跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2024/12/10 00:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳予文
研究生(外文):Yu-Wen Wu
論文名稱:利用月桂酸誘導微型核醣核酸-378表現以改善表皮生長因子受器抗體對KRAS/BRAF突變大腸直腸癌之抗藥性
論文名稱(外文):Up-regulation of miRNA-378 Induced by Lauric Acid Affecting anti-EGFR Antibody Sensitivity in KRAS/BRAF Mutation of Colorectal Cancer
指導教授:翁文慧
口試委員:蕭崇德馮思中
口試日期:2013-06-23
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:生化與生醫工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:53
中文關鍵詞:微型核糖核酸-378表皮生長因子受器抗體大腸直腸癌
外文關鍵詞:miR-378anti-EGFR antibodycolorectal cancer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:247
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在台灣,大腸直腸癌是最常見的惡性腫瘤之一。臨床研究發現,40%的病人有KRAS或BRAF基因產生突變,多對表皮生長因子受器抗體–爾必得舒的治療不具明顯效果。本實驗室先前研究發現在KRAS或BRAF基因突變的大腸直腸癌細胞株中,當微型核醣核酸-378表達量提高,可促使表皮生長因子受器抗體對癌症細胞的毒殺性效果獲得改善。PGC-1β基因調控細胞內脂質代謝,而微型核醣核酸-378前驅體序列則座落於其第一個內涵子中。因此吾等假設,利用脂肪酸培養細胞可能誘導微型核醣核酸-378的表現量提升,可進而改善表皮生長因子受器抗體對細胞的療效。本研究藉由三株KRAS ( HCT 116, SW 480)或BRAF ( HT 29)突變型大腸直腸癌細胞株培養於飽和脂肪酸中的十二烷酸(月桂酸)培養基中,發現月桂酸確實可誘導微型核醣核酸-378表現量提升於大腸直腸癌中;且將細胞進ㄧ步施以表皮生長因子受器抗體作用,其結果更證實均可大幅改善此標靶藥物對KRAS或BRAF突變型癌症細胞的療效(p < 0.05),並降低ERK1/2蛋白質表現量,隨之可抑制細胞增生及促進細胞凋亡。因此本實驗證實月桂酸確實可有效誘導微型核醣核酸-378表現量提升於KRAS或BRAF基因突變型的大腸直腸癌細胞中,並抑制ERK1/2蛋白質表現,表皮生長因子受器抗體的療效也因此獲得極大的改善。由於月桂酸在日常飲食中即可從橄欖油中獲取,本研究的發現對於目前棘手的臨床基因突變型大腸直腸癌治療方向,將提供全新且有效的安全治療策略。

Colorectal cancer (CRC) is one of the most common human malignancies in Taiwan. Clinically, 40% of CRC patients with KRAS/BRAF mutation present resistance to the anti-EGFR antibody (Cetuximab, Erbitux) therapy. In our previous findings, we have identified increasing expression level of miR-378 in the KRAS or BRAF mutant CRC cells are associated with the cells sensitivity to the anti-EGFR antibody treatment. As known that miR-378 is encoded by PGC-1β gene, which also regulates the lipid metabolism. Therefore, we hypothesized that to increase Lauric acid (C12:0) in the cells might also enhance the expression of miR-378 in the cancer cells; further, it will stimulate the cells response to anti-EGFR antibody treatment. In current study, three of CRC cell lines contain with KRAS (HCT 116 & SW 480) and BRAF (HT 29) mutations were cultured with Lauric acid. The results showed once enhancing the expression level of miR-378, consequentially decreased cell survival by treating anti-EGFR antibody could be observed. Moreover, reduced ERK1/2 protein expression has been found after Lauric acid treated in CRC cells. All the results provided evidences of Lauric acid might significantly improve anti-EGFR antibody response to KRAS/BRAF mutate CRC cells. As known that Lauric acid is easy derived from olive oil, and our results suggest a novel, useful, and safe strategy for those CRC patients who contain with KRAS or BRAF.

中文摘要....................................................i
ABSTRACT..................................................ii
誌 謝....................................................iii
目 錄.....................................................iv
圖目錄.....................................................vi
表目錄....................................................vii
第一章 導論.................................................1
1.1大腸直腸癌...............................................1
1.1.1大腸直腸癌的嚴重性.......................................1
1.1.2遺傳性與偶發性大腸直腸癌基因上的差異........................2
1.1.3有絲分裂活化蛋白質激酶(MAPK)路徑於大腸直腸癌中之重要性.......3
1.1.4有絲分裂活化蛋白質激酶(MAPK)路徑突變對表皮生長因子受器抗體(anti- EGFR antibodies)的影響...............................6
1.2微型核醣核酸..............................................6
1.2.1微型核醣核酸簡介.........................................6
1.2.2微型核醣核酸與大腸直腸癌..................................7
1.2.3微型核醣核酸-378與大腸直腸癌中有絲分裂活化蛋白質激酶(MAPK)路徑的關係......................................................7
1.2.4微型核醣核酸-378與過氧化物酶體增殖物啟動受體γ輔啟動因子1β(PGC-1β)的關係..................................................8
第二章 研究動機與目標........................................12
2.1 研究動機...............................................12
2.2 研究目標...............................................12
第三章 材料與方法............................................14
3.1 細胞培養...............................................14
3.2 月桂酸培養基配置.........................................18
3.3 月桂酸之自由基脂肪酸定量..................................19
3.4 總核醣核酸(total RNA)萃取...............................20
3.5 細胞內核醣核酸(RNA)表現相對定量...........................21
3.6 細胞活性分析............................................26
3.7 酵素免疫分析............................................27
3.8 統計方法...............................................28
第四章 研究結果.............................................29
4.1 大腸直腸癌細胞株對月桂酸之消耗率............................29
4.2 月桂酸培養基培養大腸直腸癌細胞株之生長曲線...................30
4.3 微型核醣核酸-378表現提升於月桂酸培養基培養之大腸直腸癌細胞株....30
4.4 不同濃度月桂酸與大腸直腸癌細胞株生長速率的關係................31
4.5 月桂酸培養基培養後施以表皮生長因子受器抗體(anti-EGFR antibody)改善大腸直腸癌抗藥性...........................................34
4.6 月桂酸培養基降低大腸直腸癌細胞株細胞外訊號控制激酶(ERK1/2)表現 36
第五章 討論................................................38
5.1 大腸直腸癌細胞株的生長與月桂酸消耗..........................38
5.2 月桂酸誘導大腸直腸癌細胞株表現微型核糖核酸-378...............38
5.3大腸直腸癌經月桂酸培養基培養後對anti-EGFR抗體產生反應..........39
5.4 微型核醣核酸-378抑制細胞外訊號控制激酶(ERK)表現..............40
第六章 結論................................................42
參考文獻...................................................44
附錄......................................................51
主要耗材...................................................51
主要分析儀器................................................53


1.Center MM, Jemal A, Smith RA, Ward E: Worldwide Variations in Colorectal Cancer. Ca-Cancer J Clin 2009, 59(6):366-378.
2.國民健康局: 99年癌症登記報告. 2009.
3.Sameer AS: Colorectal cancer: molecular mutations and polymorphisms. Front Oncol 2013, 3:114.
4.Boland CR, Thibodeau SN, Hamilton SR, Sidransky D, Eshleman JR, Burt RW, Meltzer SJ, Rodriguez-Bigas MA, Fodde R, Ranzani GN et al: A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 1998, 58(22):5248-5257.
5.Yokota T: Are KRAS/BRAF mutations potent prognostic and/or predictive biomarkers in colorectal cancers? Anti-Cancer Agents in Medicinal Chemistry 2012, 12(2):9.
6.Arteaga C: Targeting HER1/EGFR: a molecular approach to cancer therapy. Seminars in Oncology 2003, 30(7):3-14.
7.Arteaga CL: Overview of epidermal growth factor receptor biology and its role as a therapeutic target in human neoplasia. Seminars in Oncology 2002, 29(5):3-9.
8.Calvert PM, Frucht H: The genetics of colorectal cancer. Ann Intern Med 2002, 137(7):603-612.
9.Dong C, Davis RJ, Flavell RA: MAP kinases in the immune response. Annu Rev Immunol 2002, 20:55-72.
10.Fang JY, Richardson BC: The MAPK signalling pathways and colorectal cancer. Lancet Oncol 2005, 6(5):322-327.
11.Watanabe M, Ishiwata T, Nishigai K, Moriyama Y, Asano G: Overexpression of keratinocyte growth factor in cancer cells and enterochromaffin cells in human colorectal cancer. Pathol Int 2000, 50(5):363-372.
12.Bos JL, Fearon ER, Hamilton SR, Verlaan-de Vries M, van Boom JH, van der Eb AJ, Vogelstein B: Prevalence of ras gene mutations in human colorectal cancers. Nature 1987, 327(6120):293-297.
13.Hagland HR, Berg M, Jolma IW, Carlsen A, Soreide K: Molecular Pathways and Cellular Metabolism in Colorectal Cancer. Dig Surg 2013, 30(1):12-25.
14.Watzinger F, Mayr B, Haring E, Lion T: High sequence similarity within ras exons 1 and 2 in different mammalian species and phylogenetic divergence of the ras gene family. Mamm Genome 1998, 9(3):214-219.
15.Donovan S, Shannon KM, Bollag G: GTPase activating proteins: critical regulators of intracellular signaling. Bba-Rev Cancer 2002, 1602(1):23-45.
16.Schubbert S, Shannon K, Bollag G: Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer 2007, 7(4):295-308.
17.Bazan V, Migliavacca M, Zanna I, Tubiolo C, Grassi N, Latteri MA, La Farina M, Albanese I, Dardanoni G, Salerno S et al: Specific codon 13 K-ras mutations are predictive of clinical outcome in colorectal cancer patients, whereas codon 12 K-ras mutations are associated with mucinous histotype. Ann Oncol 2002, 13(9):1438-1446.
18.Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W et al: Mutations of the BRAF gene in human cancer. Nature 2002, 417(6892):949-954.
19.Deng GR, Bell I, Crawley S, Gum J, Terdiman JP, Allen BA, Truta B, Sleisenger MH, Kim YS: BRAF mutation is frequently present in sporadic colorectal cancer with methylated hMLH1, but not in hereditary nonpolyposis colorectal cancer. Clin Cancer Res 2004, 10(1):191-195.
20.Friday BB, Adjei AA: K-ras as a target for cancer therapy. Bba-Rev Cancer 2005, 1756(2):127-144.
21.Douillard JY, Siena S, Cassidy J, Tabernero J, Burkes R, Barugel M, Humblet Y, Bodoky G, Cunningham D, Jassem J et al: Randomized, Phase III Trial of Panitumumab With Infusional Fluorouracil, Leucovorin, and Oxaliplatin (FOLFOX4) Versus FOLFOX4 Alone As First-Line Treatment in Patients With Previously Untreated Metastatic Colorectal Cancer: The PRIME Study. J Clin Oncol 2010, 28(31):4697-4705.
22.Van Cutsem E, Kohne CH, Lang I, Folprecht G, Nowacki MP, Cascinu S, Shchepotin I, Maurel J, Cunningham D, Tejpar S et al: Cetuximab Plus Irinotecan, Fluorouracil, and Leucovorin As First-Line Treatment for Metastatic Colorectal Cancer: Updated Analysis of Overall Survival According to Tumor KRAS and BRAF Mutation Status. J Clin Oncol 2011, 29(15):2011-2019.
23.Mosakhani N, Sarhadi VK, Borze I, Karjalainen-Lindsberg ML, Sundstrom J, Ristamaki R, Osterlund P, Knuutila S: MicroRNA Profiling Differentiates Colorectal Cancer According to KRAS Status. Gene Chromosome Canc 2012, 51(1):1-9.
24.Baldus SE, Schaefer KL, Engers R, Hartleb D, Stoecklein NH, Gabbert HE: Prevalence and Heterogeneity of KRAS, BRAF, and PIK3CA Mutations in Primary Colorectal Adenocarcinomas and Their Corresponding Metastases. Clin Cancer Res 2010, 16(3):790-799.
25.Rajagopalan H, Bardelli A, Lengauer C, Kinzler KW, Vogelstein B, Velculescu VE: Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature 2002, 418(6901):934.
26.Bartel DP: MicroRNAs: target recognition and regulatory functions. Cell 2009, 136(2):215-233.
27.Friedman RC, Farh KKH, Burge CB, Bartel DP: Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009, 19(1):92-105.
28.Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ: miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 2006, 34(Database issue):D140-144.
29.Berezikov E, Cuppen E, Plasterk RH: Approaches to microRNA discovery. Nat Genet 2006, 38 Suppl:S2-7.
30.Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M et al: A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 2007, 129(7):1401-1414.
31.Forman JJ, Coller HA: The code within the code MicroRNAs target coding regions. Cell Cycle 2010, 9(8):1533-1541.
32.Ambros V: The functions of animal microRNAs. Nature 2004, 431(7006):350-355.
33.McManus MT: MicroRNAs and cancer. Semin Cancer Biol 2003, 13(4):253-258.
34.Dalmay T, Edwards DR: MicroRNAs and the hallmarks of cancer. Oncogene 2006, 25(46):6170-6175.
35.van Kouwenhove M, Kedde M, Agami R: MicroRNA regulation by RNA-binding proteins and its implications for cancer. Nat Rev Cancer 2011, 11(9):644-656.
36.Pushparaj PN, Aarthi JJ, Manikandan J, Kumar SD: siRNA, miRNA, and shRNA: in vivo applications. J Dent Res 2008, 87(11):992-1003.
37.Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M et al: A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 2006, 103(7):2257-2261.
38.Meng F, Henson R, Wehbe-Janek H, Ghoshal K, Jacob ST, Patel T: MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 2007, 133(2):647-658.
39.Asangani IA, Rasheed SAK, Nikolova DA, Leupold JH, Colburn NH, Post S, Allgayer H: MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 2008, 27(15):2128-2136.
40.Gironella M, Seux M, Xie MJ, Cano C, Tomasini R, Gommeaux J, Garcia S, Nowak J, Yeung ML, Jeang KT et al: Tumor protein 53-induced nuclear protein 1 expression is repressed by miR-155, and its restoration inhibits pancreatic tumor development. Proc Natl Acad Sci U S A 2007, 104(41):16170-16175.
41.Shibuya H, Iinuma H, Shimada R, Horiuchi A, Watanabe T: Clinicopathological and Prognostic Value of MicroRNA-21 and MicroRNA-155 in Colorectal Cancer. Oncology-Basel 2010, 79(3-4):313-320.
42.Nishida N, Nagahara M, Sato T, Mimori K, Sudo T, Tanaka F, Shibata K, Ishii H, Sugihara K, Doki Y et al: Microarray Analysis of Colorectal Cancer Stromal Tissue Reveals Upregulation of Two Oncogenic miRNA Clusters. Clin Cancer Res 2012, 18(11):3054-3070.
43.Petrocca F, Vecchione A, Croce CM: Emerging Role of miR-106b-25/miR-17-92 Clusters in the Control of Transforming Growth Factor beta Signaling. Cancer Res 2008, 68(20):8191-8194.
44.Mendell JT: miRiad roles for the miR-17-92 cluster in development and disease. Cell 2008, 133(2):217-222.
45.Tsuchida A, Ohno S, Wu WH, Borjigin N, Fujita K, Aoki T, Ueda S, Takanashi M, Kuroda M: miR-92 is a key oncogenic component of the miR-17-92 cluster in colon cancer. Cancer Sci 2011, 102(12):2264-2271.
46.Motoyama K, Inoue H, Takatsuno Y, Tanaka F, Mimori K, Uetake H, Sugihara K, Mori M: Over- and under-expressed microRNAs in human colorectal cancer. Int J Oncol 2009, 34(4):1069-1075.
47.Schimanski CC, Frerichs K, Rahman F, Berger M, Lang H, Galle PR, Moehler M, Gockel I: High miR-196a levels promote the oncogenic phenotype of colorectal cancer cells. World J Gastroentero 2009, 15(17):2089-2096.
48.Slaby O, Svoboda M, Fabian P, Smerdova T, Knoflickova D, Bednarikova M, Nenutil R, Vyzula R: Altered expression of miR-21, miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer. Oncology-Basel 2007, 72(5-6):397-402.
49.Schee K, Fodstad O, Flatmark K: MicroRNAs as Biomarkers in Colorectal Cancer. Am J Pathol 2010, 177(4):1592-1599.
50.Zhou WW, Li XY, Liu F, Xiao ZM, He M, Shen SR, Liu SJ: MiR-135a promotes growth and invasion of colorectal cancer via metastasis suppressor 1 in vitro. Acta Bioch Bioph Sin 2012, 44(10):838-846.
51.Esquela-Kerscher A, Slack FJ: Oncomirs - microRNAs with a role in cancer. Nature Reviews Cancer 2006, 6(4):259-269.
52.Michael MZ, O''Connor SM, Pellekaan NGV, Young GP, James RJ: Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 2003, 1(12):882-891.
53.Xu Q, Liu LZ, Qian X, Chen Q, Jiang Y, Li D, Lai LH, Jiang BH: MiR-145 directly targets p70S6K1 in cancer cells to inhibit tumor growth and angiogenesis. Nucleic Acids Res 2012, 40(2):761-774.
54.Suzuki HI, Yamagata K, Sugimoto K, Iwamoto T, Kato S, Miyazono K: Modulation of microRNA processing by p53. Nature 2009, 460(7254):529-U111.
55.Tsuchiya N, Nakagama H: MicroRNA, SND1, and alterations in translational regulation in colon carcinogenesis. Mutat Res-Fund Mol M 2010, 693(1-2):94-100.
56.Li JA, Chen YX, Zhao JF, Kong FR, Zhang YD: miR-203 reverses chemoresistance in p53-mutated colon cancer cells through downregulation of Akt2 expression. Cancer Lett 2011, 304(1):52-59.
57.Diaz R, Silva J, Garcia JM, Lorenzo Y, Garcia V, Pena C, Rodriguez R, Munoz C, Garcia F, Bonilla F et al: Deregulated expression of miR-106a predicts survival in human colon cancer patients. Gene Chromosome Canc 2008, 47(9):794-802.
58.Kasinski AL, Slack FJ: MicroRNAs en route to the clinic: progress in validating and targeting microRNAs for cancer therapy. Nature Reviews Cancer 2011, 11(12):849-864.
59.Calin GA, Sevignani C, Dan Dumitru C, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M et al: Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 2004, 101(9):2999-3004.
60.Wang YX, Zhang XY, Zhang BF, Yang CQ, Chen XM, Gao HJ: Initial study of microRNA expression profiles of colonic cancer without lymph node metastasis. J Digest Dis 2010, 11(1):50-54.
61.陳俊蓉: KRAS/BRAF突變之大腸直腸癌患者可能的治療策略. 臺北: 國立臺北科技大學生物科技研究所; 2012.
62.Betel D, Wilson M, Gabow A, Marks DS, Sander C: The microRNA.org resource: targets and expression. Nucleic Acids Res 2008, 36(Database issue):D149-153.
63.Carrer M, Liu N, Grueter CE, Williams AH, Frisard MI, Hulver MW, Bassel-Duby R, Olson EN: Control of mitochondrial metabolism and systemic energy homeostasis by microRNAs 378 and 378*. Proc Natl Acad Sci U S A 2012, 109(38):15330-15335.
64.Nagalingam RS, Sundaresan NR, Gupta MP, Geenen DL, Solaro RJ, Gupta M: A cardiac-enriched microRNA, miR-378, blocks cardiac hypertrophy by targeting Ras signaling. J Biol Chem 2013, 288(16):11216-11232.
65.Ganesan J, Ramanujam D, Sassi Y, Ahles A, Jentzsch C, Werfel S, Leierseder S, Loyer X, Giacca M, Zentilin L et al: MiR-378 Controls Cardiac Hypertrophy by Combined Repression of Mitogen-Activated Protein Kinase Pathway Factors. Circulation 2013, 127(21):2097-2106.
66.Lee DY, Deng Z, Wang CH, Yang BB: MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proc Natl Acad Sci U S A 2007, 104(51):20350-20355.
67.Feng M, Li Z, Aau M, Wong CH, Yang X, Yu Q: Myc/miR-378/TOB2/cyclin D1 functional module regulates oncogenic transformation. Oncogene 2011, 30(19):2242-2251.
68.Feilchenfeldt J, Brundler MA, Soravia C, Totsch M, Meier CA: Peroxisome proliferator-activated receptors (PPARs) and associated transcription factors in colon cancer: reduced expression of PPARgamma-coactivator 1 (PGC-1). Cancer Lett 2004, 203(1):25-33.
69.Flicek P, Ahmed I, Amode MR, Barrell D, Beal K, Brent S, Carvalho-Silva D, Clapham P, Coates G, Fairley S et al: Ensembl 2013. Nucleic Acids Res 2013, 41(Database issue):D48-55.
70.Crunkhorn S, Dearie F, Mantzoros C, Gami H, da Silva WS, Espinoza D, Faucette R, Barry K, Bianco AC, Patti ME: Peroxisome proliferator activator receptor gamma coactivator-1 expression is reduced in obesity - Potential pathogenic role of saturated fatty acids and p38 mitogen-activated protein kinase activation. Journal of Biological Chemistry 2007, 282(21):15439-15450.
71.Lin J, Yang R, Tarr PT, Wu PH, Handschin C, Li S, Yang W, Pei L, Uldry M, Tontonoz P et al: Hyperlipidemic effects of dietary saturated fats mediated through PGC-1 beta coactivation of SREBP. Chem Phys Lipids 2005, 136(2):95-95.
72.Lin JD, Handschin C, Spiegelman BM: Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 2005, 1(6):361-370.
73.Gerin I, Bommer GT, McCoin CS, Sousa KM, Krishnan V, MacDougald OA: Roles for miRNA-378/378*in adipocyte gene expression and lipogenesis. Am J Physiol-Endoc M 2010, 299(2):E198-E206.
74.Kim YK, Kim VN: Processing of intronic microRNAs. Embo J 2007, 26(3):775-783.
75.Badman MK, Pissios P, Kennedy AR, Koukos G, Flier JS, Maratos-Flier E: Hepatic fibroblast growth factor 21 is regulated by PPAR alpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab 2007, 5(6):426-437.
76.Veloso D, Veech RL: Enzymatic determination of long-chain fatty acyl-CoA. Methods Enzymol 1975, 35:273-278.
77.Okabe H, Uji Y, Nagashima K, Noma A: Enzymic determination of free fatty acids in serum. Clin Chem 1980, 26(11):1540-1543.
78.Eichner LJ, Perry MC, Dufour CR, Bertos N, Park M, St-Pierre J, Giguere V: miR-378( *) mediates metabolic shift in breast cancer cells via the PGC-1beta/ERRgamma transcriptional pathway. Cell Metab 2010, 12(4):352-361.
79.Jump DB, Clarke SD: Regulation of gene expression by dietary fat. Annu Rev Nutr 1999, 19:63-90.
80.Munford RS, Hall CL: Detoxification of bacterial lipopolysaccharides (endotoxins) by a human neutrophil enzyme. Science 1986, 234(4773):203-205.
81.Kitchens RL, Ulevitch RJ, Munford RS: Lipopolysaccharide (LPS) partial structures inhibit responses to LPS in a human macrophage cell line without inhibiting LPS uptake by a CD14-mediated pathway. J Exp Med 1992, 176(2):485-494.
82.Gao M, Wang J, Lu N, Fang F, Liu J, Wong CW: Mitogen-activated protein kinase kinases promote mitochondrial biogenesis in part through inducing peroxisome proliferator-activated receptor gamma coactivator-1beta expression. Biochim Biophys Acta 2011, 1813(6):1239-1244.



電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊