出較佳均勻度之流速。由改變噴頭開口截面積觀察噴灑現象,發現在高流量時,2號噴頭盛接量和均勻度都優於1號噴頭;在低流量時,1號噴頭在間距17公分較佳,而在間距15公分時2號噴頭較佳,原因為距離拉近,2號噴頭開口上下寬度較1號噴頭大,導致相鄰噴頭噴灑出液滴撞擊點較近,撞擊後液滴飛濺情形也發生較明顯。

This study aims to investigate the water spray uniformity of sprinkler in an evaporative condenser. Experiments of water droplet distribution are conducted with 50 water collectors, and the nozzle spray droplets patterns were observed during the tests. Three different combinations of nozzle opening length and width (4 cm x 0.7 cm, 4cm x 1 cm, and 3.5 cm x 0.8 cm) were tested with the flow rates varied at 135 LPM and 176.4 LPM. The nozzle spacing were either 15 cm or 17cm, and the distance between water collector and nozzle ranged from 16 cm to 32 cm. Experimental results show that the cross-sectional area of nozzle opening and flow rate significantly affect the water spray uniformity. If the water flow speed can be effectively controlled, this will help to shorten the impact distance, which improves spattering phenomenon and increases the ratio of collected fluid. In this study, at high flow rate, the nozzle opening with 4 cm in length and 1 cm in width transports/channels provides better water spray uniformity compared to the nozzle opening with 4 cm in length and 0.7 cm in width. On the other hand, at low flow rate, the nozzle opening with 4 cm in length and 0.7 cm in width provides better impacting effect with the nozzle spacing of 17 cm, yet the nozzle opening with 4 cm in length and 1 cm in width performs better with the nozzle spacing of 15 cm. The latter case, with the smaller nozzle spacing and bigger nozzle opening size, leads to a shorter impact distance of the spraying flow from two adjacent nozzles﹐and subsequently the spattering of water droplets is more pronounced.

目錄
摘要 I
ABSTRACT II
誌謝 IV
目錄 V
表目錄 VII
圖目錄 VIII
第一章 緒論 1
1.1 研究背景 1
1.2 研究目的與動機 2
第二章 文獻回顧 4
2.1 蒸發冷凝系統 4
2.1.1 蒸發冷卻技術之理論模型 4
2.1.2 蒸發冷凝灑水對熱傳之影響 7
2.2 噴擊熱傳 11
2.2.1 單相噴擊熱傳 11
2.2.2 雙相噴擊熱傳 13
2.2.3 噴淋孔型式之影響 13
2.2.4 蒸發冷凝不同型式噴嘴影響 15
2.2.5 噴頭噴灑對分佈影響 18
第三章 實驗設備與方法 20
3.1 實驗系統 20
3.1.1 灑水裝置基本構造 21
3.1.2 集水容器構造 23
3.2 實驗參數設定 26
3.3 實驗器材 28
3.3.1 電力分析儀 28
3.3.2 噴流量校正 28
3.3.3 噴頭開口製作 29
3.3.4 幫浦 29
3.3.5 升降台車 29
3.3.6 計重電子台秤 30
3.4 實驗步驟 31
3.5 測試區實驗參數 33
3.6 誤差分析 33
第四章 結果與討論 35
4.1 噴頭實際灑水情形分析 35
4.1.1 灑水一次和二次撞擊 35
4.1.2 有無風量比較 38
4.1.3 空氣側風速量測 41
4.2 實驗數據分析與探討 42
4.2.1 集水率標準差與盛接量探討 42
4.2.2 不同流量比較 42
4.2.3 噴頭間距17公分和2種流量分析 44
4.2.4 噴頭間距15公分和二種流量分析 47
4.3 分配管路之噴頭間距17公分和15公分比較 52
4.3.1 間距17公分和15公分之1號噴頭水量分佈 53
4.3.2 間距17公分和15公分之2號噴頭水量分佈 58
4.4 噴頭2號之特性分析 62
第五章 結論與未來展望 65
5.1 結論 65
5.2 未來展望 66
參考文獻 67
符號說明 70


[1]Hu, S.C., "Power consumption of semiconductor fabs in Taiwan.," Energy, 28, 2003, pp.895-907.
[2]Parker, R.O., Treybal, R.E., “Heat, mass transfer characteristics of evaporative coolers.,”, AIChE Chemical Engineering Progress Symposium Series 57, Vol.32, 1961, pp.138–149.
[3]Mizushina, T., Ito, R., Miyasita, H., “Experimental study of an evaporative cooler.,” International Chemical Engineering, Vol.7 (4), 1967, pp.727–732.
[4]Niitsu, Y., Naito, K., Anzai, T., “Studies on characteristics and design procedure of evaporative coolers.,” Journal of SHASE, Vol.43, 1969, Japan.
[5]Hasan, A., Siren, K., “Theoretical and computational analysis of closed wet cooling towers and its applications in cooling of buildings.,” Energy and Buildings, Vol.34 (5), 2002, pp.477–486.
[6]Hasan, A., Siren, K., “Performance investigation of plain and finned tube evaporatively cooled heat exchangers.,” Applied Thermal Engineering, Vol.23, 2003, pp.325–340.
[7]Heyns, J.A., Kroger, D.G., “Experimental investigation into the thermal-flow performance characteristics of an evaporative cooler.,” Applied Thermal Engineering, Vol.30, 2010, pp.492–498
[8]Finlay, I.C. & Harris, D., ”Evaporative cooling of tube banks.,” Int. J. of Refrigeration, Vol.7, 1984, pp.214-224.
[9]Peterson, D., Glasser, D., Williams, D., Ramsden, R., "Predicting the Performance of an Evaporative Condenser," ASME J. Heat Transfer., Vol.110, 1988, pp.748-753.
[10]許顯志、莊嘉琛,「冷卻水塔水資源節能管控對策探討(上)」,中華水電空調雜誌,第272期,第81-91頁.
[11]Boltimore Aircoil Company﹐” advanced coil technology reduces scale tendency﹐” Boltimore Aircoil Company product report.
[12]B.Q. Li, T. Cader, J. Schwarzkopf, K. Okamoto, and B. Ramaprian, 2006, “Spray angle effect during spray cooling of microelectronics: Experimental measurements and comparison with inverse calculations,” Applide Thermal Engineering, Vol. 26, pp. 1788-1795.
[13]E.A. Silk, J. Kim, and K. Kiger, 2006, “Spray cooling of enhanced surfaces: Impact of structured surface geometry and spray axis inclination,” International Journal of Heat and Mass Transfer, Vol. 49, pp. 4910-4920.
[14]D. J.Womac, F. P. Incropera, and S. Ramadhyani, "Correlating equations for impingement cooling of small heat sources with multiple circular liquid jets," Journal of Heat Transfer, vol. 116, 1994, pp. 482-486.
[15]G. Jr. Moreno, S.M. You, and E. Steinthorsson, 2007, “Spray cooling performance of single and multi-jet spray nozzles using subcooled FC-72,” 2007 Proceedings of the ASME/JSME Thermal Engineering Summer Heat Transfer Conference, HT 2007 ,Vol. 1, pp. 783-790.
[16]B. Horacek, J. Kim, and K. T. Kiger, 2004, “Spray cooling using multiple nozzles: Visualization and wall heat transfer measurements,” IEEE Transactions on Device and Materials Reliability, Vol. 4, pp. 614-625.
[17]B.P. Whelan, and A.J. Robinson, 2007, “The effect of nozzle geometry on pressure drop and heat transfer to free surface liquid jet arrays,” 2007 Proceedings of the ASME/JSME Thermal Engineering Summer Heat Transfer
[18]A. Royne and C.J. Dey, Effect of nozzle geometry on pressure drop and heat transfer in submerged jet arrays, International Journal of Heat and Mass Transfer, vol. 49, 2006, pp. 800–804.
[19]Michael T. Meyer, Issam Mudawar, Chad. E. Boyack and Charles A. Hale, "Single-phase and two-phase cooling with an array of rectangular jets," International Journal of Heat and Mass Transfer, Vol. 49, Issues 1-2, 2006, pp. 17-29.
[20]I. Mudawar, and D.C. Wadsworth, "Critical heat flux from a simulated chip to a confined rectangular impinging jet of dielectric liquid, "International Journal of Heat and Mass Transfer, Vol. 34, Issue 6, 1991, pp. 1465-1479
[21]Chyu & Zeng﹐”Nozzle-Sprayed Flow Rate Distribution on a Horizontal Tube Bundle.
[22]Morgan et al﹐”Liquid Distribution in an Evaporative Heat Rejection System﹐”U.S. 20090188650A1


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔