(3.232.129.123) 您好!臺灣時間:2021/02/26 22:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:簡瀅珊
研究生(外文):Ying-Shan Chien
論文名稱:鐵質對精子磷酸化蛋白質之影響
論文名稱(外文):Effects of Iron on Sperm Protein Phosphorylation
指導教授:吳姿樺吳姿樺引用關係
指導教授(外文):Tzu-Hua Wu
口試委員:吳世雄潘力誠
口試委員(外文):Shih-Hsiung WuLi-Cheng Pan
口試日期:2013-06-20
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:藥學系(碩博士班)
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:97
中文關鍵詞:獲能反應蛋白質磷酸化精子功能障礙鐵質
外文關鍵詞:capacitationprotein phosphorylationsperm dysfunctioniron
相關次數:
  • 被引用被引用:0
  • 點閱點閱:30
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
精子功能障礙為最常見之男性不孕症原因,而先前研究指出精子蛋白磷酸化的缺乏,可能為精子功能障礙的原因之一。過去曾發現鐵質過度負荷之病人的精子功能下降。具有正常活動力及型態的精子經獲能反應 (capacitation) 過程,進行蛋白磷酸化之轉譯後修飾 (post-translational modifications) 才具有完整之受孕能力,其中以蛋白酪胺酸磷酸化 (tyrosine phosphorylation) 對精子功能的調節最為重要。鐵質過度負荷病患其精子功能低下之病理機制被認為可能與鐵質引起之氧化壓力有關,但鐵質存在多寡對精子功能的影響尚未有定論。本研究目的主要在探討鐵質對小鼠精子蛋白質磷酸化情形之影響;並進一步探討鐵螯合劑deferasirox (DEFR) 的作用。研究方法:本研究所分析之精子由小鼠 (ICR品系) 副睪取出後經HEPES 培養液清洗而取得品質較好之精子。首先將小鼠精子分成預先暴露 (5分鐘) 與未預先暴露組,利用西方墨點法分析不同濃度之亞鐵溶液 (0 uM、20 uM、40 uM) 對小鼠精子獲能反應過程中酪胺酸磷酸化蛋白及AKAP4蛋白酪胺酸磷酸化比值 (酪胺酸磷酸化AKAP4表現量與AKAP4蛋白總表現量之比值) 的改變情形;研究結果:未預先暴露組小鼠精子在獲能反應進行30、60及90分鐘後,亞鐵離子組酪胺酸磷酸化蛋白表現 (分子量約100、82及70 kDa) 及AKAP4蛋白酪胺酸磷酸化比值皆低於無亞鐵離子組別,尤其在獲能反應60分鐘時間點隨亞鐵離子濃度上升而下降。而預先暴露組之精子細胞在亞鐵離子存在下其酪胺酸磷酸化蛋白表現 (分子量約100、82、70、60、50 kDa及35-40 kDa之間) 及AKAP4蛋白酪胺酸磷酸化比值皆低於無亞鐵離子組別,尤其在獲能反應60分鐘時間點隨亞鐵離子濃度上升而下降。分析精子細胞酪胺酸磷酸化蛋白結果顯示含90 uM DEFR及亞鐵之治療組於獲能反應90分鐘時酪胺酸磷酸化蛋白表現 (分子量約100、82、70、60、50 kDa及35-40 kDa之間) 及AKAP4蛋白酪胺酸磷酸化比值皆高於對照組 (40 uM亞鐵離子組) 但低於控制組。而DEFR組在分子量約70 kDa酪胺酸磷酸化蛋白表現皆高於控制組,且隨DEFR濃度上升而上升。結論:本研究首次證明亞鐵離子抑制小鼠精子酪胺酸磷酸化蛋白之表現,而鐵螯合劑DEFR具改善鐵質抑制小鼠精子獲能反應相關蛋白磷酸化的作用。未來需要更多研究來證實鐵質抑制精子磷酸化蛋白表現之詳細機轉以及進一步鑑定這些酪胺酸磷酸化蛋白的身份以期瞭解鐵質造成精子功能下降之可能機轉。
Sperm dysfunction is the most common cause of male infertility and sperm protein phosphorylation deficiency has been shown to be one of the possible causes of male infertility. Defective sperm function has been observed in patients with iron overload. Proteins of sperms with normal motility and morphology will need to be phosphorylated which is a post-translational modifications during capacitation. Among these, tyrosine phosphorylation acts as the most important mechanism for regulating sperm function to attain fertilizing capacity. The impaired sperm function in patients with iron overload may be associated with iron induced oxidative stress, the impact of various iron concentration on sperm function is still inconclusive. Current study aimed to investigate the effects of iron on mouse sperm protein phosphorylation and the protection of iron chelator, deferasirox (DEFR), will be further studied. Methods: Cauda epididymal sperm from male ICR mice were collected into HEPES medium and washed. Mouse sperms were divided into pre-incubation and co-incubation groups with various concentrations of ferrous ion (Fe2+; 0 uM, 20 uM, or 40 uM). Western blotting was used to determine protein tyrosine phosphorylation and phosphorylation ratio of AKAP4 protein (ratio of phosphorylated AKAP4 to total AKAP4) during calcium ion and bovine serum albumin induced capacitation. Results: In co-incubation groups, tyrosine phosphorylation proteins with molecular weights of ~100, 82 (A-kinase anchoring proteins 4, AKAP4) and 70 kDa proteins, and phosphorylation ratio of AKAP4 protein decreased while Fe2+ concentration increases, particularly at the 60-minute incubation time. In pre-incubation groups, tyrosine phosphorylation of proteins of ~100, 82, 70, 60, 50 and 35-40 kDa and phosphorylation ratio of AKAP4 protein decreased while Fe2+ concentration increases, particularly at the 60-minute incubation time. Compared to the group with 40 uM Fe2+, 90 uM DEFR ameliorated the decreased tyrosine phosphorylation in ~100, 82, 70, 60, 50 and 35-40 kDa proteins and decreased phosphorylation ratio of AKAP4 protein induced by 40 uM Fe2+ at the 90-minute incubation time under capacitation condition. Tyrosine phosphorylation protein of ~70 kDa increased with the increased concentration of DEFR. Conclusion: It is the first study demonstrates that Fe2+ inhibits protein phosphorylation of mouse sperm and this effect could be improved by DEFR. Further studies are required to elucidate the exact mechanism involved in the effect of iron on sperm protein phosphorylation. Identify these affected phosphorylated proteins will help understand the possible mechanism involved in iron caused sperm dysfunction.
目錄I
縮寫表III
摘要VI
AbstractVII
圖目錄VIII
表目錄X
第一章 緒論1
第一節 精子與其功能介紹2
第一項、精子生成與基本構造2
第二項、精子獲能反應 (capacitation)3
第三項、精子蛋白磷酸化 (protein phosphorylation) 與精子功能的關係6
第二節 精子功能障礙 (sperm dysfunction)12
第一項、氧化壓力 (oxidative stress) 與精子功能障礙12
第二項、鐵質 (iron) 與精子功能障礙14
第三項、蛋白質磷酸化與精子功能障礙16
第三節 研究目的與動機17
第二章 實驗材料與方法18
第一節 藥品試劑與材料19
第一項、實驗動物19
第二項、藥品試劑19
第三項、分析材料與實驗儀器22
第二節 實驗步驟與方法24
第一項、精子製備24
第二項、精子培養25
第三項、精子蛋白質分析28
第三章 研究結果32
第一節 精子獲能反應伴隨之酪胺酸磷酸化蛋白表現情形33
第二節 不同濃度亞鐵離子對精子蛋白質表現之影響34
第一項、未預先將小鼠精子暴露於不同濃度亞鐵離子溶液培養後對精子蛋白質表現之影響34
第二項、預先將小鼠精子暴露於不同濃度亞鐵離子溶液再與獲能反應之培養液培養後對精子蛋白質表現之影響41
第三節 鐵螯合劑對精子蛋白質表現之影響46
第一項、預先將小鼠精子暴露於亞鐵離子及鐵螯合劑之溶液再與獲能反應之培養液培養後對精子蛋白質表現之影響46
第二項、預先將小鼠精子暴露於不同濃度鐵螯合劑溶液再與獲能反應之培養液培養後對精子蛋白質表現之影響48
第四章 討論50
第一節 精子獲能反應伴隨之酪胺酸磷酸化蛋白表現情形51
第二節 不同濃度亞鐵離子對精子蛋白質表現之影響53
第三節 鐵螯合劑對精子蛋白質表現之影響56
第五章 結論與展望58
第六章 圖表62
參考文獻87
Acharya UR, Acharya S and Mishra M (2003) Lead acetate induced cytotoxicity in male germinal cells of Swiss mice. Ind Health 41:291-294.
Agarwal A, Makker K and Sharma R (2008) Clinical relevance of oxidative stress in male factor infertility: an update. Am J Reprod Immunol 59:2-11.
Aitken RJ, Clarkson JS and Fishel S (1989) Generation of reactive oxygen species, lipid peroxidation, and human sperm function. Biol Reprod 41:183-197.
Aparicio IM, Bragado MJ, Gil MC, Garcia-Herreros M, Gonzalez-Fernandez L, Tapia JA and Garcia-Marin LJ (2007) Porcine sperm motility is regulated by serine phosphorylation of the glycogen synthase kinase-3a. Reproduction 134:435-444.
Arcelay E, Salicioni AM, Wertheimer E and Visconti PE (2008) Identification of proteins undergoing tyrosine phosphorylation during mouse sperm capacitation. Int J Dev Biol 52:463-472.
Auger J, Eustache F, Andersen AG, Irvine DS, Jorgensen N, Skakkebak NE, Suominen J, Toppari J, Vierula M and Jouannet P (2001) Sperm morphological defects related to environment, lifestyle and medical history of 1001 male partners of pregnant women from four European cities. Hum Reprod 16:2710-2717.
Austin CR (1951) Observations on the penetration of the sperm into the mammalian egg. Aust J Sci Res B 4:581-596.
Aydemir B, Kiziler AR, Onaran I, Alici B, Ozkara H and Akyolcu MC (2006) Impact of Cu and Fe concentrations on oxidative damage in male Infertility. Biol Trace Elem Res 112:193-203.
Bailey JL (2010) Factors regulating sperm capacitation. Syst Biol Reprod Med 56:334-348.
Baker MA, Hetherington L and Aitken RJ (2006) Identification of SRC as a key PKA-stimulated tyrosine kinase involved in the capacitation-associated hyperactivation of murine spermatozoa. J Cell Sci 119:3182-3192.
Belen Herrero M, Chatterjee S, Lefievre L, de Lamirande E and Gagnon C (2000) Nitric oxide interacts with the cAMP pathway to modulate capacitation of human spermatozoa. Free Radic Biol Med 29:522-536.
Brown PR (2002) A-kinase anchoring protein 4 binding proteins in the fibrous sheath of the sperm flagellum. Biol Reprod 68:2241-2248.
Buffone MG, Doncel GF, Marin Briggiler CI, Vazquez-Levin MH and Calamera JC (2004) Human sperm subpopulations: relationship between functional quality and protein tyrosine phosphorylation. Hum Reprod 19:139-146.
Carnegie GK, Means CK and Scott JD (2009) A-kinase anchoring proteins: from protein complexes to physiology and disease. IUBMB life 61:394-406.
Carpino A, Tarantino P, Rago V, De Sanctis V and Siciliano L (2004) Antioxidant capacity in seminal plasma of transfusion-dependent beta-thalassemic patients. Exp Clin Endocrinol Diabetes 112:131-134.
Carr DW and Newell AE (2007) The role of A-kinase anchoring proteins (AKaps) in regulating sperm function. Soc Reprod Fertil Suppl 63:135-141.
Carrera A, Moos J, Ning XP, Gerton GL, Tesarik J, Kopf GS and Moss SB (1996) Regulation of protein tyrosine phosphorylation in human sperm by a calcium/calmodulin-dependent mechanism: identification of A kinase anchor proteins as major substrates for tyrosine phosphorylation. Dev Biol 180:284-296.
Chan CC, Shui HA, Wu CH, Wang CY, Sun GH, Chen HM and Wu GJ (2009) Motility and protein phosphorylation in healthy and asthenozoospermic sperm. J Proteome Res 8:5382-5386.
Chang MC (1951) Fertilization capacity of spermatozoa deposited in fallopian tubes. Nature 168:697-698.
Chen Y, Cann MJ, Litvin TN, Iourgenko V, Sinclair ML, Levin LR and Buck J (2000) Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. Science 289:625-628.
Comaschi V, Lindner L, Farruggia G, Gesmundo N, Colombi L and Masotti L (1989) An investigation of lipid peroxidation mechanisms in boar spermatozoa. Biochem Biophys Res Commun 158:769-775.
Das UB, Mallick M, Debnath JM and Ghosh D (2002) Protective effect of ascorbic acid on cyclophosphamide- induced testicular gametogenic and androgenic disorders in male rats. Asian J Androl 4:201-207.
de Lamirande E and Cagnon C (1993) Human sperm hyperactivation and capacitation as parts of an oxidative process. Free Radic Biol Med 14:157-166.
de Lamirande E and Gagnon C (1992) Reactive oxygen species and human spermatozoa. II. Depletion of adenosine triphosphate plays an important role in the inhibition of sperm motility. J Androl 13:379-386.
Doreswamy K and Muralidhara. (2005) Genotoxic consequences associated with oxidative damage in testis of mice subjected to iron intoxication. Toxicology 206:169-178.
Droge W (2001) Free radicals in the physiological control of cell function. Physiol Rev 82:47-95.
du Plessis SS, Kashou AH, Benjamin DJ, Yadav SP and Agarwal A (2011) Proteomics: a subcellular look at spermatozoa. Reprod Biol Endocrinol 9:36.
Eddy EM and O''Brien AO (1994) The spermatozoon. In: Knobil E, Neill JD (eds.), The Physiology of Reproduction. New York: Raven Press 2:29-77.
Eddy EM, Toshimori K and O''Brien DA (2003) Fibrous sheath of mammalian spermatozoa. Microsc Res Tech 61:103-115.
Evans JP and Florman HM (2002) The state of the union: the cell biology of fertilization. Nat Cell Biol 4 Suppl:57-63.
Fawcett DW (1975) The mammalian spermatozoon. Dev Biol 44:394-436.
Ficarro S, Chertihin O, Westbrook VA, White F, Jayes F, Kalab P, Marto JA, Shabanowitz J, Herr JC, Hunt DF and Visconti PE (2003) Phosphoproteome analysis of capacitated human sperm. Evidence of tyrosine phosphorylation of a kinase-anchoring protein 3 and valosin-containing protein/p97 during capacitation. J Biol Chem 278:11579-11589.
Fleming RE and Sly WS (2001) Hepcidin: a putative iron-regulatory hormone relevant to hereditary hemochromatosis and the anemia of chronic disease. Proc Natl Acad Sci U S A 98:8160-8162.
Florman HM and First NL (1988) The regulation of acrosomal exocytosis. I. Sperm capacitation is required for the induction of acrosome reactions by the bovine zona pellucida in vitro. Dev Biol 128:453-463.
Florman HM, Jungnickel MK and Sutton KA (2008) Regulating the acrosome reaction. Int J Dev Biol 52:503-510.
Fraser LR (1987) Minimum and maximum extracellular Ca2+ requirements during mouse sperm capacitation and fertilization in vitro. J Reprod Fertil 81:77-89.
Gagnon C and de Lamirande E (2006) Control of sperm motility. In: de Jonge C, Barratt C (eds.), The sperm cells: Production, Maturation, Fertilization and Regeneration. Cambridge University Press, Cambridge UK:108-133.
Galanello R, Campus S and Origa R (2012) Deferasirox: pharmacokinetics and clinical experience. Expert Opin Drug Metab Toxicol 8:123-134.
Galantino-Homer HL, Visconti PE and Kopf GS (1997) Regulation of Protein Tyrosine Phosphorylation during Bovine Sperm Capacitation by a Cyclic Adenosine 3'',5''-Monophosphate-dependent pathway. Biol Reprod 56:707-719.
Go KJ and Wolf DP (1985) Albumin-mediated changes in sperm sterol content during capacitation. Biol Reprod 32:145-153.
Gur Y and Breitbart H (2006) Mammalian sperm translate nuclear-encoded proteins by mitochondrial-type ribosomes. Genes Dev 20:411-416.
Harayama H and Nakamura K (2008) Changes of PKA and PDK1 in the principal piece of boar spermatozoa treated with a cell-permeable cAMP analog to induce flagellar hyperactivation. Mol Reprod Dev 75:1396-1407.
Harrison RA (2004) Rapid PKA-catalysed phosphorylation of boar sperm proteins induced by the capacitating agent bicarbonate. Mol Reprod Dev 67:337-352.
Hernandez-Gonzalez EO, Sosnik J, Edwards J, Acevedo JJ, Mendoza-Lujambio I, Lopez-Gonzalez I, Demarco I, Wertheimer E, Darszon A and Visconti PE (2006) Sodium and epithelial sodium channels participate in the regulation of the capacitation-associated hyperpolarization in mouse sperm. J Biol Chem 281:5623-5633.
Ho HC and Suarez SS (2001) Hyperactivation of mammalian spermatozoa: function and regulation. Reproduction 122:519-526.
Holland MK, Alvarez JG and Storey BT (1982) Production of superoxide and activity of superoxide dismutase in rabbit epididymal spermatozoa. Biol Reprod 27:1109-1118.
Huang YL, Tseng WC, Cheng SY and Lin TH (2000) Trace elements and lipid peroxidation in human seminal plasma. Biol Trace Elem Res 76:207-215.
Huang YL, Tseng WC and Lin TH (2001) In vitro effects of metal ions (Fe2+, Mn2+, Pb2+) on sperm motility and lipid peroxidation in human semen. J Toxicol Environ Health A 62.
Hunter T (2000) Signaling—2000 and beyond. Cell 100:113-127.
Ickowicz D, Finkelstein M and Breitbart H (2012) Mechanism of sperm capacitation and the acrosome reaction: role of protein kinases. Asian J Androl 14:816-821.
Jabbari S, Sadeghi MR, Akhondi MM, Ebrahim Habibi A, Amirjanati N, Lakpour N, Asgharpour L and Ardekani AM (2009) Tyrosine phosphorylation pattern in sperm proteins isolated from normospermic and teratospermic men. J Reprod Infertil 10:185-191.
Johnson LR, Foster JA, Haig-Ladewig L, VanScoy H, Rubin CS, Moss SB and Gerton GL (1997) Assembly of AKAP82, a protein kinase A anchor protein, into the fibrous sheath of mouse sperm. Dev Biol 192:340-350.
Kalab P, Visconti P, Leclerc P and Kopf G (1994) p95, the major phosphotyrosine-containing protein in mouse spermatozoa, is a hexokinase with unique properties. J Biol Chem 269(5):3810-3817.
Kenkel S, Rolf C and Nieschlag E (2001) Occupational risks for male fertility: an analysis of patients attending a tertiary referral centre. Int J Androl 24:318-326.
Kota V, Dhople VM and Shivaji S (2009) Tyrosine phosphoproteome of hamster spermatozoa: role of glycerol-3-phosphate dehydrogenase 2 in sperm capacitation. Proteomics 9:1809-1826.
Kulanand J and Shivaji S (2001) Capacitation-associated changes in protein tyrosine phosphorylation, hyperactivation and acrosome reaction in hamster spermatozoa. Andrologia 33:95-104.
Leclerc P, de Lamirande E and Gagnon C (1996) Cyclic adenosine 3'',5''monophosphate-dependent regulation of protein tyrosine phosphorylation in relation to human sperm capacitation and motility. Biol Reprod 55:684-692.
Leclerc P, de Lamirande E and Gagnon C (1997) Regulation of protein-tyrosine phosphorylation and human sperm capacitation by reactive oxygen derivatives. Free Radic Biol Med 22:643-656.
Lee MA and Storey BT (1986) Bicarbonate is essential for fertilization of mouse eggs: mouse sperm require It to undergo the acrosome reaction. Biol Reprod 34:349-356.
Leichtmann-Bardoogo Y, Cohen LA, Weiss A, Marohn B, Schubert S, Meinhardt A and Meyron-Holtz EG (2012) Compartmentalization and regulation of iron metabolism proteins protect male germ cells from iron overload. Am J Physiol Endocrinol Metab 302:E1519-1530.
Leyton L and Saling P (1989) 95 kd sperm proteins bind ZP3 and serve as tyrosine kinase substrates in response to zona binding. Cell 57:1123-1130.
Li Y, Liu JH, Wang T and Ye ZQ (2005) AKAP82 expression in sperm in asthenospermia. Zhonghua nan ke xue 11:908-911.
Liu DY, Clarke GN and Baker HW (2006) Tyrosine phosphorylation on capacitated human sperm tail detected by immunofluorescence correlates strongly with sperm-zona pellucida (ZP) binding but not with the ZP-induced acrosome reaction. Hum Reprod 21:1002-1008.
Lloyd RV, Hanna PM and Mason RP (1997) The origin of the hydroxyl radical oxygen in the Fenton reaction. Free Radic Biol Med 22:885-888.
Maneesh M, Dutta S, Chakrabarti A and Vasudevan DM (2006) Alcohol abuse-duration dependent decrease in plasma testosterone and antioxidants in males. Indian J Physiol Pharmacol 50:291-296.
Marzec-Wroblewska U, Kamiński P, Lakota P, Szymański M, Wasilow K, Ludwikowski G, Kuligowska-Prusińska M, Odrowąż-Sypniewska G, Stuczyński T and Michałkiewicz J (2011) Zinc and iron concentration and SOD activity in human semen and seminal plasma. Biol Trace Elem Res 143:167-177.
Miki K, Willis WD, Brown PR, Goulding EH, Fulcher KD and Eddy EM (2002) Targeted Disruption of the Akap4 Gene Causes Defects in Sperm Flagellum and Motility. Dev Biol 248:331-342.
Miller D and Ostermeier GC (2006) Spermatozoal RNA: Why is it there and what does it do? Gynecol Obstet Fertil 34:840-846.
Mitra K and Shivaji S (2004) Novel tyrosine-phosphorylated post-pyruvate metabolic enzyme, dihydrolipoamide dehydrogenase, involved in capacitation of hamster spermatozoa. Biol Reprod 70:887-899.
Naaby-Hansen S, Mandal A, Wolkowicz MJ, Sen B, Westbrook VA, Shetty J, Coonrod SA, Klotz KL, Kim YH, Bush LA, Flickinger CJ and Herr JC (2002) CABYR, a novel calcium-binding tyrosine phosphorylation-regulated fibrous sheath protein involved in capacitation. Dev Biol 242:236-254.
Nassar A, Mahony M, Morshedi M, Lin MH, Srisombut C and Oehninger S (1997) Modulation of sperm tail protein tyrosine phosphorylation by pentoxifylline and its correlation with hyperactivated motility. Fertil Steril 71:919-923.
Naz RK and Rajesh PB (2004) Role of tyrosine phosphorylation in sperm capacitation / acrosome reaction. Reprod Biol Endocrinol 2:75.
Ochsendorf FR (1999) Infections in the male genital tract and reactive oxygen species. Hum Reprod Update 5:399-420.
Padron OF, Brackett NL, Sharma RK, Lynne CM, Thomas AJ, Jr. and Agarwal A (1997) Seminal reactive oxygen species and sperm motility and morphology in men with spinal cord injury. Fertil Steril 67:1115-1120.
Perera D, Pizzey A, Campbell A, Katz M, Poter J, Petrou M, Irvine DS and Chatterjee R (2002) Sperm DNA damage in potentially fertile homozygous b-thalassaemia patients with iron overload. Hum Reprod 17:1820-1825.
Plante M, de Lamirande E and Gagnon C (1994) Reactive oxygen species released by activated neutrophils, but not by deficient spermatozoa, are sufficient to affect normal sperm motility. Fertil Steril 62:387-393.
Pukazhenthi BS, Wildt DE, Ottinger MA and Howard J (1998) Inhibition of Domestic Cat Spermatozoa Acrosome Reaction and Zona Pellucida Penetration by Tyrosine Kinase Inhibitors. Mol Reprod Dev 49:48-57.
Rivlin J, Mendel J, Rubinstein S, Etkovitz N and Breitbart H (2004) Role of hydrogen peroxide in sperm capacitation and acrosome reaction. Biol Reprod 70:518-522.
Saleh RA, Agarwal A, Sharma RK, Nelson DR and Thomas Jr AJ (2002) Effect of cigarette smoking on levels of seminal oxidative stress in infertile men: a prospective study. Fertil Steril 78:491-499.
Salicioni AM, Platt MD, Wertheimer EV, Arcelay E, Allaire A, Sosnik J and Visconti PE (2007) Signalling pathway involved in sperm capacitation. Soc Reprod Fertil Suppl 65:245-259.
Saling PM, Sowinski J and Storey BT (1979) An ultrastructural study of epididymal mouse spermatozoa binding to zonae pellucidae in vitro: sequential relationship to the acrosome reaction. J Exp Zool 209:229-238.
Saling PM, Storey BT and Wolf DP (1978) Calcium-dependent binding of mouse epididymal spermatozoa to the zona pellucida. Dev Biol 65:515-525.
Seli E, Gardner DK, Schoolcraft WB, Moffatt O and Sakkas D (2004) Extent of nuclear DNA damage in ejaculated spermatozoa impacts on blastocyst development after in vitro fertilization. Fertil Steril 82:378-383.
Sikka SC (1996) Oxidative stress and role of antioxidants in normal and abnormal sperm function. Front Biosci 1:e78-e86.
Skandhan KP, Mazumdar BN and Sumangala B (2012) Study into the iron content of seminal plasma in normal and infertile subjects. Urologia 79:54-57.
Slivkova J, Popelkova M, Massanyi P, Toporcerova S, Stawarz R, Formicki G, Lukac N, Putala A and Guzik M (2009) Concentration of trace elements in human semen and relation to spermatozoa quality. J Environ Sci Health A Tox Hazard Subst Environ Eng 44:370-375.
Storey BT (1995) Interactions between gametes leading to fertilization: the sperm''s eye view. Reprod Fertil Dev 7(4):927-942.
Tardif S, Dube C, Chevalier S and Bailey J, L. (2001) Capacitation Is Associated with Tyrosine Phosphorylation and Tyrosine Kinase-Like Activity of Pig Sperm Proteins. Biol Reprod 65:784-792.
Topper EK, Killian GJ, Way A, Engel B and Woelders H (1999) Influence of capacitation and fluids from the male and female genital tract on the zona binding ability of bull spermatozoa. J Reprod Fertil 115:175-183.
Urner F, Leppens-Luisier G and Sakkas D (2001) Protein tyrosine phosphorylation in sperm during gamete interaction in the mouse: the influence of glucose. Biol Reprod 64:1350-1357.
Urner F and Sakkas D (2003) Protein phosphorylation in mammalian spermatozoa. Reproduction 125:17-26.
Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M and Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44-84.
Valko M, Morris H and Cronin MTD (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161-1208.
Varano G, Lombardi A, Cantini G, Forti G, Baldi E and Luconi M (2008) Src activation triggers capacitation and acrosome reaction but not motility in human spermatozoa. Hum Reprod 23(12):2652-2662.
Visconti PE (2009) Understanding the molecular basis of sperm capacitation through kinase design. Proc Natl Acad Sci U S A 106:667-668.
Visconti PE, Bailey JL, Moore GD, Pan D, Olds-Clarke P and Kopf GS (1995a) Capacitation of mouse spermatozoa. I. Correlation between the capacitation state and protein tyrosine phosphorylation. Development 121:1129-1137.
Visconti PE, Moore GD, Bailey JL, Leclerc P, Connors SA, Pan D, Olds-Clarke P and Kopf GS (1995b) Capacitation of mouse spermatozoa. II. Protein tyrosine phosphorylation and capacitation are regulated by a cAMP-dependent pathway. Development 121:1139-1150.
Visconti PE, Westbrook VA, Chertihin O, Demarco I, Sleight S and Diekman AB (2002) Novel signaling pathways involved in sperm acquisition of fertilizing capacity. J Reprod Immunol 53:133-150.
Wellejus A, Poulsen HE and Loft S (2000) Iron-induced oxidative DNA damage in rat sperm cells in vivo and in vitro. Free Radic Res 32:75-83.
Wennemuth G (2003) Bicarbonate actions on flagellar and Ca2+-channel responses: initial events in sperm activation. Development 130:1317-1326.
Wong W and Scott J, D. (2004) AKAP signalling complexes: focal points in space and time. Nat Rev Mol Cell Biol 5:959-971.
Yanagimachi R (1994) Mammalian fertilization. In: Knobil E, Neill JD (Eds.), The Physiology of Reproduction. New York: Raven Press 2:189-317.
Yunes R, Doncel GF and Acosta AA (2003) Incidence of sperm-tail tyrosine phosphorylation and hyperactivated motility in normozoospermic and asthenozoospermic human sperm samples. Biocell 27:29-36.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔