跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2024/12/15 07:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳正裕
研究生(外文):Cheng-Yu cgen
論文名稱:多噴嘴微鰭片流道晶片散熱器之實驗與數值模擬研究
論文名稱(外文):An Experimental and Numerical Study of Micro-fin Channels with Multiple Jets for Chip Cooling
指導教授:簡良翰簡良翰引用關係
口試委員:楊建裕楊安石
口試日期:2013-07-12
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:能源與冷凍空調工程系碩士班
學門:工程學門
學類:其他工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:120
中文關鍵詞:噴擊冷卻微流道微鰭片單相熱傳兩相熱傳流場可視化
外文關鍵詞:Jet coolingMicro ChannelsSingle Phase Heat TransferTwo Phase Heat TransferFlow Visualization
相關次數:
  • 被引用被引用:2
  • 點閱點閱:441
  • 評分評分:
  • 下載下載:44
  • 收藏至我的研究室書目清單書目收藏:0
本研究針對整合噴擊與微流道之混合性散熱機構,散熱器裡設計有數組噴嘴與微流道和微鰭片整合為一體成型之散熱機構。在投影面積為12×12mm2的散熱器,建立流道高0.8mm,寬0.6mm,流道長度為12mm,共計11條微渠道,每條微渠道中設置微鰭片,微鰭片高0.3mm,寬0.2mm長度12mm,微鰭片上方正對著3個噴擊孔,因此微渠道的體積減少約12.5%。本研究實驗工作流體為FC-72,入口飽和溫度為30℃及50℃,並設定噴擊流量為100~710mL/min。結果發現,單相熱傳之熱傳性能皆會隨著噴擊流量增大而呈現線性上升之趨勢,在微渠道中增加微鰭片,有助於熱傳進入兩相沸騰熱傳,而當流量增至一定範圍以上時,因為噴擊到微鰭片壓力過大,使得工作流體在微渠道內部未能有較佳的相變化熱傳,使得熱傳性能下降,本研究在飽和溫度30℃時,中流量450mL/min下,可達最高的熱通量150 W/cm2,並有本實驗中最低的熱阻0.1313K/W。最後,利用迴歸及疊代計算,推導出單相和雙相熱傳的經驗公式,其誤差範圍絕大部分落在±20%和±30%以內。

This study investigate a micro-channel heat sink integrated with micro jets. The cooling fluid was introduced to a 12×12 mm2 heated surface, which had 11 micro-channels, each channel was 0.8 mm high, 0.6 mm wide, and 12 mm in length. Micro-fin of 0.3mm height, 0.2mm width, and 12mm in length is made on the bottom of each channel.The volume of micro-channels reduces approximately 12.5% by the micro-fins.
In the tests, the working fluid is FC-72, the saturation temperature of cooling device system was set at 30 and 50℃, and the volume flow rate varied from 100 to 710 ml/min. The experimental results showed that heat transfer performance increased with increasing flow rate for single phase heat transfer.
The micro fins enhances the heat transfer in two phase boiling heat transfer. However, for the flow rate greater than a certain value, the increase of pressure drop hinders the bubble formation, and results in heat transfer performance degradation. In this study, at the saturation temperature of 30 ℃, and the flow rate of 450mL/min , the heat sink yields the maximum heat flux of 210 W/cm2, and the lowest thermal resistance of 0.1313K / W. Single phase and two phase heat transfer empirical correlations have been developed for the present heat sink, and the prediction error for most data are within ± 20% and± 30%, respectively.


誌謝 iv
表目錄 ix
圖目錄 x
1.1 研究背景 1
1.2 研究目的 4
第二章 文獻回顧 5
2.1噴擊熱傳 5
2.1.1 單相噴擊熱傳 5
2.1.2 雙相噴擊熱傳 8
2.1.3水平直管流譜圖 13
2.1.4 噴淋型式 14
2.1.4 噴淋孔型式之影響 16
2.1.5 噴淋高度對熱傳性能之影響 20
2.2微渠道熱傳 21
2.2.1 微渠道入出口配置之影響 21
2.2.2 堆疊型式微流道熱傳 23
2.3結合噴淋孔與微流道之散熱機制 26
2.4 微渠道底部增強熱傳結構表面之影響 32
2.5過冷度對熱傳性能之影響 37
2.6不凝結氣體之影響分析 38
2.7臨界熱通量分析 39
2.8流道可視化 40
第三章 實驗設備與方法 41
3.1 實驗設備 41
3.2 實驗參數範圍設定 45
3.2.1 工作流體之飽和溫度 45
3.2.2 熱通量參數設定 45
3.2.3 測試機構 47
3.2.4 噴擊孔徑與間距 50
3.2.5微渠道之微鰭片 51
3.2.6 噴擊流量設定 52
3.3 實驗系統 52
3.3.1 工作流體循環系統 53
3.3.2 模擬晶片發熱系統 53
3.3.3 儲液與過濾系統 54
3.3.4 冷凝循環系統 55
3.3.5 充填與除氣系統 55
3.3.6 影像擷取系統 55
3.4 實驗量測儀器 56
3.4.1 壓力轉換計 56
3.4.2 浮球式流量計 56
3.4.3 微齒輪泵 56
3.4.4差壓計 57
3.4.5 熱電偶 57
3.4.6 自偶變壓器 57
3.4.7 資料擷取器 57
3.4.8 真空泵 58
3.4.9 影像擷取設備 58
3.5 實驗步驟 59
3.6 實驗數據與誤差分析 63
3.6.1 實驗數據分析 63
3.7 誤差分析 64
3.7.1 溫度校正 64
3.7.2 流量校正 66
3.7.3 實驗誤差分析 68
第四章 數值模擬方法 72
4.1 基本假設 72
4.2 統禦方程式 73
4.3數值分析模型 74
4.3.1 模擬軟體解析 75
4.4物理模型及邊界條件 76
4.4.1 物理模型建立 76
4.5.2 模型邊界條件設立 76
4.6 數值模擬結果 77
4.6.1微鰭片設計對熱傳性能之影響 77
4.6.2增加微鰭片對流場之影響 81
第五章 結果與討論 86
5.1微渠道內微鰭片對熱傳性能之影響 86
5.2 整合型散熱機制之熱傳 87
5.2.1微鰭片對熱傳性能之影響 87
5.2.2熱阻抗分析 93
5.3 噴擊流量對熱傳性能與壓降之影響 94
5.4與文獻比較討論 97
5.5整合型散熱機制之熱傳經驗式 99
5.5.1 單相熱傳 99
5.5.2 雙相熱傳 103
第六章 結論與未來展望 107
6.1 結論 107
6.2 未來展望 108
參考文獻 109
附錄一 117
A.1本實驗3-0.4-3-f0.3上視圖噴嘴表面 117
附錄二 118
A.2本實驗3-0.4-3-f0.3 側視圖 微渠道與微鰭片 118
符號說明 119


[1]ASHRAE Handbook-Applications, “Data Processing and Electronic Office Areas”, Ch17, 2007.
[2]B.Q. Li, T. Cader, J. Schwarzkopf, K. Okamoto, and B. Ramaprian, 2006, “Spray angle effect during spray cooling of microelectronics: Experimental measurements and comparison with inverse calculations,” Applide Thermal Engineering, Vol. 26, pp. 1788-1795.
[3]E.A. Silk, J. Kim, and K. Kiger, 2006, “Spray cooling of enhanced surfaces: Impact of structured surface geometry and spray axis inclination,” International Journal of Heat and Mass Transfer, Vol. 49, pp. 4910-4920.
[4]L. M. Jiji and Z. Dagan, "Experimental Investigation of Single-Phase Multi-Jet Impinement Cooling of an Array of Microelectronic Heat Sources," in Cooling Technology for Electronic Eguipment, Ed W. Aung, Hemisphere Publishing Corp, New York, 1987, pp.333-351.
[5]D. J.Womac, F. P. Incropera, and S. Ramadhyani, "Correlating equations for impingement cooling of small heat sources with multiple circular liquid jets," Journal of Heat Transfer, vol. 116, 1994, pp. 482-486.
[6]G. Jr. Moreno, S.M. You, and E. Steinthorsson, 2007, “Spray cooling performance of single and multi-jet spray nozzles using subcooled FC-72,” 2007 Proceedings of the ASME/JSME Thermal Engineering Summer Heat Transfer Conference, HT 2007 ,Vol. 1, pp. 783-790.
[7]Fabbri Matteo and K. Dhir Vijay, "Optimized heat transfer for high power electronic cooling using arrays of microjets," Journal of Heat Transfer, vol. 127, 2005, pp. 760-769.
[8]Copeland David, "Single-Phase and Boiling Cooling of Small Pin Fin Arrays by Multiple Nozzle Jet Impingement," Journal of Electronic Packaging, 1996, vol. 118, pp. 21-26.
[9]D. H. Wolf, F. P. Incropera and R. Viskanta, "Local jet impingement boiling heat transfer," International Journal of Heat and Mass Transfer, vol. 39, Issue 7, 1996, pp. 1395-1406.
[10]Ahmed M.T. Omar*, M. S. Hamed and M. Shoukri, "Nucleate Boiling Heat Transfer under Liquid Jet Impingement," Proceedings of HT2007 2007 ASME-JSME Thermal Engineering Summer Heat Transfer Conference July 8-12, 2007.
[11]A.G. Pautsch and T.A. Shedd, "Spray impingement cooling with single- and multiple-nozzle arrays. Part I: Heat transfer data using FC-72," International Journal of Heat and Mass Transfer, vol. 48, Issue 15, 2005, pp. 3167-3175.
[12]B. Horacek, J. Kim, and K. T. Kiger, 2004, “Spray cooling using multiple nozzles: Visualization and wall heat transfer measurements,” IEEE Transactions on Device and Materials Reliability, Vol. 4, pp. 614-625.
[13]Kurt A. Estes and Issam Mudawar, "Comparison of Two-Phase Electronic Cooling Using Free Jets and Sprays," Journal of Electronic Packaging, 1995, vol. 117 pp. 323-332.
[14]Van P. Carey,”Liquid-Vapor phase-change phenomena,University of California at Berkeley”, pp 399-480,1992.
[15]A.J. Robinson, and E. Schnitzler, 2007, “An experimental investigation of free and submerged miniature liquid jet array impingement heat transfer,” Experimental Thermal and Fluid Science, Vol. 32, pp. 1-13.
[16]B.P. Whelan, and A.J. Robinson, 2007, “The effect of nozzle geometry on pressure drop and heat transfer to free surface liquid jet arrays,” 2007 Proceedings of the ASME/JSME Thermal Engineering Summer Heat Transfer Conference, HT 2007 ,Vol. 2, pp. 747-756.
[17]A. Royne and C.J. Dey, Effect of nozzle geometry on pressure drop and heat transfer in submerged jet arrays, International Journal of Heat and Mass Transfer, vol. 49, 2006, pp. 800–804.
[18]Lanchao Lin, Rengasamy Ponnappan, "Heat transfer characteristics of spary cooling in a closed loop," International Journal of Heat and Mass Transfer, vol. 46, 2003, pp. 3737-3746.
[19]Cristina H. Amon, S.C. Yao, C.F. Wu, C.C. Hsieh, "Microelectromechanical System-Based Evaporative Thermal Management of High Heat Flux Electronics, " Proceedings of ASME-JSME Thermal Engineering Summer Heat Transfer Conference , vol. 127, 2005.
[20]Michael T. Meyer, Issam Mudawar, Chad. E. Boyack and Charles A. Hale, "Single-phase and two-phase cooling with an array of rectangular jets," International Journal of Heat and Mass Transfer, Vol. 49, Issues 1-2, 2006, pp. 17-29.
[21]I. Mudawar, and D.C. Wadsworth, "Critical heat flux from a simulated chip to a confined rectangular impinging jet of dielectric liquid, "International Journal of Heat and Mass Transfer, Vol. 34, Issue 6, 1991, pp. 1465-1479
[22]C.C. Hsieh, and S.C. Yao, 2006, “Evaporative heat transfer characteristics of a water spray on micro-structured silicon surfaces,” International Journal of Heat and Mass Transfer, Vol. 49, pp. 962-974.
[23]吳東旅、簡良翰,「鰭片表面應用於滴淋蒸發式電子散熱系統之研究」,碩士論文,國立臺北科技大學能源系,台北,2008。
[24]張秦耀、簡良翰,「非導電流體之兩相噴擊冷卻實驗研究」,碩士論文,國立臺北科技大學能源系,台北,2009。
[25]A. K. Das, P. K. Das, P. Saha, "Performance of different structured surfaces in nucleate pool boiling," Applied Thermal Engineering, Vol 29, Issues 17-18, December 2009, Pages 3643-3653.
[26]李書哲、簡良翰,「非導電性流體之噴擊式與池沸騰式晶片冷卻研究」,博士論文,國立臺北科技大學能源系,台北,2010。
[27]Gregory M. Chrysler, Richard C. Chu, and Robert E. Simons, "Jet Impingement Boiling of a Dielectric Coolant in Narrow Gaps," IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part A, vol. 18, no. 3, 1995. pp. 527-533.
[28]N. Jeffers, J. Punch, and E. Walsh, "An Experimental Characterisation of Miniature Scale Cold Plates for Electronics Cooling Applications," 2007 Proceedings of HT2007ASME-JSME Thermal Engineering Summer Heat Transfer Conference, Canada, July 8-12, 2007.
[29]Osamu Tonomura, Shotaro Tanaka, Masaru Noda, Manabu Kano, Shinij Hasebe, Iori Hashimoto, "CFD-based optimal design of manifold in plate-fin microdevices," Journal of Chemical Engineering, vol. 101, 2004, pp. 397-402.
[30]M.C. Lu, and C.C. Wang, "Effect of the Intel Location in the Performance of Parallel-Channel Cold-Plate, "IEEE Transactions on Components and Packaging Technology, vol. 29, No. 1, 2006, pp. 30-38.
[31]David Copeland, "Single-Phase and Boiling Cooling of Small Pin Fin Arrays by Multiple Slot Nozzle Suction and Impingement, "IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 18, No. 3, 1995.
[32]S.G. Kandlikar, and W.J. Grande, "Evaluation of Single Phase Flow in Microchannels for High Heat Flux Chip Cooling-Thermohydraulic Performance Enhancement and Fabrication Technology," Heat Transfer Engineering, Vol. 25, No. 8, 2004, pp. 5-16.
[33]葉竣達、楊建裕,「液體微熱交換器之熱傳增強研究」,博士論文,國立中央大學機械工程學系,2008。
[34]W. Escher, B. Michel, and D. Poulikakos, "A novel high performance, ultra thin heat sink for electronics," International Journal of Heat and Fluid Flow, Vol. 31, 2010, pp. 586-598.
[35]W. Escher, B. Michel, and D. Poulikakos, "Experimental Investigation of an Ultrathin Manifold Microchannel Heat Sink for Liquid-Cooled Chips." 2010 Proceedings of ASME-JSME Thermal Engineering Summer Heat Transfer Conference, vol. 132, 2010.
[36]J.H. Ryu, D.H. Choi, and S.J. Kim, "Three-dimensional numerical optimization of a manifold microchannel heat sink, " International Journal of Heat and Mass Transfer, Vol. 46, 2003, pp. 1553-1562
[37]X.J. Wei, Y. Joshi, "Stacked Microchannel Heat Sinks for Liquid Cooling of Microelectronic Components, " Journal of Electronic Packaging, Vol.126,2004,pp.60-66.
[38]X.J. Wei, Y. Joshi, and M.K. Patterson, "Experimental and Numerical Study of a Stacked Microchannel Heat Sink for Liquid Cooling of Microelectronic Devices, " Journal of Heat Transfer, vol. 129, 2007, pp. 1432-1444.
[39]Myung Ki Sung, and Issam Mudawar, "Single-phase and two-phase heat transfer characteristics of low temperature hybrid micro-channel/micro-jet impingement cooling module," International Journal of Heat and Mass Transfer, vol. 51, 2008, pp. 3882-3895.
[40]S.G. Kandlikar, and H.R. Upadhye, "Extending the Heat Flux Limit with Enhanced Microchannels in Direct Single Phase Cooling of Computer Chips," Proceedings of 21st IEEE SEMI-THERM Symposium, San Jose, 2005, pp. 8-15.
[41]J. Barrau, Daniel Chemisana, Joan Rosell, Lounes Tadrist, M. Ibanez, "An experimental study of a new hybrid jet impingement/micro-channel cooling scheme," Applied Thermal Engineering, vol. 30, 2010, pp. 2058-2066.
[42]Myung Ki Sung and Issam Mudawar, "Single-phase and two-phase cooling using hybrid micro-channel/slot-jet module," International Journal of Heat and Mass Transfer, vol. 51, Issues 15-16, 2008, pp. 3825-3839.
[43]Myung Ki Sung and Issam Mudawar, "Correlation of critical heat flux in hybrid jet impingement/micro-channel cooling scheme," International Journal of Heat and Mass Transfer, Vol. 49, 2006, pp. 2663-2672.
[44]Myung Ki Sung and Issam Mudawar, "CHF determination for high-heat flux phase change cooling system incorporating both micro-channel flow and jet impingement, "International Journal of Heat and Mass Transfer, vol. 52, Issues 3-4, 2009, pp. 610-619.
[45]Myung Ki Sung, Issam Mudawar, "Effects of jet pattern on two-phase performance of hybrid micro-channel/micro-circular-jet-impingement thermal management scheme, "International Journal of Heat and Mass Transfer, Vol. 52, Issues 13-14, 2009, pp. 3364-3372.
[46]Dorin Lelea, "Effects of inlet geometry on heat transfer and fluid flow of tangential micro-heat sink," International Journal of Heat and Mass Transfer, Vol.53, 2010, pp. 3562-3569.
[47]劉瀚陽、簡良翰,「整合噴擊之微渠道散熱器於晶片冷卻之研究」,碩士論文,國立臺北科技大學能源系,台北,2011。
[48]Murray E. Johns and Issam Mudawar, " An Ultra-High Power Two-Phase Jet-Impingement Avionic Clamshell Module, " Journal of Electronic Packaging, Vol. 118, 1996, pp. 264-270.
[49]J.R. Rybicki, and I. Mudawar, 2005, “Single-phase and two-phase cooling characteristics of upward-facing and downward-facing sprays,” International Journal of Heat and Mass Transfer, Vol. 49, pp. 5-16.
[50]I. Mudawar, and K.A. Estes, 1996, ”Optimizing and predicting CHF in spray cooling of a square surface,” Journal of Heat Transfer, Vol. 118, pp. 672-679.
[51]L. Lin, and R. Ponnappan, 2003, “Heat transfer characteristics of spray cooling in a closed loop,” International Journal of Heat Transfer, Vol.46, pp. 3737-3746.
[52]A. G. Pautsch and T.A. Shedd, "Spray impingement cooling with single- and multiple-nozzle arrays. Part I: Heat transfer data using FC-72," International Journal of Heat Transfer, vol.48, 2005, pp. 3167-3175.
[53]W. M. Healy, P. J. Halvorson, J. G. Hartley, S. I. Abdel-Khalik, "A critical heat flux correlation for droplet impact cooling at low Weber numbers and various ambient pressures,” International Journal of Heat and Mass Transfer, Volume 41, Issues 6-7, March-April 1998, Pages 975-978.5
[54]Ting-Yu Lin, Chien-Yuh Yang, "An experimental investigation on forced convection heat transfer performance in micro tubes by the method of liquid crystal thermography,” International Journal of Heat and Mass Transfer, Vol. 50, 2007, pp. 4736-4742.
[55]B. Horacek, J. Kim, and K. T. Kiger, "Spray cooling using multiple nozzles: Visualization and wall heat transfer measurements," IEEE Transactions on Device and Materials Reliability, vol. 4, 2004, pp. 614-625.
[56]K. H. Ho, S. T. Newman, S. Rahimifard, and R. D. Allen, "State of the art in wire electrical discharge machining (WEDM)," International Journal of Machine Tools and Manufacture, vol. 44, 2004, pp. 1247-1259.
[57]J. P. Holman, " Experimental methods for engineers 6 th Edition, "McGraw-Hill, Inc, 1994.
[58] 3MFluorinert ElectronicLiquid http://multimedia.3m.com/mws/mediawebserver?66666UuZjcFSLXTtnxTE5XF6EVuQEcuZgVs6EVs6E666666--

[59]廖紹宇、簡良翰,「多噴嘴微流道晶片散熱器之噴嘴孔徑組合研究」,碩士論文,國立臺北科技大學能源系,台北,2012
[60]Cooper,M.G.,“Saturation nucleate pool boiling – a simple correlation”Int.Chem. Engng Symp. Ser, Vol.86,pp. 785-792 (1984)
[61]Chen,J.C.,1966.Correlation for boiling heat transfer to saturated fluids in convective flow .Ind.Eng.Chem.Proc.Dev.,5:322.
[62]Butterwoth, D., 1977.Developments in the design of shell and tube condensers. ASME paper 77-WA/HT-24.
[63]Bennett D. L., Chen ,J. C.,1980, “Forced convective boiling in vertical tubes for saturated pure components and binary mixtures”,AIChE J., VOL.26,PP454-461



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top