(3.235.108.188) 您好!臺灣時間:2021/03/03 21:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:簡伯任
研究生(外文):Po-Jen Chien
論文名稱:D-乳酸生物感測器的開發
論文名稱(外文):The Development of D-lactate Biosensor
指導教授:李仁愛
口試委員:陳建銘張偉嶠
口試日期:2013-06-26
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:藥學系(碩博士班)
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:65
中文關鍵詞:D-乳酸NADH生物感測器紫外光發光二極體
外文關鍵詞:BiosensorD-LactateNADHUV-LED
相關次數:
  • 被引用被引用:0
  • 點閱點閱:17
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
已有許多文獻證實血液及尿液中D-乳酸的濃度變化與諸多疾病息息相關,本實驗室先前的研究也發現,部分疾病所引起的腎損傷,如高血壓腎病變、糖尿病腎損傷等,其尿液中D-乳酸濃度亦會上升。
目前D-lactate檢測方式的相關文獻有很多種,許多方法已有高靈敏度、偵測極限低等優點,但大多需要耗費大量的時間且檢測成本昂貴。本實驗旨在開發一新型D-乳酸生物感測器,能較快速地檢測檢品中D-lactate的濃度並且同時具有良好的靈敏度與偵測極限等檢測能力。在本研究中,我們利用紫外光波段之發光二極體(UV-LED)、光譜儀以及D-乳酸去氫酶(D-lactate dehydrogenase)來建立此D-乳酸生物感測器。當環境中存在氧化態菸鹼醯胺腺嘌呤二核苷酸(NAD+)時,D-乳酸去氫酶會將D-乳酸催化成丙酮酸,並同時將NAD+還原為NADH。NADH 具有吸收340 nm紫外光,並且放出491 nm螢光的光學特性,藉由測量螢光強度,即可得知檢品中所含之D-乳酸濃度。
實驗結果顯示,此D-乳酸生物感測器在濃度5 μM -150 μM 之間有良好的線性關係(R2 = 0.9964),其同日間測量之準確度介於103.96~109.09%,精密度介於4.28~6.82%,異日間測量之準確度介於102.84~104.59%,精密度介於4.04~12.40%。本研究所使用之D-乳酸去氫酶最適當反應條件為溫度25℃及pH 8.5,在90分鐘內,此D-乳酸生物感測器可測量約10~15個樣品,而用高效液相層析儀(HPLC)則只能測定1個檢品。與現有其他測量D-乳酸方法相比,此D-乳酸生物感測器提供了一個快速、方便且準確的測量新選擇。
Previous studies had reported that D-lactate concentration in serum was related to several diseases, including diabetes, short bowel syndrome, trauma and ischemic sepsis. In our lab, we also found that D-lactate abnormally raise in serum and urine from kidney injured rats, such as chronic diabetes kidney injury and aristolochic acid induced acute nephropathy. It seems that D-lactate might have potential to be a new biomarker of kidney injure. However, the methods for such as D-lactate detect HPLC fluorescence or GC/MS are time-consuming. These methods can’t be applied to deal with large samples. Thus, purpose of this study was to establish a biosensor which can detect D-lactate concentration in a short time.
In our study, we used UV-LED, spectrometer and D-lactate dehydrogenase (D-LDH) to construct this biosensor. D-LDH is the enzyme which can catalyze D-lactate and NAD+ to pyruvate and NADH. NADH has fluorescent characteristic that absorbs excitation light at 340 nm and it releases fluoresce at 491 nm. By detecting the fluorescence intensity, we can find out D-lactate concentration.
Our results show that our D-lactate biosensor has good linearity (R2 = 0.9964) and calibration range (5 μM -150 μM). Accuracy of intra-assay between are 103.96 ~ 109.09%, precision are between 4.28 ~ 6.82%. Accuracy of inter-assay between are 102.84 ~ 104.59%, precision are between 4.04 ~ 12.40%. The appropriate pH and temperature for D-LDH in this experiment is pH 8.5 and 25℃, and the time of reaching steady state is about 30 minutes. It can detect about 10~15 samples in 90 minutes, but the HPLC just can detect 1 sample in 90 minutes. Compared to other detection methods, this new biosensor provides a rapid, accurate and convenient choice.
目 錄 I
附圖目錄 IV
附表目錄 V
中文摘要 VI
英文摘要 VIII
縮寫表 IX
第一章 緒論 1
第一節 乳酸 1
1.1.1乳酸簡介 1
1.1.2生物體內D-lactate來源 2
1.1.3 D-lactate相關疾病 4
第二節 D-Lactate 檢測方法 7
第三節 菸鹼醯胺腺嘌呤二核苷酸 10
第四節 生物感測器簡介 12
第五節 研究目的 13
第二章 實驗材料與方法 14
第一節 實驗試藥及儀器 14
2.1.1實驗試藥 14
2.1.2實驗儀器 14
第二節 實驗方法 16
2.2.1 D-lactate生物感測器的設計 16
2.2.2 實驗條件 20
第三節 實驗參數分析 21
2.3.1 NADH螢光及激發光光譜 21
2.3.2酵素反應時序圖 21
2.3.3溫度差異實驗 21
2.3.4 pH值差異實驗 22
第四節 分析方法之確效 23
2.4.1檢量線線性(linearity) 23
2.4.2準確度試驗(Accuracy) 24
2.4.3精密度試驗 24
2.4.4血清去蛋白處理方法 24
2.4.5大鼠血清測試 25
第三章 實驗結果 26
第一節 實驗參數分析結果 26
3.1.1 NADH激發光、螢光光譜 26
3.1.2 NADH檢量線 28
3.1.3酵素反應時序圖 30
3.1.4溫度差異實驗結果 32
3.1.5 pH值差異實驗結果 34
第二節 分析方法確效之結果 35
3.2.1 檢量線線性(linearity) 35
3.2.2準確度(Accuracy)和精密度(Precision) 37
第三節 大鼠血清測試 39
第四章 討論 41
第一節 D-lactate生物感測器之建立 41
第二節 D-LDH相關探討 42
第三節 D-lactate生物感測器之優點及限制 44
第五章 結論 46
參考文獻 47
Aubin, J. E., Autofluorescence of viable cultured mammalian cells, J Histochem Cytochem, 1979. 27(1):p. 36-43.
Blum, L.J., P.R. Coulet, Biosensor principles and applications, Bioprocess Technol, 1991. 15(p. 1-344.
Brandt, R. B., S. A. Siegel, M. G. Waters, M. H. Bloch, Spectrophotometric assay for D-(-)-lactate in plasma, Anal Biochem, 1980. 102(1):p. 39-46.
Burkle, A., Physiology and pathophysiology of poly(ADP-ribosyl)ation, Bioessays, 2001. 23(9):p. 795-806.
Christopher, M. M., J. D. Broussard, C. W. Fallin, N. J. Drost, M. E. Peterson, Increased serum D-lactate associated with diabetic ketoacidosis, Metabolism, 1995. 44(3):p. 287-290.
Clark, L. C., Jr., C. Lyons, Electrode systems for continuous monitoring in cardiovascular surgery, Ann N Y Acad Sci, 1962. 102(p. 29-45.
Comtat, Maurice, Muriel Galy, Philippe Goulas, Jerome Souppe, Amperometric bienzyme electrode for l-carnitine, Analytica Chimica Acta, 1988. 208(0):p. 295-300.
de Vrese, M., C. A. Barth, Postprandial plasma D-lactate concentrations after yogurt ingestion, Z Ernahrungswiss, 1991. 30(2):p. 131-137.
de Vrese, M., B. Koppenhoefer, C. A. Barth, D-lactic acid metabolism after an oral load of DL-lactate, Clin Nutr, 1990. 9(1):p. 23-28.
Ewaschuk, J. B., J. M. Naylor, W. A. Barabash, G. A. Zello, High-performance liquid chromatographic assay of lactic, pyruvic and acetic acids and lactic acid stereoisomers in calf feces, rumen fluid and urine, J Chromatogr B Analyt Technol Biomed Life Sci, 2004. 805(2):p. 347-351.
Ewaschuk, J. B., J. M. Naylor, G. A. Zello, D-lactate in human and ruminant metabolism, J Nutr, 2005. 135(7):p. 1619-1625.
Giesecke, D., P. von Wallenberg, Metabolism of D(-)lactic acid in rats given high intragastral doses, Comp Biochem Physiol B, 1985. 82(2):p. 255-258.
Harmon, D. L., R. A. Britton, R. L. Prior, R. A. Stock, Net portal absorption of lactate and volatile fatty acids in steers experiencing glucose-induced acidosis or fed a 70% concentrate diet ad libitum, J Anim Sci, 1985. 60(2):p. 560-569.
Hasegawa, H., T. Fukushima, J. A. Lee, K. Tsukamoto, K. Moriya, Y. Ono, K. Imai, Determination of serum D-lactic and L-lactic acids in normal subjects and diabetic patients by column-switching HPLC with pre-column fluorescence derivatization, Anal Bioanal Chem, 2003. 377(5):p. 886-891.
Hove, H., P. B. Mortensen, Colonic lactate metabolism and D-lactic acidosis, Dig Dis Sci, 1995. 40(2):p. 320-330.
Ichihara, H., T. Fukushima, K. Imai, Enantiomeric determination of D- and L-lactate in rat serum using high-performance liquid chromatography with a cellulose-type chiral stationary phase and fluorescence detection, Analytical Biochemistry, 1999. 269(2):p. 379-385.
Inoue, Y., T. Shinka, M. Ohse, H. Ikawa, T. Kuhara, Application of optical isomer analysis by diastereomer derivatization GC/MS to determine the condition of patients with short bowel syndrome, J Chromatogr B Analyt Technol Biomed Life Sci, 2006. 838(1):p. 37-42.
Kalapos, M. P., Methylglyoxal in living organisms: chemistry, biochemistry, toxicology and biological implications, Toxicol Lett, 1999. 110(3):p. 145-175.
Kondoh, Y., M. Kawase, Y. Kawakami, S. Ohmori, Concentrations of D-lactate and its related metabolic intermediates in liver, blood, and muscle of diabetic and starved rats, Res Exp Med (Berl), 1992. 192(6):p. 407-414.
Koshida, Tomoyuki, Takahiro Arakawa, Tomoko Gessei, Daishi Takahashi, Hiroyuki Kudo, Hirokazu Saito, Kazuyoshi Yano, Kohji Mitsubayashi, Fluorescence biosensing system with a UV-LED excitation for l-leucine detection, Sensors and Actuators B: Chemical, 2010. 146(1):p. 177-182.
Kudo, Hiroyuki, Masayuki Sawai, Xin Wang, Tomoko Gessei, Tomoyuki Koshida, Kumiko Miyajima, Hirokazu Saito, Kohji Mitsubayashi, A NADH-dependent fiber-optic biosensor for ethanol determination with a UV-LED excitation system, Sensors and Actuators B: Chemical, 2009. 141(1):p. 20-25.
Kudo, Hiroyuki, Yuki Suzuki, Tomoko Gessei, Daishi Takahashi, Takahiro Arakawa, Kohji Mitsubayashi, Biochemical gas sensor (bio-sniffer) for ultrahigh-sensitive gaseous formaldehyde monitoring, Biosensors and Bioelectronics, 2010. 26(2):p. 854-858.
Lee, Jen-Ai, Yih-Chiao Tsai, Hsiang-Yin Chen, Chih-Chun Wang, Shih-Ming Chen, Takeshi Fukushima, Kazuhiro Imai, Fluorimetric determination of d-lactate in urine of normal and diabetic rats by column-switching high-performance liquid chromatography, Analytica Chimica Acta, 2005. 534(2):p. 185-191.
Lin, S. J., L. Guarente, Nicotinamide adenine dinucleotide, a metabolic regulator of transcription, longevity and disease, Curr Opin Cell Biol, 2003. 15(2):p. 241-246.
Marti, R., E. Varela, R. M. Segura, J. Alegre, J. M. Surinach, C. Pascual, Determination of D-lactate by enzymatic methods in biological fluids: study of interferences, Clin Chem, 1997. 43(6 Pt 1):p. 1010-1015.
Norton, D., B. Crow, M. Bishop, K. Kovalcik, J. George, J. A. Bralley, High performance liquid chromatography-tandem mass spectrometry (HPLC/MS/MS) assay for chiral separation of lactic acid enantiomers in urine using a teicoplanin based stationary phase, J Chromatogr B Analyt Technol Biomed Life Sci, 2007. 850(1-2):p. 190-198.
Oh, M. S., K. R. Phelps, M. Traube, J. L. Barbosa-Saldivar, C. Boxhill, H. J. Carroll, D-lactic acidosis in a man with the short-bowel syndrome, N Engl J Med, 1979. 301(5):p. 249-252.
Poeze, M., B. C. Solberg, J. W. Greve, G. Ramsay, Gastric PgCO2 and Pg-aCO2 gap are related to D-lactate and not to L-lactate levels in patients with septic shock, Intensive Care Med, 2003. 29(11):p. 2081-2085.
Ratliff, D. M., D. J. Vander Jagt, R. P. Eaton, D. L. Vander Jagt, Increased levels of methylglyoxal-metabolizing enzymes in mononuclear and polymorphonuclear cells from insulin-dependent diabetic patients with diabetic complications: aldose reductase, glyoxalase I, and glyoxalase II--a clinical research center study, J Clin Endocrinol Metab, 1996. 81(2):p. 488-492.
Scheele, Carl Wilhelm, Leonard Dobbin, The collected papers of Carl Wilhelm Scheele, G. Bell & Sons ltd., London,, 1931.
Smith, S. M., R. H. Eng, F. Buccini, Use of D-lactic acid measurements in the diagnosis of bacterial infections, J Infect Dis, 1986. 154(4):p. 658-664.
Talasniemi, J. P., S. Pennanen, H. Savolainen, L. Niskanen, J. Liesivuori, Analytical investigation: assay of D-lactate in diabetic plasma and urine, Clin Biochem, 2008. 41(13):p. 1099-1103.
Tarmy, E. M., N. O. Kaplan, Kinetics of Escherichia coli B D-lactate dehydrogenase and evidence for pyruvate-controlled change in conformation, J Biol Chem, 1968. 243(10):p. 2587-2596.
Thornalley, P. J., The glyoxalase system: new developments towards functional characterization of a metabolic pathway fundamental to biological life, Biochem J, 1990. 269(1):p. 1-11.
Tubbs, P. K., The metabolism of D-alpha-hydroxy acids in animal tissues, Ann N Y Acad Sci, 1965. 119(3):p. 920-926.
Wilkinson, A., J. Day, R. Bowater, Bacterial DNA ligases, Mol Microbiol, 2001. 40(6):p. 1241-1248.
Wright, M. R., F. Jamali, Methods for the analysis of enantiomers of racemic drugs application to pharmacological and pharmacokinetic studies, J Pharmacol Toxicol Methods, 1993. 29(1):p. 1-9.
黃子娟, 小鼠腎臟損傷下尿中D-乳酸濃度與腎臟中乳酸運轉蛋白表現之探討, 台北醫學大學藥學系碩士論文, 2007. p.
廖紫歆, D-乳酸在糖尿病腎臟中之研究, 台北醫學大學藥學系碩士論文, 2003. p.
謝綺雯, D-乳酸在糖尿病及高血壓之研究, 台北醫學大學藥學系碩士論文, 2007. p.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔