(18.210.12.229) 您好!臺灣時間:2021/03/05 11:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:柯品臣
研究生(外文):Pin-Chen Ko
論文名稱:人類MCPIP1抗A型流感病毒感染機制之研究
論文名稱(外文):The study of the antiviral mechanism of MCPIP1 against influenza A virus infection
指導教授:梁有志梁有志引用關係
口試委員:林宜玲葉添順林時宜
口試日期:2013-07-12
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:醫學檢驗暨生物技術學系
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:64
中文關鍵詞:MCPIP1A型流感病毒
外文關鍵詞:MCPIP1influenza A virus
相關次數:
  • 被引用被引用:0
  • 點閱點閱:19
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Monocyte chemotactic protein-1-induced protein 1 (MCPIP1),也被稱為Zc3h12a,在負向調控發炎反應上扮演一個重要的角色。MCPIP1 蛋白質包含著高度保存性的CCCH-type zinc finger domain 與Nedd4-BP1, YacP Nuclease(NYN) domain,分別具有RNA binding、ribonuclease (RNase) activity 及deubiquitinase (DUB) function 的特性。過去文獻指出,人類MCPIP1 蛋白質展現廣泛抑制多種RNA及DNA病毒感染的能力,包括Japanese encephalitis virus(JEV)、Dengue fever virus 2 (DEN-2)、sindbis virus、encephalomyocarditis virus及adenovirus。在本篇研究中,人類MCPIP1 蛋白質可以抑制A 型流感病毒(influenza virus; IAV)的感染。進一步利用不同MCPIP1 蛋白質突變型探討MCPIP1 各功能性domain 是否參與對抗IAV 感染的機制,不具RNase 及DUB功能的突變型MCPIP1 (D141N)、RNase (+)/DUB (-)的MCPIP1 (C157A)及RNase (-)/DUB (+)的MCPIP1 (D225/226A)皆失去抑制A 型流感病毒感染的能力。在CCCH type Zinc finger domain 發生突變的五種突變型中,西方墨點法顯示MCPIP1 (C306R)、(C312R)、(C318R)、(H322R)及(Δ305-325)皆無法抑制
A 型流感病毒的感染,但在病毒效價測定的結果中,MCPIP1 (C306R)、(C318R)及(H322R)仍保有抑制病毒複製的能力。proline-rich domain 缺失的突變型MCPIP1 (Δ458-536)不具有抑制A 型流感病毒感染的能力。而in vitro cleavage assay 的結果顯示,MCPIP1 蛋白質的RNase 活性無法降解IAV 的八段cRNA。A 型流感病毒感染A549 細胞會引誘proinflammatory molecules 的產生,但不會大量引發內生性MCPIP1 表現。綜合我們的實驗結果,在MCPIP1 蛋白質抑制A 型流感病毒感染過程中,需要RNase activity 及DUB function 同時存在,而RNA binding 及oligomerization 能力也參與其中。
摘要 V
Abstract VI
第一章 緒論 (Introduciton) 1
壹、流行性感冒病毒 (Influenza virus) 1
一、流行性感冒病毒之流行病學 1
二、流行性感冒病毒之分類 1
三、 A 型流行性感冒病毒構造及基因簡介 1
四、 A 型流行性感冒蛋白質功能簡介 3
五、流行性感冒病毒生活史 5
貳、 Monocyte chemotactic protein-induced protein 1 (MCPIP1) 6
一、 MCPIP1 簡介 6
二、 MCPIP1 分子結構 6
三、 MCPIP1 功能 7
參、研究動機 7
第二章 材料與方法 (Materials and methods) 9
壹、材料 9
一、病毒株 9
二、細胞株 9
三、抗體 9
貳、實驗方法 10
一、流感病毒的效價(titer)測定 10
二、質體構築 10
三、西方墨點法 (Western blot) 11
四、免疫螢光染色法 (Immunofluorescence assay) 12
五、即時定量反轉錄聚合酵素連結反應 (Real-time RT-Polymerase Chain
Reaction) 13
六、蛋白質萃取與純化 (protein extraction and purification) 13
七、 In vitro transcription 14
八、 In vitro RNA cleavage assay 14
第三章 實驗結果 15
一、 MCPIP1 蛋白質抑制A 型流感病毒之感染 15
二、突變型MCPIP1 (D141N)蛋白質無法抑制A 型流感病毒之感染 15
三、突變型MCPIP1 (C157A)及 MCPIP1 (D225/226A)無法抑制IAV 的感染16
四、 MCPIP1 蛋白質無法降解IAV 的complementary RNA (cRNA) 17
五、 MCPIP1 抑制IAV 的感染可能需要RNA 結合能力的參與 18
六、 MCPIP1 抑制IAV 的感染需要oligomerization 功能的參與 19
七、 IAV 感染引發細胞內TNF-a、MCP-1、IL-6 表,但卻無法有效誘導MCPIP1 的表現 19
第四章 討論 21
第五章 參考文獻(References) 25
第六章 目次圖表 (Figures list) 34
Figure 1. The construct of human monocyte chemotectic protein 1-induced protein
1 (MCPIP1) 34
Figure 2. The construct of human MCPIP1 mutant (Δ458-536) 35
Figure 3. The construction of human MCPIP1 CCCH-type Zinc finger domain mutant (C312R) 36
Figure 4. The construct of human MCPIP1 CCCH-type Zinc finger domain mutant
(C318R) 37
Figure 5. The construct of human MCPIP1 CCCH-type Zinc finger domain mutant
(H322R) 38
Figure 6. The construct of Flu-PB2-BamHI 39
Figure 7. The construct of Flu-PB1-HindIII 40
Figure 8. The construct of Flu-PA-AgeI 41
Figure 9. The construct of Flu-HA-AgeI 42
Figure 10.The construct of Flu-NP-AgeI 43
Figure 11.The construct of Flu-NA-HpaI 44
Figure 12.The construct of Flu-M-AgeI 45
Figure 13.The construct of Flu-NS-AgeI 46
Figure 14.The human monocyte chemoattractant protein 1-induced protein 1 (MCPIP1) exhibits potent antiviral activity against IAV and human MCPIP1 (D141N)
mutant lost its antiviral effect against IAV. 47
Figure 15.Human MCPIP1 (D141N) mutant lost its antiviral effect against IAV. 48
Figure 16.Human MCPIP1 (C157A) and MCPIP1 (D225/226) mutants lost their antiviral effect against IAV. 49
Figure 17.Human MCPIP1 did not degrade IAV complementary RNA. 50
Figure 18.CCCH-type Zinc finger domain mutant MCPIP1 proteins have different
effect on IAV infection. 51
Figure 19.The proline-rich domain of human MCPIP1 is essential for its anti-IAV
activity. 52
Figure 20.Expression of human MCP-1, IL-6 and TNF-α are induced by IAV infection in A549 cells, but not MCPIP1. 53
TABLE 1. Summary of the function and anti-IAV activity of MCPIP1 mutants 54
1. P. Palese, Influenza: old and new threats. Nat Med 10, S82 (Dec, 2004).
2. R. J. Webby, R. G. Webster, Are we ready for pandemic influenza? Science 302, 1519 (Nov 28, 2003).
3. B. Krossoy, I. Hordvik, F. Nilsen, A. Nylund, C. Endresen, The putative polymerase sequence of infectious salmon anemia virus suggests a new genus within the Orthomyxoviridae. J Virol 73, 2136 (Mar, 1999).
4. R. A. LAMB, R.M. KRUG., Orthomyxoviridae: the viruses and their replication. P. M. H. D.M. Knipe, , Eds., Fields Virology. (ed. 4, 2001), vol. 1.
5. U. Desselberger, V. R. Racaniello, J. J. Zazra, P. Palese, The 3'' and 5''-terminal sequences of influenza A, B and C virus RNA segments are highly conserved and show partial inverted complementarity. Gene 8, 315 (Feb, 1980).
6. C. W. POTTER, Chronicle of influenza pandemics. K.G. Nicholson, R.G. Webster, A. J. Hay, Eds., Textbook of Influenza. (Blackwell Science., Oxford, UK., 1998).
7. R. A. Fouchier et al., Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. J Virol 79, 2814 (Mar, 2005).
8. W. G. Laver, P. M. Colman, R. G. Webster, V. S. Hinshaw, G. M. Air, Influenza virus neuraminidase with hemagglutinin activity. Virology 137, 314 (Sep, 1984).
9. T. ITO, Y. KAWAOKA., Avian influenza. K. G. Nicholson, R. G. Webster, A. J. Hay, Eds., Textbook of Influenza. (Blackwell Science., Oxford, UK., 1998).
10. E. C. Claas et al., Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. Lancet 351, 472 (Feb 14, 1998).
11. R. A. Fouchier et al., Avian influenza A virus (H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome. Proc Natl Acad Sci U S A 101, 1356 (Feb 3, 2004).
12. Y. Guan, K. F. Shortridge, S. Krauss, R. G. Webster, Molecular characterization of H9N2 influenza viruses: were they the donors of the "internal" genes of H5N1 viruses in Hong Kong? Proc Natl Acad Sci U S A 96, 9363 (Aug 3, 1999).
13. Y. Guan et al., Reassortants of H5N1 influenza viruses recently isolated from aquatic poultry in Hong Kong SAR. Avian Dis 47, 911 (2003).
14. K. Subbarao et al., Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness. Science 279, 393 (Jan 16, 1998).
15. K. Y. Yuen et al., Clinical features and rapid viral diagnosis of human disease associated with avian influenza A H5N1 virus. Lancet 351, 467 (Feb 14, 1998).
16. L. H. Pinto, L. J. Holsinger, R. A. Lamb, Influenza virus M2 protein has ion channel activity. Cell 69, 517 (May 1, 1992).
17. C. Wang, R. A. Lamb, L. H. Pinto, Direct measurement of the influenza A virus M2 protein ion channel activity in mammalian cells. Virology 205, 133 (Nov 15, 1994).
18. R. W. Ruigrok, L. J. Calder, S. A. Wharton, Electron microscopy of the influenza virus submembranal structure. Virology 173, 311 (Nov, 1989).
19. R. A. Lamb, P. W. Choppin, The gene structure and replication of influenza virus. Annu Rev Biochem 52, 467 (1983).
20. P. A. Jennings, J. T. Finch, G. Winter, J. S. Robertson, Does the higher order structure of the influenza virus ribonucleoprotein guide sequence rearrangements in influenza viral RNA? Cell 34, 619 (Sep, 1983).
21. M. T. Hsu, J. D. Parvin, S. Gupta, M. Krystal, P. Palese, Genomic RNAs of influenza viruses are held in a circular conformation in virions and in infected cells by a terminal panhandle. Proc Natl Acad Sci U S A 84, 8140 (Nov, 1987).
22. K. Klumpp, R. W. Ruigrok, F. Baudin, Roles of the influenza virus polymerase and nucleoprotein in forming a functional RNP structure. EMBO J 16, 1248 (Mar 17, 1997).
23. K. G. Murti, R. G. Webster, I. M. Jones, Localization of RNA polymerases on influenza viral ribonucleoproteins by immunogold labeling. Virology 164, 562 (Jun, 1988).
24. J. C. Richardson, R. K. Akkina, NS2 protein of influenza virus is found in purified virus and phosphorylated in infected cells. Arch Virol 116, 69 (1991).
25. J. Yasuda, S. Nakada, A. Kato, T. Toyoda, A. Ishihama, Molecular assembly of influenza virus: association of the NS2 protein with virion matrix. Virology 196, 249 (Sep, 1993).
26. R. E. O''Neill, J. Talon, P. Palese, The influenza virus NEP (NS2 protein) mediates the nuclear export of viral ribonucleoproteins. EMBO J 17, 288 (Jan 2, 1998).
27. P. Palese, The genes of influenza virus. Cell 10, 1 (Jan, 1977).
28. A. Honda, K. Mizumoto, A. Ishihama, Minimum molecular architectures for transcription and replication of the influenza virus. Proc Natl Acad Sci U S A 99, 13166 (Oct 1, 2002).
29. T. S. Huang, P. Palese, M. Krystal, Determination of influenza virus proteins required for genome replication. J Virol 64, 5669 (Nov, 1990).
30. B. Perales, J. Ortin, The influenza A virus PB2 polymerase subunit is required for the replication of viral RNA. J Virol 71, 1381 (Feb, 1997).
31. M. Hatta, P. Gao, P. Halfmann, Y. Kawaoka, Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses. Science 293, 1840 (Sep 7, 2001).
32. T. Toyoda, D. M. Adyshev, M. Kobayashi, A. Iwata, A. Ishihama, Molecular assembly of the influenza virus RNA polymerase: determination of the subunit-subunit contact sites. J Gen Virol 77 ( Pt 9), 2149 (Sep, 1996).
33. E. Poole, D. Elton, L. Medcalf, P. Digard, Functional domains of the influenza A virus PB2 protein: identification of NP- and PB1-binding sites. Virology 321, 120 (Mar 30, 2004).
34. J. Mukaigawa, D. P. Nayak, Two signals mediate nuclear localization of influenza virus (A/WSN/33) polymerase basic protein 2. J Virol 65, 245 (Jan, 1991).
35. I. M. Jones, P. A. Reay, K. L. Philpott, Nuclear location of all three influenza polymerase proteins and a nuclear signal in polymerase PB2. EMBO J 5, 2371 (Sep, 1986).
36. S. de la Luna, C. Martinez, J. Ortin, Molecular cloning and sequencing of influenza virus A/Victoria/3/75 polymerase genes: sequence evolution and prediction of possible functional domains. Virus Res 13, 143 (Jun, 1989).
37. K. Masunaga, K. Mizumoto, H. Kato, A. Ishihama, T. Toyoda, Molecular mapping of influenza virus RNA polymerase by site-specific antibodies. Virology 256, 130 (Mar 30, 1999).
38. K. Yamanaka, A. Ishihama, K. Nagata, Reconstitution of influenza virus RNA-nucleoprotein complexes structurally resembling native viral ribonucleoprotein cores. The Journal of biological chemistry 265, 11151 (Jul 5, 1990).
39. D. Blaas, E. Patzelt, E. Kuechler, Identification of the cap binding protein of influenza virus. Nucleic acids research 10, 4803 (Aug 11, 1982).
40. J. Braam, I. Ulmanen, R. M. Krug, Molecular model of a eucaryotictranscription complex: functions and movements of influenza P proteins during capped RNA-primed transcription. Cell 34, 609 (Sep, 1983).
41. I. Ulmanen, B. A. Broni, R. M. Krug, Role of two of the influenza virus core P proteins in recognizing cap 1 structures (m7GpppNm) on RNAs and in initiating viral RNA transcription. Proc Natl Acad Sci U S A 78, 7355 (Dec, 1981).
42. I. Ulmanen, B. Broni, R. M. Krug, Influenza virus temperature-sensitive cap (m7GpppNm)-dependent endonuclease. J Virol 45, 27 (Jan, 1983).
43. S. J. Plotch, M. Bouloy, I. Ulmanen, R. M. Krug, A unique cap(m7GpppXm)-dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription. Cell 23, 847 (Mar, 1981).
44. L. Shi, D. F. Summers, Q. Peng, J. M. Galarz, Influenza A virus RNA polymerase subunit PB2 is the endonuclease which cleaves host cell mRNA and functions only as the trimeric enzyme. Virology 208, 38 (Apr 1, 1995).
45. M. Bouloy, S. J. Plotch, R. M. Krug, Both the 7-methyl and the 2''-O-methyl groups in the cap of mRNA strongly influence its ability to act as primer for influenza virus RNA transcription. Proc Natl Acad Sci U S A 77, 3952 (Jul, 1980).
46. R. M. Krug, B. A. Broni, M. Bouloy, Are the 5'' ends of influenza viral mRNAs synthesized in vivo donated by host mRNAs? Cell 18, 329 (Oct, 1979).
47. S. J. Plotch, M. Bouloy, R. M. Krug, Transfer of 5''-terminal cap of globin mRNA to influenza viral complementary RNA during transcription in vitro. Proc Natl Acad Sci U S A 76, 1618 (Apr, 1979).
48. O. Poch, I. Sauvaget, M. Delarue, N. Tordo, Identification of four conserved motifs among the RNA-dependent polymerase encoding elements. EMBO J 8, 3867 (Dec 1, 1989).
49. Y. Asano, A. Ishihama, Identification of two nucleotide-binding domains on the PB1 subunit of influenza virus RNA polymerase. J Biochem 122, 627 (Sep, 1997).
50. E. Fodor, B. L. Seong, G. G. Brownlee, Photochemical cross-linking of influenza A polymerase to its virion RNA promoter defines a polymerase binding site at residues 9 to 12 of the promoter. J Gen Virol 74 ( Pt 7), 1327 (Jul,1993).
51. E. Fodor, D. C. Pritlove, G. G. Brownlee, The influenza virus panhandle is involved in the initiation of transcription. J Virol 68, 4092 (Jun, 1994).
52. P. Digard, V. C. Blok, S. C. Inglis, Complex formation between influenza virus polymerase proteins expressed in Xenopus oocytes. Virology 171,
162 (Jul, 1989).
53. A. Nieto, S. de la Luna, J. Barcena, A. Portela, J. Ortin, Complex structure of the nuclear translocation signal of influenza virus polymerase PA subunit. J Gen Virol 75 ( Pt 1), 29 (Jan, 1994).
54. J. J. Sanz-Ezquerro, S. de la Luna, J. Ortin, A. Nieto, Individual expression of influenza virus PA protein induces degradation of coexpressed proteins. J Virol 69, 2420 (Apr, 1995).
55. D. A. STEINHAUER, S.A.WHARTON., Structure and function of the haemagglutinin. K. G. Nicholson, R.G.Webster, A. J. Hay, Eds., Textbook of Influenza. (Blackwell Science., Oxford, UK., ed. 54-64, 1998).
56. C. Albo, A. Valencia, A. Portela, Identification of an RNA binding region within the N-terminal third of the influenza A virus nucleoprotein. J Virol 69, 3799 (Jun, 1995).
57. M. Kobayashi, T. Toyoda, D. M. Adyshev, Y. Azuma, A. Ishihama, Molecular dissection of influenza virus nucleoprotein: deletion mapping of the RNA binding domain. J Virol 68, 8433 (Dec, 1994).
58. G. I. Shapiro, R. M. Krug, Influenza virus RNA replication in vitro: synthesis of viral template RNAs and virion RNAs in the absence of an added primer. J Virol 62, 2285 (Jul, 1988).
59. A. R. Beaton, R. M. Krug, Transcription antitermination during influenza viral template RNA synthesis requires the nucleocapsid protein and the absence of a 5'' capped end. Proc Natl Acad Sci U S A 83, 6282 (Sep, 1986).
60. S. K. Biswas, P. L. Boutz, D. P. Nayak, Influenza virus nucleoprotein interacts with influenza virus polymerase proteins. J Virol 72, 5493 (Jul, 1998).
61. I. Mena et al., Mutational analysis of influenza A virus nucleoprotein: identification of mutations that affect RNA replication. J Virol 73, 1186 (Feb, 1999).
62. K. Martin, A. Helenius, Nuclear transport of influenza virus ribonucleoproteins: the viral matrix protein (M1) promotes export and inhibits import. Cell 67, 117 (Oct 4, 1991).
63. R. E. O''Neill, R. Jaskunas, G. Blobel, P. Palese, J. Moroianu, Nuclear import of influenza virus RNA can be mediated by viral nucleoprotein and transport factors required for protein import. The Journal ofbiological chemistry 270, 22701 (Sep 29, 1995).
64. G. Whittaker, M. Bui, A. Helenius, Nuclear trafficking of influenza virus ribonuleoproteins in heterokaryons. J Virol 70, 2743 (May, 1996).
65. G. Neumann, M. R. Castrucci, Y. Kawaoka, Nuclear import and export of influenza virus nucleoprotein. J Virol 71, 9690 (Dec, 1997).
66. S. Li, J. Schulman, S. Itamura, P. Palese, Glycosylation of neuraminidase determines the neurovirulence of influenza A/WSN/33 virus. J Virol 67, 6667 (Nov, 1993).
67. P. Palese, K. Tobita, M. Ueda, R. W. Compans, Characterization of temperature sensitive influenza virus mutants defective in neuraminidase. Virology 61, 397 (Oct, 1974).
68. P. Palese, R. W. Compans, Inhibition of influenza virus replication in tissue culture by 2-deoxy-2,3-dehydro-N-trifluoroacetylneuraminic acid (FANA): mechanism of action. J Gen Virol 33, 159 (Oct, 1976).
69. R. W. Ruigrok et al., Membrane interaction of influenza virus M1 protein. Virology 267, 289 (Feb 15, 2000).
70. Z. Ye, D. Robinson, R. R. Wagner, Nucleus-targeting domain of the matrix protein (M1) of influenza virus. J Virol 69, 1964 (Mar, 1995).
71. C. Elster et al., A small percentage of influenza virus M1 protein contains zinc but zinc does not influence in vitro M1-RNA interaction. J Gen Virol 75 ( Pt 1), 37 (Jan, 1994).
72. L. Wakefield, G. G. Brownlee, RNA-binding properties of influenza A virus matrix protein M1. Nucleic acids research 17, 8569 (Nov 11, 1989).
73. Z. P. Ye, N. W. Baylor, R. R. Wagner, Transcription-inhibition and RNA-binding domains of influenza A virus matrix protein mapped with anti-idiotypic antibodies and synthetic peptides. J Virol 63, 3586 (Sep, 1989).
74. M. Bui, G. Whittaker, A. Helenius, Effect of M1 protein and low pH on nuclear transport of influenza virus ribonucleoproteins. J Virol 70, 8391 (Dec, 1996).
75. K. Watanabe, H. Handa, K. Mizumoto, K. Nagata, Mechanism for inhibition of influenza virus RNA polymerase activity by matrix protein. J Virol 70, 241 (Jan, 1996).
76. R. A. Lamb, S. L. Zebedee, C. D. Richardson, Influenza virus M2 protein is an integral membrane protein expressed on the infected-cell surface. Cell 40, 627 (Mar, 1985).
77. F. Ciampor, C. A. Thompson, S. Grambas, A. J. Hay, Regulation of pHby the M2 protein of influenza A viruses. Virus Res 22, 247 (Mar, 1992).
78. M. E. Nemeroff, X. Y. Qian, R. M. Krug, The influenza virus NS1 protein forms multimers in vitro and in vivo. Virology 212, 422 (Oct 1, 1995).
79. D. Greenspan, P. Palese, M. Krystal, Two nuclear location signals in the influenza virus NS1 nonstructural protein. J Virol 62, 3020 (Aug, 1988).
80. P. Fortes, A. Beloso, J. Ortin, Influenza virus NS1 protein inhibits pre-mRNA splicing and blocks mRNA nucleocytoplasmic transport. EMBO J 13, 704 (Feb 1, 1994).
81. Y. Lu, X. Y. Qian, R. M. Krug, The influenza virus NS1 protein: a novel inhibitor of pre-mRNA splicing. Genes Dev 8, 1817 (Aug 1, 1994).
82. R. M. Marion, T. Aragon, A. Beloso, A. Nieto, J. Ortin, The N-terminal half of the influenza virus NS1 protein is sufficient for nuclear retention of mRNA and enhancement of viral mRNA translation. Nucleic acids research 25, 4271 (Nov 1, 1997).
83. S. de la Luna, P. Fortes, A. Beloso, J. Ortin, Influenza virus NS1 protein enhances the rate of translation initiation of viral mRNAs. J Virol 69, 2427 (Apr, 1995).
84. K. Enami, T. A. Sato, S. Nakada, M. Enami, Influenza virus NS1 protein stimulates translation of the M1 protein. J Virol 68, 1432 (Mar, 1994).
85. T. Odagiri, K. Tominaga, K. Tobita, S. Ohta, An amino acid change in the non-structural NS2 protein of an influenza A virus mutant is responsible for the generation of defective interfering (DI) particles by amplifying DI
RNAs and suppressing complementary RNA synthesis. J Gen Virol 75 ( Pt 1), 43 (Jan, 1994).
86. A. C. Ward et al., Expression and analysis of the NS2 protein of influenza A virus. Arch Virol 140, 2067 (1995).
87. Z. A. Bidzhekov K, Weber C., MCP-1 induces a novel transcription factor with proapoptotic activity. Circulation Research 98, 1107 (2006).
88. W. S. Jian Liang, et al., Genome-wide survey and expression profiling of CCCH-Zinc finger family reveals a functional module in macrophage activation. PLoS ONE 3, e2880 (2008).
89. K. Matsushita et al., Zc3h12a is an RNase essential for controlling immune responses by regulating mRNA decay. Nature 458, 1185 (2009).
90. Hiroshi I. Suzuki et al., MCPIP1 ribonuclease antagonizes dicer and terminates microRNA biogenesis through precursor microRNA degradation. Molecular Cell 44, 424 (2011).
91. A. L. Anantharaman V, The NYN domains: novel predicted RNAses witha PIN domain-like fold. RNA Biology 3, 18 (2006).
92. J. Liang et al., A novel CCCH-Zinc finger protein family regulates proinflammatory activation of macrophages. Journal of Biological Chemistry 283, 6337 (2008).
93. D. Mizgalska et al., Interleukin-1-inducible MCPIP protein has structural and functional properties of RNase and participates in degradation of IL-1β mRNA. FEBS Journal 276, 7386 (2009).
94. J. Liang et al., MCP-induced protein 1 deubiquitinates TRAF proteins and negatively regulates JNK and NF- B signaling. Journal of Experimental Medicine 207, 2959 (2010).
95. G. Gao, Inhibition of retroviral RNA production by ZAP, a CCCH-type Zinc finger protein. Science 297, 1703 (2002).
96. A. G. Hovanessian, J. Justesen, The human 2''-5''oligoadenylate synthetase family: Unique interferon-inducible enzymes catalyzing 2''-5'' instead of 3''-5'' phosphodiester bond formation. Biochimie 89, 779 (2007).
97. M. J. Bick et al., Expression of the Zinc-Finger Antiviral Protein Inhibits Alphavirus Replication. J Virol 77, 11555 (2003).
98. P. M. Stefanie Muller, et al., Inhibition of Filovirus replication by the zinc finger antiviral protein. J Virol 81, 2391 (2007).
99. M. Maeda et al., Tristetraprolin inhibits HIV-1 production by binding to genomic RNA. Microbes and Infection 8, 2647 (2006).
100. G. C. Yiping Zhua, et al., Zinc-finger antiviral protein inhibits HIV-1 infection by selectively targeting multiply spliced viral mRNAs for degradation. PNAS 108, 15834 (2011).
101. R. J. Lin et al., MCPIP1 ribonuclease exhibits broad-spectrum antiviral effects through viral RNA binding and degradation. Nucleic acids research 41, 3314 (Mar 1, 2013).
102. O. Makarova, E. Kamberov, B. Margolis, Generation of deletion and point mutations with one primer in a single cloning step. BioTechniques 29, 970 (Nov, 2000).
103. T.-L. Liao, C.-Y. Wu, W.-C. Su, K.-S. Jeng, M. M. C. Lai, Ubiquitination and deubiquitination of NP protein regulates influenza A virus RNA replication. EMBO J 29, 3879 (2010).
104. D.-Y. Jin et al., Ubiquitination is required for effective replication of coxsackievirus B3. PLoS ONE 3, e2585 (2008).
105. J. Liang et al., A novel CCCH-zinc finger protein family regulates proinflammatory activation of macrophages. The Journal of biologicalchemistry 283, 6337 (Mar 7, 2008).
106. A. Kasza et al., Transcription factors Elk-1 and SRF are engaged in IL1-dependent regulation of ZC3H12A expression. BMC Molecular Biology 11, 14 (2010).
107. R. S. Brown, Zinc finger proteins: getting a grip on RNA. Current opinion in structural biology 15, 94 (Feb, 2005).
108. T. M. Hall, Multiple modes of RNA recognition by zinc finger proteins. Current opinion in structural biology 15, 367 (Jun, 2005).
109. E. Carballo, W. S. Lai, P. J. Blackshear, Feedback inhibition of macrophage tumor necrosis factor-alpha production by tristetraprolin. Science 281, 1001 (Aug 14, 1998).
110. D. M. Carrick, W. S. Lai, P. J. Blackshear, The tandem CCCH zinc finger protein tristetraprolin and its relevance to cytokine mRNA turnover and arthritis. Arthritis research & therapy 6, 248 (2004).
111. W. S. Lai et al., Evidence that tristetraprolin binds to AU-rich elements and promotes the deadenylation and destabilization of tumor necrosis factor alpha mRNA. Molecular and cellular biology 19, 4311 (Jun, 1999).
112. E. G. Vrotsos, P. E. Kolattukudy, K. Sugaya, MCP-1 involvement in glial differentiation of neuroprogenitor cells through APP signaling. Brain Res Bull 79, 97 (Apr 29, 2009).
113. L. Zhou et al., Monocyte chemoattractant protein-1 induces a novel transcription factor that causes cardiac myocyte apoptosis and ventricular dysfunction. Circ Res 98, 1177 (May 12, 2006).
114. J. Niu, A. Azfer, O. Zhelyabovska, S. Fatma, P. E. Kolattukudy, Monocyte chemotactic protein (MCP)-1 promotes angiogenesis via a novel transcription factor, MCP-1-induced protein (MCPIP). The Journal of biological chemistry 283, 14542 (May 23, 2008).
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔