跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/08 11:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉于榕
研究生(外文):Yu-Jung Liu
論文名稱:以電化學混凝浮除法去除水中非類固醇消炎藥之研究
論文名稱(外文):Removal of nonsteroidal anti-inflammatory drugs from water using electrochemical-coagulation-flotation process with aluminum electrodes
指導教授:胡景堯
指導教授(外文):Ching-Yao Hu
口試委員:劉雅瑄蘇千田
口試委員(外文):Ya Hsuan LiouChien-Tien Su
口試日期:2013-06-20
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:公共衛生學系暨研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:106
中文關鍵詞:電化學混凝浮除法陽離子界面活性劑 (CTAB)乙醯氨酚 (Acetaminophen)雙氯芬酸 (Diclofenac)布洛芬 (Ibuprofen)酮洛芬 (Ketoprofen)普生 (Naproxen)
外文關鍵詞:Electrocoagulation-flotationcethyltrimethylam monium bromide (CTAB)Nonsteroidal anti-inflammatory drugs (NSAIDs)AcetaminophenDiclofenacIbuprofenKetoprofenNaproxen
相關次數:
  • 被引用被引用:0
  • 點閱點閱:201
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,非類固醇消炎藥 (Nonsteroidal anti-inflammatory drugs, NSAIDs) 等新興污染物所造成的污染逐漸受到重視,而醫院廢水已被證實為河川及其他水體中藥物可能的主要來源之一。目前仍缺乏一種理想的方法能有效處理醫院廢水裡所含之所有藥物,主因是這些藥物種類太多,其物化及生物性質太複雜,故難以單一種處理機制去除全部藥物。本研究嘗試以電化學混凝浮除法處理含有使用量較多之非類固醇消炎藥─乙醯氨酚 (Acetaminophen)、雙氯芬酸 (Diclofenac)、布洛芬 (Ibuprofen)、酮洛芬 (Ketoprofen)、萘普生 (Naproxen) 之水樣,並就藥物種類特性、溶液的初始酸度、電流負荷量,並額外添加界面活性劑作為捕集劑及起泡劑,以提高藥物吸附量及浮除機制的去除效率等方面進行系統性探討,最後再處理另外嵌入非類固醇消炎藥之實廠廢水,以模擬非類固醇消炎藥在實廠廢水基質下之處理效果。研究結果顯示,在電化學混凝浮除過程中加入陽離子型界面活性劑─溴化十六烷三甲基銨 (Cethyltrimethylam monium bromide, CTAB) 可有效去除疏水性之非類固醇消炎藥 (如雙氯芬酸、布洛芬、酮洛芬、萘普生),而乙醯氨酚由於其親水性較高而無法被去除。陽離子型界面活性劑 (CTAB) 的理想添加濃度應與藥物初始濃度總和相同才會達到較佳的去除效果,此外,表面張力也會影響藥物的去除效果。未添加陽離子型界面活性劑 (CTAB) 時,在低電流負荷量下,以雙氯芬酸、酮洛芬及萘普生的去除效果較佳,推論此時反應以電混凝沉澱為主要去除機制;反之,在高電流負荷量下,以目標藥物中表面張力最小的布洛芬有較好的去除情形,此一結果指出反應可能以浮除為主要去除機制。當加入陽離子型界面活性劑 (CTAB) 後,電流密度越高,藥物的去除率越好,此時反應以浮除去除為主。而在實廠廢水處理實驗結果顯示,在醫院廢水中的有機雜質可能減少非類固醇消炎藥的去除效果。
Nonsteroidal anti-inflammatory drugs (NSAIDs) have recently been recognized as emerging contaminants in the aquatic environment. Due to the large variety of pharmaceutical compounds are used for medical purposes in hospitals, significant concentration of these compounds can be found in hospital wastewaters. However, conventional process in sewage treatment plants have been reported to be an ineffective barrier to these substances because of their complicated properties. In order to develope an promising way to remove the NSAIDs from sewage, a physico-chemical process, electrocoagulation-flotation has been assessed for enhancing the removal of some selected pharmaceuticals- acetaminophen, diclofenac, ibuprofen, ketoprofen and naproxen present in sewage. Cationic surfactant- cethyltrimethylam monium bromide (CTAB) was added during ECF process as a colloctor and frother, to improve drug adsorption and removal efficiency of flotation mechanism. The effect of initial pH, current density and operating time on the process were investigated. Moreover the real hospital wastewater spiked sample was also conducted to modify the real condition.
The results show that NSAIDs can be effectively removed by ECF process with addition of cetyltrimethylammonium bromide (CTAB), but acetaminophen, can not due to it’s high hydrophilic nature. The optimum concentration of CTAB should be equal to the sum of the initial concentration of NSAIDs. Furthermore, the surface tension influenced on the NSAIDs removal. Without the addition of CTAB, at low current intensity, diclofenac, ketoprofen and naproxen had better removal, presumably because the electrocoagulation was the main removal mechanism. On the contrary, at high current intensity, ibuprofen which has the smallest surface tension of the target pharmaceuticals had maximum removal, and this result implied the flotation was the main mechanism. The increase of current intensity leads to the increase of NSAIDs removal with the addition of CTAB and this result reveled the flotation was the main mechanism after the addition of CTAB. Finially, the result of spiked wastewater experiments suggested that the organic impurities in hospital wastewater may lead to the decrease of NSAIDs removal.
致謝 V
摘要 VI
ABSTRACT VII
目錄 IX
表目錄 XI
圖目錄 XII
第一章 緒論 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻探討 3
2.1 醫院廢水 3
2.1.1 醫院廢水的特性 5
2.1.2 醫院廢水對人體健康及環境生態的影響 12
2.2 醫院廢水處理技術 18
2.3 電化學混凝浮除法 24
2.3.1 電化學混凝浮除法原理 25
2.3.2 影響電混凝浮除法效果之主要參數 29
2.3.3 電化學混凝浮除法在藥物去除上之應用 32
2.4 界面活性劑之特性 34
2.4.1 界面活性劑之基本性質 34
第三章 研究方法及進行步驟 37
3.1 整體研究架構 37
3.1.1 背景實驗條件選擇 38
3.1.2 藥物種類實驗 39
3.1.3 界面活性劑添加實驗 40
3.1.4 表面張力分析 41
3.1.5 電流負荷實驗 42
3.1.6 初始酸度實驗 44
3.1.7 模擬實廠廢水處理實驗 45
3.2 實驗材料與分析方法 46
3.2.1 實驗材料 46
3.2.2 分析方法 51
3.2.3 品質管制 53
第四章 結果與討論 54
4.1 藥物種類實驗結果 54
4.1.1 單一藥物種類去除結果 54
4.1.2 混合藥物去除結果 55
4.2 界面活性劑添加實驗 57
4.2.1 界面活性劑濃度對電化學混凝浮除法去除單一藥物結果 57
4.2.2 界面活性劑濃度對電化學混凝浮除法去除混合藥物結果 58
4.2.3 界面活性劑影響電化學混凝浮除法去除藥物原因 61
4.2.4 小結 68
4.3 電流負荷實驗 69
4.3.1 電流負荷對電化學混凝浮除法去除藥物結果 69
4.3.2 合併界面活性劑及電流負荷共同影響結果 71
4.3.3 電流負荷影響電化學混凝浮除法去除藥物原因 73
4.3.4 小結 74
4.4 初始酸度實驗 75
4.4.1 初始酸度對電化學混凝浮除法去除藥物結果 75
4.4.2 初始酸度影響電化學混凝浮除去除藥物之原因 77
4.5 實廠廢水處理實驗 78
4.5.1 合併界面活性劑及電流負荷去除藥物結果 78
4.5.2 小結 82
第五章 結論與建議 83
5.1 結論 83
5.2 建議 85
第六章 參考文獻 86
1.Carballa, M., F. Omil, and J.M. Lema, Removal of cosmetic ingredients and pharmaceuticals in sewage primary treatment. Water Research, 2005. 39(19): p. 4790-4796.
2.Martins, A.F., C.A. Mallmann, D.R. Arsand, F.M. Mayer, and C.G.B. Brenner, Occurrence of the Antimicrobials Sulfamethoxazole and Trimethoprim in Hospital Effluent and Study of Their Degradation Products after Electrocoagulation. Clean-Soil Air Water, 2011. 39(1): p. 21-27.
3.Ternes, T.A., Occurrence of drugs in German sewage treatment plants and rivers. Water Research, 1998. 32(11): p. 3245-3260.
4.Choi, K., Y. Kim, J. Park, C.K. Park, M. Kim, H.S. Kim, and P. Kim, Seasonal variations of several pharmaceutical residues in surface water and sewage treatment plants of Han River, Korea. Science of the Total Environment, 2008. 405(1-3): p. 120-128.
5.Kolpin, D.W., E.T. Furlong, M.T. Meyer, E.M. Thurman, S.D. Zaugg, L.B. Barber, and H.T. Buxton, Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999-2000: A national reconnaissance, in Environmental Science & Technology2002. p. 1202-1211.
6.Gupta, P., N. Mathur, P. Bhatnagar, P. Nagar, and S. Srivastava, Genotoxicity evaluation of hospital wastewaters. Ecotoxicology and Environmental Safety, 2009. 72(7): p. 1925-1932.
7.Ferrari, B., N. Paxeus, R. Lo Giudice, A. Pollio, and J. Garric, Ecotoxicological impact of pharmaceuticals found in treated wastewaters: study of carbamazepine, clofibric acid, and diclofenac. Ecotoxicology and Environmental Safety, 2003. 55(3): p. 359-370.
8.Ferrari, B., R. Mons, B. Vollat, B. Fraysse, N. Paxeus, R. Lo Giudice, A. Pollio, and J. Garric, Environmental risk assessment of six human pharmaceuticals: Are the current environmental risk assessment procedures sufficient for the protection of the aquatic environment? Environmental Toxicology and Chemistry, 2004. 23(5): p. 1344-1354.
9.Adams, C., Y. Wang, K. Loftin, and M. Meyer, Removal of antibiotics from surface and distilled water in conventional water treatment processes. Journal of Environmental Engineering-Asce, 2002. 128(3): p. 253-260.
10.Stackelberg, P.E., J. Gibs, E.T. Furlong, M.T. Meyer, S.D. Zaugg, and R.L. Lippincott, Efficiency of conventional drinking-water-treatment processes in removal of pharmaceuticals and other organic compounds. Science of the Total Environment, 2007. 377(2-3): p. 255-272.
11.Mollah, M.Y.A., R. Schennach, J.R. Parga, and D.L. Cocke, Electrocoagulation (EC) - science and applications. Journal of Hazardous Materials, 2001. 84(1): p. 29-41.
12.Heberer, T., Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicology Letters, 2002. 131(1-2): p. 5-17.
13.Lishman, L., S.A. Smyth, K. Sarafin, S. Kleywegt, J. Toito, T. Peart, B. Lee, M. Servos, M. Beland, and P. Seto, Occurrence and reductions of pharmaceuticals and personal care products and estrogens by municipal wastewater treatment plants in Ontario, Canada. Science of the Total Environment, 2006. 367(2-3): p. 544-558.
14.Santos, J.L., I. Aparicio, and E. Alonso, Occurrence and risk assessment of pharmaceutically active compounds in wastewater treatment plants. A case study: Seville city (Spain). Environment International, 2007. 33(4): p. 596-601.
15.Terzić, S., I. Senta, M. Ahel, M. Gros, M. Petrović, D. Barcelo, J. Muller, T. Knepper, I. Marti, F. Ventura, P. Jovančić, and D. Jabučar, Occurrence and fate of emerging wastewater contaminants in Western Balkan Region. Science of The Total Environment, 2008. 399(1–3): p. 66-77.
16.Lin, A.Y.C. and Y.T. Tsai, Occurrence of pharmaceuticals in Taiwan''s surface waters: Impact of waste streams from hospitals and pharmaceutical production facilities. Science of the Total Environment, 2009. 407(12): p. 3793-3802.
17.Vieno, N., T. Tuhkanen, and L. Kronberg, Elimination of pharmaceuticals in sewage treatment plants in Finland. Water Research, 2007. 41(5): p. 1001-1012.
18.Thomas, K.V. and M.J. Hilton, The occurrence of selected human pharmaceutical compounds in UK estuaries. Marine Pollution Bulletin, 2004. 49(5–6): p. 436-444.
19.Kosma, C.I., D.A. Lambropoulou, and T.A. Albanis, Occurrence and removal of PPCPs in municipal and hospital wastewaters in Greece. Journal of Hazardous Materials, 2010. 179(1-3): p. 804-817.
20.Ziylan, A. and N.H. Ince, The occurrence and fate of anti-inflammatory and analgesic pharmaceuticals in sewage and fresh water: Treatability by conventional and non-conventional processes. Journal of Hazardous Materials, 2011. 187(1-3): p. 24-36.
21.Halling-Sorensen, B., S. Nors Nielsen, P.F. Lanzky, F. Ingerslev, H.C. Holten Lutzhoft, and S.E. Jorgensen, Occurrence, fate and effects of pharmaceutical substances in the environment- A review. Chemosphere, 1998. 36(2): p. 357-393.
22.Suarez, S., J.M. Lerna, and F. Omil, Pre-treatment of hospital wastewater by coagulation-flocculation and flotation. Bioresource Technology, 2009. 100(7): p. 2138-2146.
23.Langford, K.H. and K.V. Thomas, Determination of pharmaceutical compounds in hospital effluents and their contribution to wastewater treatment works. Environment International, 2009. 35(5): p. 766-770.
24.Sim, W.J., J.W. Lee, E.S. Lee, S.K. Shin, S.R. Hwang, and J.E. Oh, Occurrence and distribution of pharmaceuticals in wastewater from households, livestock farms, hospitals and pharmaceutical manufactures. Chemosphere, 2011. 82(2): p. 179-86.
25.Verlicchi, P., M. Al Aukidy, A. Galletti, M. Petrovic, and D. Barcelo, Hospital effluent: Investigation of the concentrations and distribution of pharmaceuticals and environmental risk assessment. Science of The Total Environment, 2012. 430(0): p. 109-118.
26.楊廷芬, 公共衛生護理學. 華騰文化股份有限公司, 2004.
27.Tsakona, M., E. Anagnostopoulou, and E. Gidarakos, Hospital waste management and toxicity evaluation: a case study. Waste Manag, 2007. 27(7): p. 912-20.
28.Emmanuel, E., Y. Perrodin, G. Keck, J.M. Blanchard, and P. Vermande, Ecotoxicological risk assessment of hospital wastewater: a proposed framework for raw effluents discharging into urban sewer network. Journal of Hazardous Materials, 2005. 117(1): p. 1-11.
29.Boillot, C., C. Bazin, F. Tissot-Guerraz, J. Droguet, M. Perraud, J.C. Cetre, D. Trepo, and Y. Perrodin, Daily physicochemical, microbiological and ecotoxicological fluctuations of a hospital effluent according to technical and care activities. Science of The Total Environment, 2008. 403(1–3): p. 113-129.
30.Lin, A.Y., T.H. Yu, and C.F. Lin, Pharmaceutical contamination in residential, industrial, and agricultural waste streams: risk to aqueous environments in Taiwan. Chemosphere, 2008. 74(1): p. 131-41.
31.Roberts, P.H. and K.V. Thomas, The occurrence of selected pharmaceuticals in wastewater effluent and surface waters of the lower Tyne catchment. Science of the Total Environment, 2006. 356(1-3): p. 143-53.
32.Yu, J.T., E.J. Bouwer, and M. Coelhan, Occurrence and biodegradability studies of selected pharmaceuticals and personal care products in sewage effluent. Agricultural Water Management, 2006. 86(1-2): p. 72-80.
33.Gomez, M.J., M. Petrovic, A.R. Fernandez-Alba, and D. Barcelo, Determination of pharmaceuticals of various therapeutic classes by solid-phase extraction and liquid chromatography-tandem mass spectrometry analysis in hospital effluent wastewaters. Journal of Chromatography A, 2006. 1114(2): p. 224-233.
34.Spongberg, A.L., J.D. Witter, J. Acuna, J. Vargas, M. Murillo, G. Umana, E. Gomez, and G. Perez, Reconnaissance of selected PPCP compounds in Costa Rican surface waters. Water Research, 2011. 45(20): p. 6709-17.
35.Wiegel, S., A. Aulinger, R. Brockmeyer, H. Harms, J. Loffler, H. Reincke, R. Schmidt, B. Stachel, W. von Tumpling, and A. Wanke, Pharmaceuticals in the river Elbe and its tributaries. Chemosphere, 2004. 57(2): p. 107-126.
36.Miege, C., J.M. Choubert, L. Ribeiro, M. Eusebe, and M. Coquery, Fate of pharmaceuticals and personal care products in wastewater treatment plants - Conception of a database and first results. Environmental Pollution, 2009. 157(5): p. 1721-1726.
37.Stumpf, M., T.A. Ternes, R.-D. Wilken, R. Silvana Vianna, and W. Baumann, Polar drug residues in sewage and natural waters in the state of Rio de Janeiro, Brazil. Science of The Total Environment, 1999. 225(1–2): p. 135-141.
38.Matamoros, V., J. Garcia, and J.M. Bayona, Organic micropollutant removal in a full-scale surface flow constructed wetland fed with secondary effluent. Water Research, 2008. 42(3): p. 653-660.
39.Ollers, S., H.P. Singer, P. Fassler, and S.R. Muller, Simultaneous quantification of neutral and acidic pharmaceuticals and pesticides at the low-ng/1 level in surface and waste water. Journal of Chromatography A, 2001. 911(2): p. 225-234.
40.Clara, M., B. Strenn, O. Gans, E. Martinez, N. Kreuzinger, and H. Kroiss, Removal of selected pharmaceuticals, fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants. Water Research, 2005. 39(19): p. 4797-4807.
41.Kim, S.D., J. Cho, I.S. Kim, B.J. Vanderford, and S.A. Snyder, Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water Research, 2007. 41(5): p. 1013-1021.
42.Kimura, K., H. Hara, and Y. Watanabe, Elimination of Selected Acidic Pharmaceuticals from Municipal Wastewater by an Activated Sludge System and Membrane Bioreactors. Environmental Science & Technology, 2007. 41(10): p. 3708-3714.
43.林郁真、林正芳、康佩群, 水中醫藥類及其代謝之殘留化學物質之檢測技術建立研究(2/4). 行政院環境保護署環境檢驗所, 2008.
44.Jones, O.A.H., N. Voulvoulis, and J.N. Lester, Aquatic environmental assessment of the top 25 English prescription pharmaceuticals. Water Research, 2002. 36(20): p. 5013-5022.
45.Fent, K., A.A. Weston, and D. Caminada, Ecotoxicology of human pharmaceuticals. Aquatic Toxicology, 2006. 76(2): p. 122-159.
46.Nikolaou, A., S. Meric, and D. Fatta, Occurrence patterns of pharmaceuticals in water and wastewater environments. Anal Bioanal Chem, 2007. 387(4): p. 1225-34.
47.Tambosi, J.L., L.Y. Yamanaka, H.J. Jose, R.d.F.P.M. Moreira, and H.F. Schroder, Recent research data on the removal of pharmaceuticals from sewage treatment plants (STP). Quimica Nova, 2010. 33: p. 411-420.
48.Tauxe-Wuersch, A., L.F. De Alencastro, D. Grandjean, and J. Tarradellas, Occurrence of several acidic drugs in sewage treatment plants in Switzerland and risk assessment. Water Research, 2005. 39(9): p. 1761-1772.
49.Hernando, M.D., M. Mezcua, A.R. Fernandez-Alba, and D. Barcelo, Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta, 2006. 69(2): p. 334-342.
50.Emmanuel, E., G. Keck, J.-M. Blanchard, P. Vermande, and Y. Perrodin, Toxicological effects of disinfections using sodium hypochlorite on aquatic organisms and its contribution to AOX formation in hospital wastewater. Environment International, 2004. 30(7): p. 891-900.
51.Gautam, A.K., S. Kumar, and P.C. Sabumon, Preliminary study of physico-chemical treatment options for hospital wastewater. Journal of Environmental Management, 2007. 83(3): p. 298-306.
52.Ferrari, B., N. Paxeus, R.L. Giudice, A. Pollio, and J. Garric, Ecotoxicological impact of pharmaceuticals found in treated wastewaters: study of carbamazepine, clofibric acid, and diclofenac. Ecotoxicology and Environmental Safety, 2003. 55: p. 359–370.
53.Carlsson, C., A.-K. Johansson, G. Alvan, K. Bergman, and T. Kuhler, Are pharmaceuticals potent environmental pollutants? Part I: Environmental risk assessments of selected active pharmaceutical ingredients. Science of the Total Environment, 2006. 364: p. 67–87.
54.Sanderson, H., D.J. Johnson, C.J. Wilson, R.A. Brain, and S.K. R., Probabilistic hazard assessment of environmentally occurring pharmaceuticals toxicity to fish, daphnids and algae by ECOSAR screening. Toxicol Lett., 2003. 144: p. 383-395.
55.Prevention, U.S.E.P.A.O.o.C.S.a.P., Sustainable Futures / P2 Framework Manual, U.S.E.P.A.O.o.C.S.a.P. Prevention, Editor 2012. p. 6-12.
56.Escher, B.I., R. Baumgartner, M. Koller, K. Treyer, J. Lienert, and C.S. McArdell, Environmental toxicology and risk assessment of pharmaceuticals from hospital wastewater. Water Research, 2011. 45(1): p. 75-92.
57.Boleda, M.R., M.T. Galceran, and F. Ventura, Behavior of pharmaceuticals and drugs of abuse in a drinking water treatment plant (DWTP) using combined conventional and ultrafiltration and reverse osmosis (UF/RO) treatments. Environmental Pollution, 2011. 159(6): p. 1584-1591.
58.Fatta, D., A. Achilleos, A. Nikolaou, and S. Meric, Analytical methods for tracing pharmaceutical residues in water and wastewater. TrAC Trends in Analytical Chemistry, 2007. 26(6): p. 515-533.
59.De Witte, B., H. Van Langenhove, K. Demeestere, K. Saerens, P. De Wispelaere, and J. Dewulf, Ciprofloxacin ozonation in hospital wastewater treatment plant effluent: Effect of pH and H2O2. Chemosphere, 2010. 78(9): p. 1142-1147.
60.Mendez-Arriaga, F., S. Esplugas, and J. Gimenez, Photocatalytic degradation of non-steroidal anti-inflammatory drugs with TiO2 and simulated solar irradiation. Water Research, 2008. 42(3): p. 585-594.
61.Emamjomeh, M.M. and M. Sivakumar, Review of pollutants removed by electrocoagulation and electrocoagulation/flotation processes. Journal of Environmental Management, 2009. 90(5): p. 1663-1679.
62.Mollah, M.Y.A., P. Morkovsky, J.A.G. Gomes, M. Kesmez, J. Parga, and D.L. Cocke, Fundamentals, present and future perspectives of electrocoagulation. Journal of Hazardous Materials, 2004. 114(1–3): p. 199-210.
63.胡景堯, 電膠羽浮除法去除廢水中氟離子之研究. 國立臺灣大學環境工程學研究所, 2005: p. 24-51.
64.Holt, P.K., G.W. Barton, M. Wark, and C.A. Mitchell, A quantitative comparison between chemical dosing and electrocoagulation. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2002. 211(2-3): p. 233-248.
65.Abdelwahab, O., N.K. Amin, and E.S.Z. El-Ashtoukhy, Electrochemical removal of phenol from oil refinery wastewater. Journal of Hazardous Materials, 2009. 163(2-3): p. 711-716.
66.Ren, M.J., Y.H. Song, S.H. Xiao, P. Zeng, and J.F. Peng, Treatment of berberine hydrochloride wastewater by using pulse electro-coagulation process with Fe electrode. Chemical Engineering Journal, 2011. 169(1-3): p. 84-90.
67.Holt, P.K., G.W. Barton, and C.A. Mitchell, The future for electrocoagulation as a localised water treatment technology. Chemosphere, 2005. 59(3): p. 355-367.
68.Rodrigues, R.T. and J. Rubio, New basis for measuring the size distribution of bubbles. Minerals Engineering, 2003. 16(8): p. 757-765.
69.Chou, W.L., C.T. Wang, and K.Y. Huang, Effect of operating parameters on indium (III) ion removal by iron electrocoagulation and evaluation of specific energy consumption. Journal of Hazardous Materials, 2009. 167(1-3): p. 467-474.
70.Sires, I. and E. Brillas, Remediation of water pollution caused by pharmaceutical residues based on electrochemical separation and degradation technologies: A review. Environment International, 2012. 40: p. 212-229.
71.Hu, C.Y., S.L. Lo, C.M. Li, and W.H. Kuan, Treating chemical mechanical polishing (CMP) wastewater by electro-coagulation-flotation process with surfactant. Journal of Hazardous Materials, 2005. 120(1-3): p. 15-20.
72.顏肖慈、羅明道, 界面化學. 化學工業出版社, 2005.
73.Teixeira, S., C. Delerue-Matos, A. Alves, and L. Santos, Fast screening procedure for antibiotics in wastewaters by direct HPLC-DAD analysis. Journal of Separation Science, 2008. 31(16-17): p. 2924-2931.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊