跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.208) 您好!臺灣時間:2024/04/23 21:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:朱薏璇
研究生(外文):Yi-Hsuan Chu
論文名稱:創傷後給予新穎Pifithrin-α 之氧類似物對於實驗性腦創傷所造成之組織傷害及行為功能缺失之改善作用
論文名稱(外文):Post-trauma administration of Pifithrin-α oxygen analogue improves histological and functional outcomes after experimental traumatic brain injury
指導教授:王家儀王家儀引用關係
指導教授(外文):Jia-Yi Wang
口試委員:鍾文彬林惠卿
口試委員(外文):Wen-Bin ZhongHui-Ching Lin
口試日期:2013-07-12
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:醫學科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:67
中文關鍵詞:腦創傷 (TBI);PFT-α 氧類似物 (PFT-α(O));cleaved-caspase 3;p53
外文關鍵詞:Traumatic brain injury (TBI); PFT-α oxygen analogue (PFT-α(O)); cleaved-caspase 3; p53
相關次數:
  • 被引用被引用:0
  • 點閱點閱:76
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
在全球,腦創傷是導致死亡和殘疾的一個重要因素。腦創傷造成許多病理上的後遺症,主要致病機轉包含生化、代謝途徑的改變、神經傳導物質大量釋放,並受到氧化壓力以及發炎反應等影響造成神經傷害。越來越多研究證實,腦創傷後細胞凋亡的情形,是造成腦部次級傷害的主因。但目前對於造成細胞凋亡的分子機制仍不清楚,因
此在臨床上,尚未有藥物能治療腦創傷的患者。
腫瘤抑制基因p53,也同時為一轉錄因子,在DNA受損時能調控細胞週期及參與細胞凋亡的過程,而抑制p53的轉錄功能,被認為是治療神經退化性疾病的有效方法。Pifithrin-α(PFT-α)可藉由抑制p53的轉錄活性、防止粒腺體損傷及活化caspase,來避免細胞走向死亡。在腦創傷的相關研究中,PFT-α 被認為具有神經保護的功能。先前研究指出,相較於PFT-α,PFT-α的環狀類似物及其前驅物在動物體內較穩定,且具有較高的藥物活性及效能。因此,在本實驗中,想知道於腦創傷後給予另一個新的PFT-α衍生物-PFT-α氧類似物 (PFT-α (O) ),是否能改善動物的行為功能缺失並減緩神經損傷的情形。
本實驗以可控制皮質撞擊 (CCI) 模型來造成大鼠腦創傷 (速度 4 m/s, 深度 2 mm) 。我們經由撕貼紙測試、擺動測試及神經學缺失分數之評估結果,發現大鼠在腦創傷後出現明顯的神經行為功能缺失。在神經行為功能測試後,大鼠經心臟灌流後斷頭犧牲,取其腦組織切片作甲酚紫染色,以檢測腦部創傷體積,發現在腦創傷後第24小時,創傷腦區相較於對侧腦區有明顯腦組織缺少的情形,因此我們在腦創傷後第1、3小時給予PFT-α (O) (2 mg/kg, i.v.) 或vehicle,並於第24小時檢測,發現其神經行為功能明顯獲得改善。腦創傷體積也於腦創傷後第24小時明顯下降,FJC染色結果也顯示,於腦創傷後第8、24小時,創傷大腦皮質區中神經退化的細胞數量明顯下降。腦創傷後第8、24小時,創傷大腦皮質區中cleaved-caspase 3 positive cells 和 53BP1 positive cells 的數量明顯增加,若於腦創傷後第3小時給予PFT-α (O),兩者的數量皆顯著下降。即時定量聚合酶連鎖反應 (RT-qPCR) 檢測結果顯示,在創傷大腦皮質組織中,發炎性細胞激素 (IL-1β, IL-6) 與 發炎酵素 (iNOS, COX2) 的mRNA表現量,於腦創傷後第8、24小時顯著上升,但此情形在給予PFT-α (O) 後明顯下降。經由以上實驗結果,我們認為在腦創傷後給予PFT-α (O) ,能改善神經行為功能的缺失,並降低創傷腦組織發炎反應及細胞凋亡情形,而達到神經保護的效果。

關鍵字: 腦創傷 (TBI)、PFT-α 氧類似物 (PFT-α(O))、cleaved-caspase 3、p53
Traumatic brain injury (TBI) is a major cause of death and disability worldwide. Pathological consequences of TBI include alterations in biochemical and metabolic pathways, excessive glutamate release, oxidative stress and inflammation. Increasing evidence suggests apoptotic mechanisms in delayed tissue loss after TBI. Therapeutic options to stop this process are not available yet because the underlying molecular mechanisms are poorly understood.
Tumor suppressor gene, p53 can also be a transcription factor to mediate cell cycle arrest or apoptosis after DNA damage, and its inhibition could be a therapeutic approach to several neuropathologies. Pifithrin-α (PFT-α) can prevent cell death by inhibiting p53 transcriptional activity, mitochondrial damage, and caspase activation. PFT-α has been shown to exert a neuroprotective effect following TBI. Previous study indicates that PFT-α’s cyclic analogue and its open precursor are more stable and active in vivo than PFT-α. We therefore examined the effect of a new derivative analogue of PFT-α, PFT-α oxygen analogue (PFT-α (O)) on functional recovery and neuronal damage after TBI.
TBI in rats was caused by controlled cortical impact (CCI, with 4 m/s velocity, 2 mm deformation). Our results indicate that TBI caused significant functional deficits as examined by bilateral tactile adhesive removal test, elevated body swing test (EBST) and modified neurological severity score (mNSS). Animals were sacrificed after functional evaluation by transcardial perfusion and brains were removed and sectioned to measure brain contusion volume by cresyl violet staining at 24 hr. CCI injury resulted in a loss of cortical tissue in the ipsilateral (left) parietal cortex, as reflected by gross reductions in cresyl violet staining intensity. In contrast, the cytoarchitecture of the cortex remained normal in the contralateral (right) hemisphere. Rats subjected to CCI injury were injected with PFT-α (O) (2 mg/kg, i.v.) or vehicle at 1 hr and 3 hr after TBI. Functional deficits were significantly improved by PFT-α (O) administration (2 mg/kg, i.v.) at 24 hr after TBI. The contusion volume significantly decrease at 24 hr after TBI. And the number of Fluoro-Jade C (FJC) positive degenerating neurons also significantly decrease in the cortical contusion region at 8 hr and 24 hr post-injury. There was a marked rise in the number of apoptotic cells as revealed by cleaved-caspase 3 and p53 binding protein 1 (53BP1) positive cells in the cortical contusion region at 8 hr and 24 hr post-injury. PFT-α (O) administered at 3 hr post-injury rats had a significant reduction in the number of cleaved-caspase 3 and 53BP1 positive cells relative to vehicle-treated rats at 8 hr and 24 hr after TBI. Reverse transcription -quantitative polymerase chain reaction (RT-qPCR) indicated relative mRNA levels of the pro-inflammatory cytokines (IL-1β, IL-6) and inflammatory enzyme (iNOS, COX2) significantly increased at 8 hr and 24 hr after TBI. Elevated mRNA levels of pro-inflammatory cytokines (IL-1β, IL-6) and inflammatory enzyme (iNOS) mRNA at 8 hr and 24 hr were significantly reduced by PFT-α (O) administration after TBI. These data suggest that post-trauma administration of PFT-α (O) improves histological and functional outcomes after experimental TBI and reduces inflammatory responses and apoptosis.

Key words: Traumatic brain injury (TBI), PFT-α oxygen analogue (PFT-α(O)), cleaved-caspase 3, p53
目錄
中文摘要...................................................3
英文摘要...................................................5
縮寫表.....................................................7
第一章 緒論.............................................8
第二章 實驗材料與方法..................................18
第三章 結果............................................28
第四章 討論............................................35
第五章 結論............................................41
圖次......................................................42
參考文獻..................................................56
林口長庚醫院神經內科一科陳德榮編著(2002)。臨床神經學第十章。合記圖書出版。
衛生署統計室(2012),全國事故傷害與自殺死亡概況。
U.S. Department of Health and Human Services, Centers for Disease Control and Prevention.
Becher, B., Prat, A., and Antel, J. P. (2000). Brain-immune connection: immuno-regulatory properties of CNS-resident cells. Glia 29, 293-304.
Borlongan, C. V., and Sanberg, P. R. (1995). Elevated body swing test: a new behavioral parameter for rats with 6-hydroxydopamine-induced hemiparkinsonism. J Neurosci 15, 5372-8.
Chang, E. F., Wong, R. J., Vreman, H. J., Igarashi, T., Galo, E., Sharp, F. R., Stevenson, D. K., and Noble-Haeusslein, L. J. (2003). Heme oxygenase-2 protects against lipid peroxidation-mediated cell loss and impaired motor recovery after traumatic brain injury. J Neurosci 23, 3689-96.
Chen, G., Shi, J., Hu, Z., and Hang, C. (2008a). Inhibitory effect on cerebral inflammatory response following traumatic brain injury in rats: a potential neuroprotective mechanism of N-acetylcysteine. Mediators Inflamm 2008, 716458:1-8.
Chen, S., Pickard, J. D., and Harris, N. G. (2003). Time course of cellular pathology after controlled cortical impact injury. Exp Neurol 182, 87-102.
Chen, S. F., Hsu, C. W., Huang, W. H., and Wang, J. Y. (2008b). Post-injury baicalein improves histological and functional outcomes and reduces inflammatory cytokines after experimental traumatic brain injury. Br J Pharmacol 155, 1279-96.
Chen, S. F., Hung, T. H., Chen, C. C., Lin, K. H., Huang, Y. N., Tsai, H. C., and Wang, J. Y. (2007). Lovastatin improves histological and functional outcomes and reduces inflammation after experimental traumatic brain injury. Life Sci 81, 288-98.
Clarke, A. R., Purdie, C. A., Harrison, D. J., Morris, R. G., Bird, C. C., Hooper, M. L., and Wyllie, A. H. (1993). Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362, 849-52.
Corrigan, J. D., Selassie, A. W., and Orman, J. A. (2010). The epidemiology of traumatic brain injury. J Head Trauma Rehabil 25, 72-80.
Cregan, S. P., MacLaurin, J. G., Craig, C. G., Robertson, G. S., Nicholson, D. W., Park, D. S., and Slack, R. S. (1999). Bax-dependent caspase-3 activation is a key determinant in p53-induced apoptosis in neurons. J Neurosci 19, 7860-9.
Crumrine, R. C., Thomas, A. L., and Morgan, P. F. (1994). Attenuation of p53 expression protects against focal ischemic damage in transgenic mice. J Cereb Blood Flow Metab 14, 887-91.
Culmsee, C., and Mattson, M. P. (2005). p53 in neuronal apoptosis. Biochem Biophys Res Commun 331, 761-77.
Culmsee, C., Siewe, J., Junker, V., Retiounskaia, M., Schwarz, S., Camandola, S., El-Metainy, S., Behnke, H., Mattson, M. P., and Krieglstein, J. (2003). Reciprocal inhibition of p53 and nuclear factor-kappaB transcriptional activities determines cell survival or death in neurons. J Neurosci 23, 8586-95.
Culmsee, C., Zhu, X., Yu, Q. S., Chan, S. L., Camandola, S., Guo, Z., Greig, N. H., and Mattson, M. P. (2001). A synthetic inhibitor of p53 protects neurons against death induced by ischemic and excitotoxic insults, and amyloid beta-peptide. J Neurochem 77, 220-8.
de la Monte, S. M., Sohn, Y. K., and Wands, J. R. (1997). Correlates of p53- and Fas (CD95)-mediated apoptosis in Alzheimer''s disease. J Neurol Sci 152, 73-83.
Dietrich, W. D., Alonso, O., and Halley, M. (1994). Early microvascular and neuronal consequences of traumatic brain injury: a light and electron microscopic study in rats. J Neurotrauma 11, 289-301.
Dixon, C. E., Clifton, G. L., Lighthall, J. W., Yaghmai, A. A., and Hayes, R. L. (1991). A controlled cortical impact model of traumatic brain injury in the rat. J Neurosci Methods 39, 253-62.
Dixon, C. E., Lyeth, B. G., Povlishock, J. T., Findling, R. L., Hamm, R. J., Marmarou, A., Young, H. F., and Hayes, R. L. (1987). A fluid percussion model of experimental brain injury in the rat. J Neurosurg 67, 110-9.
Duan, W., Zhu, X., Ladenheim, B., Yu, Q. S., Guo, Z., Oyler, J., Cutler, R. G., Cadet, J. L., Greig, N. H., and Mattson, M. P. (2002). p53 inhibitors preserve dopamine neurons and motor function in experimental parkinsonism. Ann Neurol 52, 597-606.
Frugier, T., Morganti-Kossmann, M. C., O''Reilly, D., and McLean, C. A. (2010). In situ detection of inflammatory mediators in post mortem human brain tissue after traumatic injury. J Neurotrauma 27, 497-507.
Ghajar, J. (2000). Traumatic brain injury. Lancet 356, 923-9.
Goss, J. R., Taffe, K. M., Kochanek, P. M., and DeKosky, S. T. (1997). The antioxidant enzymes glutathione peroxidase and catalase increase following traumatic brain injury in the rat. Exp Neurol 146, 291-4.
Hang, C. H., Chen, G., Shi, J. X., Zhang, X., and Li, J. S. (2006). Cortical expression of nuclear factor kappaB after human brain contusion. Brain Res 1109, 14-21.
Hao, A. J., Dheen, S. T., and Ling, E. A. (2001). Induction of cytokine expression in the brain macrophages/amoeboid microglia of the fetal rat exposed to a teratogen. Neuroreport 12, 1391-7.
Helmer, K. S., Cui, Y., Dewan, A., and Mercer, D. W. (2003). Ketamine/xylazine attenuates LPS-induced iNOS expression in various rat tissues. J Surg Res 112, 70-8.
Helmy, A., Carpenter, K. L., Menon, D. K., Pickard, J. D., and Hutchinson, P. J. (2011). The cytokine response to human traumatic brain injury: temporal profiles and evidence for cerebral parenchymal production. J Cereb Blood Flow Metab 31, 658-70.
Israelsson, C., Bengtsson, H., Kylberg, A., Kullander, K., Lewen, A., Hillered, L., and Ebendal, T. (2008). Distinct cellular patterns of upregulated chemokine expression supporting a prominent inflammatory role in traumatic brain injury. J Neurotrauma 25, 959-74.
Jones, P. A., Andrews, P. J., Midgley, S., Anderson, S. I., Piper, I. R., Tocher, J. L., Housley, A. M., Corrie, J. A., Slattery, J., Dearden, N. M., and et al. (1994). Measuring the burden of secondary insults in head-injured patients during intensive care. J Neurosurg Anesthesiol 6, 4-14.
Kamm, K., Vanderkolk, W., Lawrence, C., Jonker, M., and Davis, A. T. (2006). The effect of traumatic brain injury upon the concentration and expression of interleukin-1beta and interleukin-10 in the rat. J Trauma 60, 152-7.
Khan, M., Im, Y. B., Shunmugavel, A., Gilg, A. G., Dhindsa, R. K., Singh, A. K., and Singh, I. (2009). Administration of S-nitrosoglutathione after traumatic brain injury protects the neurovascular unit and reduces secondary injury in a rat model of controlled cortical impact. J Neuroinflammation 6, 32.
Li, R., Waga, S., Hannon, G. J., Beach, D., and Stillman, B. (1994). Differential effects by the p21 CDK inhibitor on PCNA-dependent DNA replication and repair. Nature 371, 534-7.
Lighthall, J. W. (1988). Controlled cortical impact: a new experimental brain injury model. J Neurotrauma 5, 1-15.
Lloyd, E., Somera-Molina, K., Van Eldik, L. J., Watterson, D. M., and Wainwright, M. S. (2008). Suppression of acute proinflammatory cytokine and chemokine upregulation by post-injury administration of a novel small molecule improves long-term neurologic outcome in a mouse model of traumatic brain injury. J Neuroinflammation 5, 28.
Loane, D. J., and Faden, A. I. (2010). Neuroprotection for traumatic brain injury: translational challenges and emerging therapeutic strategies. Trends Pharmacol Sci 31, 596-604.
Lowe, S. W., Schmitt, E. M., Smith, S. W., Osborne, B. A., and Jacks, T. (1993). p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362, 847-9.
Lynch, J. R., Wang, H., Mace, B., Leinenweber, S., Warner, D. S., Bennett, E. R., Vitek, M. P., McKenna, S., and Laskowitz, D. T. (2005). A novel therapeutic derived from apolipoprotein E reduces brain inflammation and improves outcome after closed head injury. Exp Neurol 192, 109-16.
Maas, A. I., Stocchetti, N., and Bullock, R. (2008). Moderate and severe traumatic brain injury in adults. Lancet Neurol 7, 728-41.
Markgraf, C. G., Clifton, G. L., and Moody, M. R. (2001). Treatment window for hypothermia in brain injury. J Neurosurg 95, 979-83.
Marklund, N., and Hillered, L. (2011). Animal modelling of traumatic brain injury in preclinical drug development: where do we go from here? Br J Pharmacol 164, 1207-29.
Marklund, N., Lewander, T., Clausen, F., and Hillered, L. (2001). Effects of the nitrone radical scavengers PBN and S-PBN on in vivo trapping of reactive oxygen species after traumatic brain injury in rats. J Cereb Blood Flow Metab 21, 1259-67.
Marmarou, A., Foda, M. A., van den Brink, W., Campbell, J., Kita, H., and Demetriadou, K. (1994). A new model of diffuse brain injury in rats. Part I: Pathophysiology and biomechanics. J Neurosurg 80, 291-300.
Masel, B. E., and DeWitt, D. S. (2010). Traumatic brain injury: a disease process, not an event. J Neurotrauma 27, 1529-40.
McIntosh, T. K. (1994). Neurochemical sequelae of traumatic brain injury: therapeutic implications. Cerebrovasc Brain Metab Rev 6, 109-62.
Merrill, J. E., and Benveniste, E. N. (1996). Cytokines in inflammatory brain lesions: helpful and harmful. Trends Neurosci 19, 331-8.
Moll, U. M., Wolff, S., Speidel, D., and Deppert, W. (2005). Transcription-independent pro-apoptotic functions of p53. Curr Opin Cell Biol 17, 631-6.
Moor, E., Kohen, R., Reiter, R. J., and Shohami, E. (2001). Closed head injury increases extracellular levels of antioxidants in rat hippocampus in vivo: an adaptive mechanism? Neurosci Lett 316, 169-72.
Morganti-Kossmann, M. C., Kossmann, T., and Wahl, S. M. (1992). Cytokines and neuropathology. Trends Pharmacol Sci 13, 286-91.
Napieralski, J. A., Raghupathi, R., and McIntosh, T. K. (1999). The tumor-suppressor gene, p53, is induced in injured brain regions following experimental traumatic brain injury. Brain Res Mol Brain Res 71, 78-86.
Nelson, W. G., and Kastan, M. B. (1994). DNA strand breaks: the DNA template alterations that trigger p53-dependent DNA damage response pathways. Mol Cell Biol 14, 1815-23.
Newcomb, J. K., Zhao, X., Pike, B. R., and Hayes, R. L. (1999). Temporal profile of apoptotic-like changes in neurons and astrocytes following controlled cortical impact injury in the rat. Exp Neurol 158, 76-88.
Ottens, A. K., Kobeissy, F. H., Golden, E. C., Zhang, Z., Haskins, W. E., Chen, S. S., Hayes, R. L., Wang, K. K., and Denslow, N. D. (2006). Neuroproteomics in neurotrauma. Mass Spectrom Rev 25, 380-408.
Pietrancosta, N., Moumen, A., Dono, R., Lingor, P., Planchamp, V., Lamballe, F., Bahr, M., Kraus, J. L., and Maina, F. (2006). Imino-tetrahydro-benzothiazole derivatives as p53 inhibitors: discovery of a highly potent in vivo inhibitor and its action mechanism. J Med Chem 49, 3645-52.
Plesnila, N., von Baumgarten, L., Retiounskaia, M., Engel, D., Ardeshiri, A., Zimmermann, R., Hoffmann, F., Landshamer, S., Wagner, E., and Culmsee, C. (2007). Delayed neuronal death after brain trauma involves p53-dependent inhibition of NF-kappaB transcriptional activity. Cell Death Differ 14, 1529-41.
Ray, S. K., Dixon, C. E., and Banik, N. L. (2002). Molecular mechanisms in the pathogenesis of traumatic brain injury. Histol Histopathol 17, 1137-52.
Rink, A., Fung, K. M., Trojanowski, J. Q., Lee, V. M., Neugebauer, E., and McIntosh, T. K. (1995). Evidence of apoptotic cell death after experimental traumatic brain injury in the rat. Am J Pathol 147, 1575-83.
Schmued, L. C., and Hopkins, K. J. (2000). Fluoro-Jade B: a high affinity fluorescent marker for the localization of neuronal degeneration. Brain Res 874, 123-30.
Simmons, M. L., and Murphy, S. (1994). Roles for protein kinases in the induction of nitric oxide synthase in astrocytes. Glia 11, 227-34.
Singleton, R. H., Stone, J. R., Okonkwo, D. O., Pellicane, A. J., and Povlishock, J. T. (2001). The immunophilin ligand FK506 attenuates axonal injury in an impact-acceleration model of traumatic brain injury. J Neurotrauma 18, 607-14.
Stoica, B. A., and Faden, A. I. (2010). Cell death mechanisms and modulation in traumatic brain injury. Neurotherapeutics 7, 3-12.
Suliburk, J. W., Helmer, K. S., Gonzalez, E. A., Robinson, E. K., and Mercer, D. W. (2005). Ketamine attenuates liver injury attributed to endotoxemia: role of cyclooxygenase-2. Surgery 138, 134-40.
Tagliaferri, F., Compagnone, C., Korsic, M., Servadei, F., and Kraus, J. (2006). A systematic review of brain injury epidemiology in Europe. Acta Neurochir (Wien) 148, 255-68.
Touzani, O., Boutin, H., Chuquet, J., and Rothwell, N. (1999). Potential mechanisms of interleukin-1 involvement in cerebral ischaemia. J Neuroimmunol 100, 203-15.
Wang, B., Matsuoka, S., Carpenter, P. B., and Elledge, S. J. (2002). 53BP1, a mediator of the DNA damage checkpoint. Science 298, 1435-8.
Ward, J. L., Harting, M. T., Cox, C. S., Jr., and Mercer, D. W. (2011). Effects of ketamine on endotoxin and traumatic brain injury induced cytokine production in the rat. J Trauma 70, 1471-9.
Williams, A. J., Wei, H. H., Dave, J. R., and Tortella, F. C. (2007). Acute and delayed neuroinflammatory response following experimental penetrating ballistic brain injury in the rat. J Neuroinflammation 4, 17:1-12.
Woodcock, T., and Morganti-Kossmann, M. C. (2013). The role of markers of inflammation in traumatic brain injury. Front Neurol 4, 18:1-18.
Xiong, Y., Mahmood, A., and Chopp, M. (2013). Animal models of traumatic brain injury. Nat Rev Neurosci 14, 128-42.
Yan, E. B., Hellewell, S. C., Bellander, B. M., Agyapomaa, D. A., and Morganti-Kossmann, M. C. (2011). Post-traumatic hypoxia exacerbates neurological deficit, neuroinflammation and cerebral metabolism in rats with diffuse traumatic brain injury. J Neuroinflammation 8, 147:1-16.
Zhu, X., Yu, Q. S., Cutler, R. G., Culmsee, C. W., Holloway, H. W., Lahiri, D. K., Mattson, M. P., and Greig, N. H. (2002). Novel p53 inactivators with neuroprotective action: syntheses and pharmacological evaluation of 2-imino-2,3,4,5,6,7-hexahydrobenzothiazole and 2-imino-2,3,4,5,6,7-hexahydrobenzoxazole derivatives. J Med Chem 45, 5090-7.
Ziebell, J. M., and Morganti-Kossmann, M. C. (2010). Involvement of pro- and anti-inflammatory cytokines and chemokines in the pathophysiology of traumatic brain injury. Neurotherapeutics 7, 22-30.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top