(54.236.58.220) 您好!臺灣時間:2021/03/04 23:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳奕全
研究生(外文):Yi- Chuan Chen
論文名稱:葡萄糖濃度對小鼠精子之影響
論文名稱(外文):Effects of Glucose Concentrations on Mouse Spermatozoa
指導教授:吳姿樺吳姿樺引用關係
指導教授(外文):Thz-Hua Wu
口試委員:吳世雄黃彥華
口試委員(外文):Shin-Hsiung WuYan-Hua Huang
口試日期:2013-06-20
學位類別:碩士
校院名稱:臺北醫學大學
系所名稱:藥學院生技製藥產業碩士專班
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:119
中文關鍵詞:小鼠、精子運動參數、葡萄糖、水飛薊、電腦輔助精子分析儀
外文關鍵詞:mousesperm motility parametersglucosesilymarinCASA
相關次數:
  • 被引用被引用:0
  • 點閱點閱:17
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
不孕症 (infertility) 影響全球近八千萬的夫妻已成為全球關注的議題,其中男性因素 (male factor) 占不孕症發生的原因近50%,而其中又有55%是與精子無力症有關。已知葡萄糖進入精子細胞內會經由糖解作用產生的腺苷三磷酸 (ATP) 作為精子活動能量的最主要來源,而 ATP 經酵素轉化產生的環狀腺核苷單磷酸 (cAMP),則將經由 protein kinase activator (PKA) 訊息傳遞進而促進精子的活動。然而,葡萄糖濃度過高時是否會影響精子活動力仍待釐清。因此,本研究利用電腦輔助精子分析儀 (computer assisted sperm analysis, CASA) 分析高濃度葡萄糖對精子活動力的影響並探討其可能的生化路徑。方法:將小鼠精子分別在含有正常葡萄糖濃度 (5.5 mM)、高葡萄糖濃度 (25 mM) 的緩衝液培養,分別在第 0、30、60、90、120 分鐘利用精子輔助分析儀分析精子八項運動參數包括精子的活動力 (Motility; M)、精子活動路徑平均速度 (VAP)、精子直線速度 (VSL)、精子曲線速度 (VCL)、精子側頭位移之振幅 (ALH)、精子搏動頻率 (BCF)、精子向前性 (STR)、精子直線性 (LIN),進而探討各時間點間各項精子運動參數的差異再以 one-way ANOVA 檢測兩組間的統計差異;高葡萄糖所造成的改變之生化路徑則利用已知具調控糖平衡的水飛薊 (silymarin;5、10、20 ug/ml) 進一步分析。結果:在高濃度葡萄糖緩衝液中,參數 M 值在第 90 分鐘較培養於正常葡萄糖的精子高 (52.0 ± 10.4% vs. 28.7 ± 10.1%;p < 0.05);參數 VAP 值、參數 VSL 值、參數 VCL 值在 60、90 分鐘時間點亦較正常葡萄糖的精子高,且具統計上顯著差異 (p < 0.05);而高葡萄緩衝液中添加或未添加 PKA 抑制劑 (H-89) 在第 30 分鐘參數 M 值分別為 (42.0 ± 7.8% vs. 55.7 ± 19.9%)。前述結果顯示:在高葡萄糖濃度下精子有較高的活動力,推論可能與過量葡萄糖能提供額外糖解訊息傳遞經 PKA 路徑有關。生化路徑的探討部分:在正常葡萄糖緩衝液下,參數 M 值在 20 ug/ml silymarin 培養 90 分鐘時間點較未含有silymarin 培養組別高 (52.3 ± 10.8% vs. 28.7 ± 10.1%, p < 0.05);而參數 VAP值、參數VSL值、參數 VCL 值也有相同趨勢,但無統計上顯著差異。但在高濃度葡萄糖下,參數 M 值、參數 VAP 值、參數 VSL 值、參數 VCL 值隨著 silymarin 濃度 (5、10、20 ug/mL) 的上升而下降;其第 60 分鐘時活動力分別為 (40.7 ± 6.5% vs. 33.7 ± 5.5% vs. 29.3 ± 9.1%),相較於高葡萄糖組具顯著差異 (60.7 ± 10.4%; p < 0.05 );然而在參數 ALH 值、參數 BCF 值、參數 STR 值、參數 LIN 值,經藥物處理過後均無明顯變化;而比較含 silymarin 之高葡萄緩衝液測試組中添加或未添加 PKA 抑制劑在第 30 分鐘參數 M 值分別為 (36.5 ± 4.9% vs. 59.3 ± 16.3%)。結果顯示:在正常濃度緩衝液下20 ug/ml silymarin 可維持較長時間的精子活動力,而在高葡萄糖緩衝液下且含有silymarin時,精子活動力會有下降的情形。而 PKA 抑制劑在高葡萄糖環境下具抑制精子活動力作用但在含 20 ug/ml silymarin 的高葡萄糖環境參數 M 值則低於無silymarin組別 (36.5 ± 4.9% vs. 42 ± 7.8%)。結論:高濃度葡萄糖 (25 mM) 可以增加精子活動力,且可能與活化 PKA 路徑作用有關;20 ug/ml silymarin 可以延長精子活動力情形,但 silymarin 減緩高葡萄糖所促進的精子活動力結果。Silymarin 對 PKA 以外之其他促進精子活動力訊息傳遞,以及將葡萄糖補充或 silymarin 應用在人工受孕中以增進精子活動力的可行性,則需要進一步的研究。
Infertility affecting nearly 80 million couples has become a global concern. Among those, male factors accounts for 50 percent cause of the infertility, while 55% male infertility is related to the asthenozoospermia. Adenosine triphosphate (ATP) is known to be produced by glycolysis while glucose enters into sperm cell, which is mainly dedicated to maintain sperm motility. Cyclic adenosine monophosphate (cAMP) derived from ATP further stimulate protein kinase activator (PKA) pathway to boost motility. However, the effect of high concentration glucose on mouse spermatozoa is still unclear. Here, we aimed to determine the effect of high concentration glucose on mouse spermatozoa motility parameters and its possible biochemical mechanisms. Methods: Prepared sperm samples were incubated in HM buffer containing normal glucose (NG; 5.5 mM) or high concentration glucose (HG; 25 mM), then analysize at 0, 30, 60, 90, 120 mins by using computer assisted semen analysis (CASA) to assess sperm motility parameters. In this study, the primary CASA measurements assessed were percent motility, average pathway velocity (VAP), straightline velocity (VSL), curvilinear velocity (VCL), amplitude of lateral head displacement (ALH), beat cross frequency (BCF), straightness (STR) and linearity (LIN). The one-way ANOVA was used to test variances between groups at different time periods. Furthermore, the influence of silymarin (5, 10, 20 ug/mL) and its possible biochemical pathway involved in the effects of high concentration of glucose on sperm motility parameters was then investigated. Results: Sperms incubated in HG had higher motility compared to NG at 90 mins (52.0 ± 10.4% vs. 28.7 ± 10.1%, p < 0.05). VAP, VSL, VCL had similar pattern at 60, 90 mins (p < 0.05). Incubated in HG condition with or without PKA inhibitor (H-89), sperm motility at 30 mins was 42.0 ± 7.8%, 55.7 ± 19.9%, respectively. This result indicates that higher percent of sperms had higher motility rate in HG which may due to extra energy provided by additional glucose source for spermatozoa via PKA pathway. Presence of 20 ug/ml silymarin resulted in higher motility compared to control group at 90 mins (52.3 ± 10.8% vs. 28.7 ± 10.1%, p < 0.05). VAP, VSL, VCL of sperm treated with 20 ug/ml silymarin also showed the similar trend but did not reach statistical differences. However, presence of silymarin resulted in decreased motility parameters (motility, VAP, VSL, VCL) in HG condition while the concentration of silymarin (5, 10, 20 ug/ml) increased. At 60 mins while compared the control (60.7 ± 10.4%), the motility of sperms treated with various concentrations of silymarin (5, 10, 20 ug/ml) was 40.7 ± 6.5%, 33.7 ± 5.5%, 29.3 ± 9.1%, respectively (p < 0.05). On the other hand, ALH, BCF, STR, LIN was not affected by glucose and silymarin. Incubated in HG condition with or without H-89, sperm motility treated with 20 ug/ml silymarin at 30 mins was 36.5 ± 4.9% vs. 59.3 ± 16.3%, respectively. Those results indicate that 20 ug/ml silymarin prolonged sperm motility. In contrasts, silymarin decreased sperm motility induced by HG. Those observations suggest that silymarin increased sperm motility via PKA activation. Conclusion: High concentration of glucose (25 mM) increased sperm motility and such effects may be related to PKA pathway activation. Silymarin at 20 ug/ml prolongs sperm motility, but depress sperm motility induced by HG. The mechanisms of how silymairn affects cell signal pathway other than PKA pathway and whether supplementation of glucose or silymarin can be applied to in vitro fertilization need further study.
目錄 I
縮寫表 II
摘要.............................................................................................................................. III
Abstract IV
表目錄 V
圖目錄 VI
第一章、緒論 1
一、精子的發生與成熟 2
二、精子構造 3
三、精子游動力參數介紹 5
四、精子活動的訊息傳遞機制 6
五、醣類對精子之影響 8
六、研究動機與目的 12
第二章、研究設計 13
一、藥品、試劑、分析材料與儀器設備 14
二、精子的製備 17
三、控制組與實驗組的製備 18
四、精子活動速度評估 19
五 、資料分析與統計 21
第三章、研究結果 22
一、精子活動力 23
二、前進游動精子百分率 24
三、精子活動路徑平均速度 25
四、精子曲線速度 26
六、精子直線速度 27
七、其他運動參數 28
第四章、討論 29
第五章、結論與展望 41
第六章、圖表 45
參考文獻 113
Aalbers JG, Mann T and Polge C (1961) Metabolism of boar sperm in relation to sperm motility and survival. Journal of reproduction and fertility 2(1): 42-53.
Aboagla EM and Terada T (2003) Trehalose-enhanced fluidity of the goat sperm membrane and its protection during freezing. Biology of reproduction 69(4): 1245-1250.
Adeoya-Osiguwa SA and Fraser LR (1993) A biphasic pattern of 45 Ca2+ uptake by mouse spermatozoa in vitro correlates with changing functional potential. Journal of reproduction and fertility 99(1): 187-194.
Aisen EG, Medina VH and Venturino A (2002) Cryopreservation and post-thawed fertility of ram semen frozen in different trehalose concentrations. Theriogenology 57(7): 1801-1808.
Amann RP, Hay SR and Hammerstedt RH (1982) Yield, characteristics, motility and cAMP content of sperm isolated from seven regions of ram epididymis. Biology of reproduction 27(3): 723-733.
Armstrong JS, Rajasekaran M, Chamulitrat W, Gatti P, Hellstrom WJ and Sikka SC (1999) Characterization of reactive oxygen species induced effects on human spermatozoa movement and energy metabolism. Free radical biology & medicine 26(7-8): 869-880.
Attia Y (2010) Oral glucose supplementation improved semen quality and constituents of seminal and blood plasma of NZW buck rabbits in the subtropics. Open Access Animal Physiology: 81.
Austin CR (1951) Observations on the penetration of the sperm in the mammalian egg. Australian journal of scientific research Ser B: Biological sciences 4(4): 581-596.
Austin CR (1952) The capacitation of the mammalian sperm. Nature 170(4321): 326.
Bakst MR and Cecil HC (1992) Effect of bovine serum albumin on motility and fecundity of turkey spermatozoa before and after storage. Journal of reproduction and fertility 94(2): 287-293.
Barlow P, Delvigne A, Van Dromme J, Van Hoeck J, Vandenbosch K and Leroy F (1991) Predictive value of classical and automated sperm analysis for in-vitro fertilization. Human reproduction 6(8): 1119-1124.
Buck J, Sinclair ML, Schapal L, Cann MJ and Levin LR (1999) Cytosolic adenylyl cyclase defines a unique signaling molecule in mammals. Proceedings of the National Academy of Sciences of the United States of America 96(1): 79-84.
Bunch DO, Welch JE, Magyar PL, Eddy EM and O''Brien DA (1998) Glyceraldehyde 3-phosphate dehydrogenase-S protein distribution during mouse spermatogenesis. Biology of reproduction 58(3): 834-841.
Chang MC (1951) Fertilizing capacity of spermatozoa deposited into the fallopian tubes. Nature 168(4277): 697-698.
Chen Y, Cann MJ, Litvin TN, Iourgenko V, Sinclair ML, Levin LR and Buck J (2000) Soluble adenylyl cyclase as an evolutionarily conserved bicarbonate sensor. Science 289(5479): 625-628.
Colas C, Cebrian-Perez JA and Muino-Blanco T (2010) Caffeine induces ram sperm hyperactivation independent of cAMP-dependent protein kinase. International journal of andrology 33(1): e187-197.
de Lamirande E and Gagnon C (1992) Reactive oxygen species and human spermatozoa. I. Effects on the motility of intact spermatozoa and on sperm axonemes. Journal of andrology 13(5): 368-378.
Farrell PB, Presicce GA, Brockett CC and Foote RH (1998) Quantification of bull sperm characteristics measured by computer-assisted sperm analysis (CASA) and the relationship to fertility. Theriogenology 49(4): 871-879.
Federico A, Trappoliere M, Tuccillo C, de Sio I, Di Leva A, Del Vecchio Blanco C and Loguercio C (2006) A new silybin-vitamin E-phospholipid complex improves insulin resistance and liver damage in patients with non-alcoholic fatty liver disease: preliminary observations. Gut 55(6): 901-902.
Ferenci P, Scherzer TM, Kerschner H, Rutter K, Beinhardt S, Hofer H, Schoniger-Hekele M, Holzmann H and Steindl-Munda P (2008) Silibinin is a potent antiviral agent in patients with chronic hepatitis C not responding to pegylated interferon/ribavirin therapy. Gastroenterology 135(5): 1561-1567.
Fraser LR and Monks NJ (1990) Cyclic nucleotides and mammalian sperm capacitation. Journal of reproduction and fertility Supplement 42: 9-21.
Frenkel G, Peterson RN and Freund M (1973) Changes in the metabolism of guinea pig sperm from different segments of the epididymis. Proceedings of the Society for Experimental Biology and Medicine Society for Experimental Biology and Medicine (New York, NY) 143(4): 1231-1236.
Garcia-Maceira P and Mateo J (2009) Silibinin inhibits hypoxia-inducible factor-1alpha and mTOR/p70S6K/4E-BP1 signalling pathway in human cervical and hepatoma cancer cells: implications for anticancer therapy. Oncogene 28(3): 313-324.
Garton MJ and Reid DM (1993) Bone mineral density of the hip and of the anteroposterior and lateral dimensions of the spine in men with rheumatoid arthritis. Effects of low-dose corticosteroids. Arthritis and rheumatism 36(2): 222-228.
Gutierrez-Perez O, Juarez-Mosqueda Mde L, Carvajal SU and Ortega ME (2009) Boar spermatozoa cryopreservation in low glycerol/trehalose enriched freezing media improves cellular integrity. Cryobiology 58(3): 287-292.
Hammerstedt RH (1993) Maintenance of bioenergetic balance in sperm and prevention of lipid peroxidation: a review of the effect on design of storage preservation systems. Reproduction, fertility, and development 5(6): 675-690.
Hayder GO (2012) What Are The Effects of slibinin on testicular tissue of mice? Journal of Applied Pharmaceutical Science.
Hoflack G, Opsomer G, Rijsselaere T, Van Soom A, Maes D, de Kruif A and Duchateau L (2007) Comparison of computer-assisted sperm motility analysis parameters in semen from Belgian blue and Holstein-Friesian bulls. Reproduction in domestic animals 42(2): 153-161.
Holt C, Holt WV, Moore HD, Reed HC and Curnock RM (1997) Objectively measured boar sperm motility parameters correlate with the outcomes of on-farm inseminations: results of two fertility trials. Journal of andrology 18(3): 312-323.
Holt WV, Moore HD and Hillier SG (1985) Computer-assisted measurement of sperm swimming speed in human semen: correlation of results with in vitro fertilization assays. Fertility and sterility 44(1): 112-119.
Hoskins DD and Patterson DL (1968) Metabolism of rhesus monkey spermatozoa. Journal of reproduction and fertility 16(2): 183-195.
Hossain AM and Osuamkpe CO (2007) Sole use of sucrose in human sperm cryopreservation. Archives of andrology 53(2): 99-103.
Hsu PC, Liu MY, Hsu CC, Chen LY and Guo YL (1998) Effects of vitamin E and/or C on reactive oxygen species-related lead toxicity in the rat sperm. Toxicology 128(3): 169-179.
Hu JH, Li QW, Li G, Jiang ZL, Bu SH, Yang H and Wang LQ (2009) The cryoprotective effect of trehalose supplementation on boar spermatozoa quality. Animal reproduction science 112(1-2): 107-118.
Jones AR and Connor DE (2000) Fructose metabolism by mature boar spermatozoa. Reproduction, fertility, and development 12(7-8): 355-359.
Kasimanickam R, Kasimanickam V, Pelzer KD and Dascanio JJ (2007) Effect of breed and sperm concentration on the changes in structura, functional and motility parameters of ram-lamb spermatozoa during storage at 4 degrees C. Animal reproduction science 101(1-2): 60-73.
Kim ST and Moley KH (2007) The expression of GLUT8, GLUT9a, and GLUT9b in the mouse testis and sperm. Reproductive sciences14(5): 445-455.
King LM, Holsberger DR and Donoghue AM (2000) Correlation of CASA velocity and linearity parameters with sperm mobility phenotype in turkeys. Journal of andrology 21(1): 65-71.
Kiruthiga PV, Shafreen RB, Pandian SK, Arun S, Govindu S and Devi KP (2007) Protective effect of silymarin on erythrocyte haemolysate against benzo(a)pyrene and exogenous reactive oxygen species (H2O2) induced oxidative stress. Chemosphere 68(8): 1511-1518.
Koch HP, Bachner J and Loffler E (1985) Silymarin: potent inhibitor of cyclic AMP phosphodiesterase. Methods and findings in experimental and clinical pharmacology 7(8): 409-413.
Larsen L, Scheike T, Jensen TK, Bonde JP, Ernst E, Hjollund NH, Zhou Y, Skakkebaek NE and Giwercman A (2000) Computer-assisted semen analysis parameters as predictors for fertility of men from the general population. The danish first pregnancy planner study team. Human reproduction 15(7): 1562-1567.
Lee MA and Storey BT (1986) Bicarbonate is essential for fertilization of mouse eggs: mouse sperm require it to undergo the acrosome reaction. Biology of reproduction 34(2): 349-356.
Leibo SP and Songsasen N (2002) Cryopreservation of gametes and embryos of non-domestic species. Theriogenology 57(1): 303-326.
Lirussi F, Beccarello A, Zanette G, De Monte A, Donadon V, Velussi M and Crepaldi G (2002) Silybin-beta-cyclodextrin in the treatment of patients with diabetes mellitus and alcoholic liver disease. Efficacy study of a new preparation of an anti-oxidant agent. Diabetes, nutrition & metabolism 15(4): 222-231.
Liu DY, Clarke GN and Baker HW (1991) Relationship between sperm motility assessed with the Hamilton-Thorn motility analyzer and fertilization rates in vitro. Journal of andrology 12(4): 231-239.
Macleod IC and Irvine DS (1995) The predictive value of computer-assisted semen analysis in the context of a donor insemination programme. Human reproduction 10(3): 580-586.
Mahadevan MM, Miller MM and Moutos DM (1997) Absence of glucose decreases human fertilization and sperm movement characteristics in vitro. Human reproduction 12(1): 119-123.
Miki K, Qu W, Goulding EH, Willis WD, Bunch DO, Strader LF, Perreault SD, Eddy EM and O''Brien DA (2004) Glyceraldehyde 3-phosphate dehydrogenase-S, a sperm-specific glycolytic enzyme, is required for sperm motility and male fertility. Proceedings of the National Academy of Sciences of the United States of America 101(47): 16501-16506.
Moore HD and Akhondi MA (1996) Fertilizing capacity of rat spermatozoa is correlated with decline in straight-line velocity measured by continuous computer-aided sperm analysis: epididymal rat spermatozoa from the proximal cauda have a greater fertilizing capacity in vitro than those from the distal cauda or vas deferens. Journal of andrology 17(1): 50-60.
Morales P, Overstreet JW and Katz DF (1988) Changes in human sperm motion during capacitation in vitro. Journal of reproduction and fertility 83(1): 119-128.
Mortimer ST and Maxwell WM (1999) Kinematic definition of ram sperm hyperactivation. Reproduction, fertility, and development 11(1): 25-30.
Nagai T, Yamaguchi K and Moriwaki C (1982) Studies on the effects of sugars on washed human sperm motility. Journal of pharmacobio-dynamics 5(8): 564-567.
O''Shea T and Wales RG (1965) Metabolism of sorbitol and fructose by ram spermatozoa. Journal of reproduction and fertility 10(3): 353-368.
Pascual C, Gonz R, Armesto J and Muriel P (1993) Effect of silymarin and silybinin on oxygen radicals. Drug Development Research 29(1): 73-77.
Ponglowhapan S, Essen-Gustavsson B and Linde Forsberg C (2004) Influence of glucose and fructose in the extender during long-term storage of chilled canine semen. Theriogenology 62(8): 1498-1517.
Purdy PH (2006) A review on goat sperm cryopreservation. Small Ruminant Research 63(3): 215-225.
Rikmenspoel R and Caputo R (1966) The Michaelis-Menten Constant for Fructose and for Glucose of Hexokinase in Bull Spermatozoa. Journal of reproduction and fertility 12(3): 437-444.
Singaravelu G, Chatterjee I, Marcello MR and Singson A (2011) Isolation and in vitro activation of Caenorhabditis elegans sperm. Journal of visualized experiments (47).
Singh RP, Gu M and Agarwal R (2008) Silibinin inhibits colorectal cancer growth by inhibiting tumor cell proliferation and angiogenesis. Cancer research 68(6): 2043-2050.
Sobolova L, Skottova N, Vecera R and Urbanek K (2006) Effect of silymarin and its polyphenolic fraction on cholesterol absorption in rats. Pharmacological research : the official journal of the Italian Pharmacological Society 53(2): 104-112.
Storey BT, Noiles EE and Thompson KA (1998) Comparison of glycerol, other polyols, trehalose, and raffinose to provide a defined cryoprotectant medium for mouse sperm cryopreservation. Cryobiology 37(1): 46-58.
Strobel P, Allard C, Perez-Acle T, Calderon R, Aldunate R and Leighton F (2005) Myricetin, quercetin and catechin-gallate inhibit glucose uptake in isolated rat adipocytes. The Biochemical journal 386(Pt 3): 471-478.
Suarez SS (2008) Control of hyperactivation in sperm. Human reproduction update 14(6): 647-657.
Travis AJ, Jorgez CJ, Merdiushev T, Jones BH, Dess DM, Diaz-Cueto L, Storey BT, Kopf GS and Moss SB (2001) Functional relationships between capacitation-dependent cell signaling and compartmentalized metabolic pathways in murine spermatozoa. The Journal of biological chemistry 276(10): 7630-7636.
Turner RM (2003) Tales from the tail: what do we really know about sperm motility? Journal of andrology 24(6): 790-803.
Urner F and Sakkas D (1996) Glucose participates in sperm-oocyte fusion in the mouse. Biology of reproduction 55(4): 917-922.
Urner F and Sakkas D (2003) Protein phosphorylation in mammalian spermatozoa. Reproduction 125(1): 17-26.
Uysal O and Bucak MN (2009) The role of different trehalose concentrations and cooling rates in freezing of ram semen. Ankara Univ Vet Fak Derg 56: 99-103.
Vijayaraghavan S and Hoskins DD (1990) Changes in the mitochondrial calcium influx and efflux properties are responsible for the decline in sperm calcium during epididymal maturation. Molecular reproduction and development 25(2): 186-194.
Visconti PE, Bailey JL, Moore GD, Pan D, Olds-Clarke P and Kopf GS (1995a) Capacitation of mouse spermatozoa. I. Correlation between the capacitation state and protein tyrosine phosphorylation. Development 121(4): 1129-1137.
Visconti PE, Johnson LR, Oyaski M, Fornes M, Moss SB, Gerton GL and Kopf GS (1997) Regulation, localization, and anchoring of protein kinase A subunits during mouse sperm capacitation. Developmental biology 192(2): 351-363.
Visconti PE, Moore GD, Bailey JL, Leclerc P, Connors SA, Pan D, Olds-Clarke P and Kopf GS (1995b) Capacitation of mouse spermatozoa. II. Protein tyrosine phosphorylation and capacitation are regulated by a cAMP-dependent pathway. Development 121(4): 1139-1150.
Vizcarra JA and Ford JJ (2006) Validation of the sperm mobility assay in boars and stallions. Theriogenology 66(5): 1091-1097.
Wainer R, Merlet F, Bailly M, Lombroso R, Camus E and Bisson JP (1996) Prognostic sperm factors in intra-uterine insemination with partner''s sperm. Contraception, fertilite, sexualite (1992) 24(12): 897-903.
Welch JE, Brown PL, O''Brien DA, Magyar PL, Bunch DO, Mori C and Eddy EM (2000) Human glyceraldehyde 3-phosphate dehydrogenase-2 gene is expressed specifically in spermatogenic cells. Journal of andrology 21(2): 328-338.
Westhoff D and Kamp G (1997) Glyceraldehyde 3-phosphate dehydrogenase is bound to the fibrous sheath of mammalian spermatozoa. Journal of cell science 110 ( Pt 15): 1821-1829.
Williams RM, Graham JK and Hammerstedt RH (1991) Determination of the capacity of ram epididymal and ejaculated sperm to undergo the acrosome reaction and penetrate ova. Biology of reproduction 44(6): 1080-1091.
Yamashiro H, Narita K, Sugimura S, Han YJ, Sugawara A, Morohaku K, Nakazato F, Konno T, Yoshida M and Sato E (2007) Trehalose enhanced the freezability of Poodle dog sperm collected by an artificial vagina (AV). Animal reproduction science 102(1-2): 165-171.
Yanagimachi R (1970) The movement of golden hamster spermatozoa before and after capacitation. Journal of reproduction and fertility 23(1): 193-196.
Yildiz C, Kaya A, Aksoy M and Tekeli T (2000) Influence of sugar supplementation of the extender on motility, viability and acrosomal integrity of dog spermatozoa during freezing. Theriogenology 54(4): 579-585.
Zhan T, Digel M, Kuch EM, Stremmel W and Fullekrug J (2011) Silybin and dehydrosilybin decrease glucose uptake by inhibiting GLUT proteins. Journal of cellular biochemistry 112(3): 849-859.
Zimmermann N and Geyer G (1981) A polyacrylamide gel method for the cytochemical demonstration of glucose-6-phosphate dehydrogenase activity in mouse sperm. Acta histochemica 68(2): 227-230.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔