跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/24 16:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:周銘鴻
研究生(外文):Ming-Hung Chou
論文名稱:以葡萄糖輔助水熱法合成二氧化錫/奈米碳管複合材及其於高效能鋰離子電池負極材料之應用
論文名稱(外文):Glucose-assisted hydrothermal synthesis of SnO2/CNTs composites as high performance anode material for lithium ion battery
指導教授:林正裕林正裕引用關係
指導教授(外文):Jeng-Yu Lin
口試委員:林正裕
口試委員(外文):Jeng-Yu Lin
口試日期:2013-07-08
學位類別:碩士
校院名稱:大同大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:79
中文關鍵詞:二氧化錫鋰離子電池奈米碳管
外文關鍵詞:SnO2lithium ion batteryCNTs
相關次數:
  • 被引用被引用:0
  • 點閱點閱:323
  • 評分評分:
  • 下載下載:68
  • 收藏至我的研究室書目清單書目收藏:0
在本研究中,我們以葡萄糖輔助水熱法合成SnO2/CNTs之複合材。其結晶性、表面形貌與電化學特性,藉由X光繞射儀(XRD)、掃瞄式電子顯微鏡(SEM)、充放電測試、循環伏安法(CV)與電化學阻抗分析(EIS)進行分析。實驗發現,經過離心後得到之樣品其SnO2能較均勻包覆在CNTs外層。離心後之樣品分別在0.1C、1C及2C之充放電速率下充放電50圈,其電容量分別還保有526 mAh/g、470 mAh/g及412 mAh/g。實驗結果顯示出樣品經過離心後之電容量明顯高於其樣品未經過離心(450 mAh/g, 352 mAh/g, and 240 mAh/g)和純相之SnO2 (200 mAh/g, 190 mAh/g, 180 mAh/g)。因此,離心後之SnO2/CNTs複合材比未經過離心之複合材具有較佳的電化學特性和較穩定的循環壽命。藉由循環伏安法及電化學阻抗分析之量測,指出當有CNTs的加入可以提升電子導電性及鋰離子擴散的能力。同時也增加了在高速率充放電下之穩定性。另一方面,CNTs的加入也降低了電荷轉移及溶液間之阻抗。
In this study, we used glucose–assisted hydrothermal synthesis to prepare SnO2/CNTs composites as anode material for lithium-ion batteries. The crystal structure and surface morphology were characterized by X-ray diffraction and scanning electrochemical microscopy, while the electrochemical performances including charge/discharge test, cyclic voltammetry, and electrode impedance spectroscopy were also investigated. The morphology of the composites after centrifugation showed that the SnO2 was well-coated on the carbon nanotubes. The discharge capacity of SnO2/CNTs composite with centrifugation at 0.1C, 1C, and 2C is maintained above 526 mAh/g, 470 mAh/g, and 412 mAh/g after 50 cycles, respectively. The results show that the discharge specific capacity of the sample with centrifugation is superior to that of the sample without centrifugation (450 mAh/g, 352 mAh/g, and 240 mAh/g) and pristine SnO2 (200 mAh/g, 150 mAh/g, 75 mAh/g). Hence, the composite of SnO2/CNTs after centrifugation revealed a higher electrochemical performance and much more stable cyclability than the composites without centrifugation. This indicates that CNTs indeed enhanced the characteristics of lithium ion diffusion and electronic conductivity in the electrode; as indicate by cyclic voltammetry and AC impedance spectra. As the result, SnO2 coated on CNTs does not change the electrochemical process, instead enhanced lithium diffusion, e;ectronic conductivity, and rate capability. On the other hand, the charge-transfer resistance and solution resistance also can be decreased.
Table of Contents
Abstract I
摘要II
Table of Contents III
List of Figures V
List of Tables VIII
Chapter 1 Introduction 1
Chapter 2 Literature Reviews 3
2.1 Development of lithium batteries 3
2.1.1 The principles of lithium ion batteries 4
2.2 The cathode materials of lithium ion batteries 6
2.2.1 LiCoO2 7
2.2.2 LiMn2O4 9
2.2.3 LiFePO4 12
2.3 Development of anode material 14
2.3.1 Carbon materials 15
2.3.2 Silicon materials 17
2.3.3 Tin-based materials 20
2.3.3.1 Nanostructure of SnO2 materials 25
2.3.4 SnO2/C composite materials 30
2.3.4.1 Carbon coated SnO2 composite materials 30
2.3.4.2 SnO2/CNTs composite materials 35
2.4 Objective of this study 46
Chapter 3 Experimental 47
3.1 Sample preparation 47
3.1.1 Preparation of KCNT 47
3.1.2 Preparation of SnO2 coated CNTs nanocomposites 47
3.1.3 Preparation of electrode plate 48
3.1.4 Electrode preparation 48
3.2 Powder Characterization 50
3.2.1 X-ray diffraction analysis 50
3.2.2 Scanning electron microscope analysis (SEM) 50
3.2.3 Charge/discharge properties 50
3.2.4 Cyclic voltammetry 50
3.2.5 Electrochemical impedance spectroscopy analysis (EIS) 51
Chapter 4 Results and discussion 52
4.1 Characterization of SnO2/CNT composites 52
4.1.1 Crystal structure and morphologies of SnO2/CNT composites 52
4.1.2 Charge/discharge measurement of SnO2 and SnO2/CNT composites 56
4.2 Characterization of 1:3 SnO2/ACNTs with centrifugation 59
4.2.1 Characterization of 1:3 SnO2/ACNTs morphology 59
4.2.2 Charge/discharge measurement 62
4.2.3 The cyclic voltammogram measurement 64
4.2.4 Cycling performance of bare SnO2 and 1:3 SnO2/ACNTs 68
4.2.5 Electrode impedance spectroscopy measurements 70
Chapter 5 Conclusions74
References 76



List of Figures
Fig. 2-1 Comparison of various battery technologies in terms of volumetric and gravimetric energy densities 4
Fig. 2-2 A schematic presentation of the most commonly used Li-ion battery based on graphite anodes and LiCoO2 cathodes 5
Fig. 2-3 Crystalline structure of layered LiCoO2 cathode materials for lithium ion batteries 8
Fig. 2-4 Spinel structure of LiMn2O4 9
Fig. 2-5 The charge/discharge curves of LiMn2O4 10
Fig. 2-6 Olivine structure of LiFePO¬4 12
Fig. 2-7 Discharge cyclic curves for 0, 1.5, 2.5 and 5% ZnO-doped LiFePO4 14
Fig. 2-8 Three typical types of carbon 16
Fig. 2-9 Phase diagram of Li-Sn 22
Fig. 2-10 Voltage profile of Sn and SnO2 versus lithium in the first three cycles 23
Fig. 2-11 Cyclability of TCO(anode)/LiCoO2(cathode) 25
Fig. 2-12 (a) Optical image, (b) top view and (c) SEM images of the as-prepared SnO2 arrays (d) Cross-sectional SEM image of the array. Inset is the enlarged image. (f) TEM and (g) HRTEM images of the rods 27
Fig. 2-13 Cycling performance (a) at the 0.1C rate for the nanorod array, disordered nanorods, and nanoparticles and (b) at various C rates for nanorod arrays 28
Fig. 2-14 TEM image (A), SEM image (C) of core shell type SnO2, (B) A magnifined TEM image corresponding to the square-marked area in (A) 29
Fig. 2-15 Cycling performance of (a) SnO2 hollow nanospheres, (b) SnO2 nanotubes, (c) pristine SnO2 30
Fig. 2-16 TEM image of (a) Sn and (b) SnO2-C; (c) magnified TEM image and its SAED pattern (inset), (d) EDX spectrum 32
Fig. 2-17 The cycling performance of the SnO2-C and pure SnO2 nanotube 33
Fig. 2-18 TEM (a) and HRTEM (b) images of RHC-SnO2-C 34
Fig. 2-19 Capacity curves of (a) RHC-SnO2, (b) RHC-SnO2-C at different current rate 35
Fig. 2-20 TEM images of the different SnO2/MWCNTs composites: (A) SC1, (B) SC2, (C) SC3, (D) SC4, (E) SC1a and (F) SC3a 37
Fig. 2-21 Cycling performance of MWCNTs and SnO2/MWCNTs at charge rate of 0.1C 38
Fig. 2-22 FESEM images of (a) bare SnO2, (b) MWCNTs, (c) 50SnO2/50CNT, and (d) 70SnO2/30CNT 39
Fig. 2-23 The cycling stability of MWCNTs, bare SnO2, and 50SnO2/50CNT and 70SnO2/30CNT (a); rate capability of bare SnO2 and 70SnO2/30CNT (b) 40
Fig. 2-24 Nyquist plots of the cells containing (a) bare SnO2 and (b) 70SnO2/30CNT after 5 and 100 charge-discharge cycles 41
Fig. 2-25 FESEM images: top views of free-standing SWCNTs (a) and SnO2/SWCNT (b); cross-sectional views of free-standing SnO2/SWCNT at low magnification (c) and at high magnification (d) inset of (c) is a photograph of the SnO2/SWCNT 43
Fig. 2-26 Cycling stability of SWCNTs and SnO2/SWCNT (a) at current density of 25 mAg-1; (b) at high current density 44
Fig. 2-27 Nyquist plots of the cells containing the SnO2/SWCNT electrodes after 5 and after 100 charge-discharge cycles; (b) SEM image of SnO2/SWCNT after 100 cycles 45
Fig. 3-1Componets of coin-type half cell 49
Fig. 4-1 XRD pattern of SnO2/CNT composites with different ratio 54
Fig. 4-2 SEM images of (a) bare SnO2, (b) CNTs, (c) SnO2/CNTs without glucose (d) 1:1 SnO2/KCNTs, (e) 1:3 SnO2/KCNTs, (f) 1:3 SnO2/ACNTs, and (g) 1:3 SnO2/ACNTs 55
Fig. 4-3 The initial charge/discharge curves of (a) 1:1, (b) 1:3 SnO2/KCNTs, and (c) 1:1, (d) 1:3 SnO2/ACNTs, with voltage limited set at 2 V – 5 mV vs. Li/Li+ 57
Fig. 4-4 Cycling performance of (a) 1:1, (b) 1:3 SnO2/KCNTs, and (c) 1:1, (d) 1:3 SnO2/ACNTs 58
Fig. 4-5 SEM images of (a) ACNTs, (b) 1:3 SnO2/ACNTs without centrifugation, and (c) 1:3 SnO2/ACNTs with centrifugation 60
Fig.4-6 TEM image of 1:3 SnO2/ACNTs (a) 20nm, (b) 5nm, (c) HR-TEM and SAED pattern 61
Fig. 4-7 The initial charge/discharge curves of 1:3 SnO2/ACNTs with centrifugation at different current rates 63
Fig. 4-8 The cyclic ability of the 1:3 SnO2/ACNTs with centrifugation at different current rates 63
Fig. 4-9 Cyclic voltammograms for the first 5 cycles of the (a) MWCNT, (b) bare SnO2, (c) 1:3 SnO2/ACNTs electrodes, all at a scan rate of 0.1mVs−1 66
Fig. 4-10 Cyclic voltammograms for the first 5 cycles of the (a) SnO2, (b) 1:3 SnO2/ACNTs electrodes at different scan rate 67
Fig. 4-11 Rate capability for bare SnO2 and 1:3 SnO2/ACNTs composite material 69
Fig. 4-12 Nyquist plots of the cells containing (a) SnO2 and (b) the 1:3 SnO2/ACNTs nanocomposite electrodes after 20 and 50 charge/discharge cycles. The inset in (a) shows the equivalent circuit model 72

List of Tables
Table 2-1 The properties of various cathode materials 7
Table 2-2 Various anode materials characteristics for lithium-ion batteries 15
Table 2-3 Various components for the Li-Si system 19
Table 2-4 Comparison of various method procedures of nanostructured SnO2 26
Table 2-5 Comparison of SnO2/C composites with various carbon materials 31
Table 2-6 The prepare conditions of SnO2/MWCNTs composites 36
Table 2-7 Impedance parameters calculated from equivalent circuit model 41
Table 2-8 Impedance parameters calculated from equivalent circuit model 45
Table 3-1 Chemicals and materials list 49
Table 4-1 Impedance parameters calculated from equivalent circuit model 73
Reference
[1]J. B. Goodenough, Y. Kim, Chem. Mater., 22 (2010) 587.
[2]J. M. Tarascon, M. Armand, Nature, 414(2001) 359.
[3]A. Manthiram, A. V. Murugan, A. Sarkar, T. Muraliganth, Energy Environ. Sci., 1 (2008) 621.
[4]T. Liu, R. Luo, W. Qiao, S. H. Yoon, I. Mochida, Electrochim. Acta, 55 (2010) 1696.
[5]Y. Idota, T. Kubota, A. Matsufuji, Y. Maekawa, T. Miyasaka, Science, 276 (1997) 1395.
[6]S. Han, B. Jan, T. Kim, S.M. Oh, T. Hyeon, Adv. Funct. Mater., 15 (2005) 1845.
[7]X.W. Lou, Y. Wang, C.L. Yuan, J.Y. Lee, L.A. Archer, Adv. Mater., 18 (2006) 2325.
[8]N. Zhao, G. Wang, Y. Huang, B. Wang, B. Yao, Y. Wu, Chem. Mater., 20 (2008) 2612.
[9]Y. Zhang, Y. Liu, M. Liu, Chem. Mater., 18 (2006) 4643.
[10]J.M. Tarascon, M. Armand, Nature, 414 (2001) 359.
[11]V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Energy Environ. Sci., 4 (2011) 3243
[12]J. M. Tarascon, D. Guyomard, Electrochim. Acta, 38 (1993) 1221.
[13]M. Lazzari, B. Scrosati, J. Electrochem. Soc., 127 (1980) 773.
[14]J. N. Reimers, and J. R. Dahn, J. Electrochem. Soc., 139 (1992) 2091.
[15]R. Pitchai, V. Thavasi, S. G. Mhaisalkar, and S. Ramakrishna, J. Mater. Chem., 21 (2011) 11040.
[16]M.M. Thackeray, S. H. Kang, C.S. Johnson, J.T. Vaughey, R. Benedek, S.A. Hackney, J. Mater. Chem, 17 (2007) 3112
[17]N.N.S.A.N. Munichandraiah, J. Indian Inst. Sci., 89 (2009) 4.
[18]T. Ohzuku, M. Kitagawa, T. Hirai, J. Electrochem. Soc., 137 (1990) 769.
[19]K. M. Shaju, G.V. S. Rao, B. V. R. Chowdari, Solid State Ionics, 148 (2002) 343.
[20]M. Yoshio, Y. Xia, N. Kumada, S. Ma, J. Power Sources, 101 (2001) 79.
[21]G. Ceder, M. K. Aydinol, Solid State Ionics, 109 (1998) 151.
[22]I. S. Jeong, J. U. Kim, H. B. Gu, J. Power Sources, 102 (2001) 55.
[23]K. Matsuda, I. Taniguchi, Kagaku Kogaku Ronbunshu, 29 (2003) 232.
[24]K. Matsuda, I. Taniguchi, J. Power Sources, 132 (2004) 156.
[25]H. Huang, C.H. Chen, R.C. Perego, E.M. Kelder, L. Chen, J. Schoonman, W. J. Weydanz, D.W. Nielsen, Solid State Ionics, 127 (2000) 31.
[26]Z. Bakenov, I. Taniguchi, Solid State Ionics, 176 (2005) 1027.
[27]A. K. Padhi, K. S. Najundaswamy, J. B. Goodenough, J. Electrochem. Soc., 144 (1997) 1188.
[28]M. Thackeray, Nature Mater., 1 (2002) 81.
[29]F. Croce, A. D’ Epifanio, J. Hassoun, A. Deptula, T. Olczaz, B. Scrosati, Electrochem. Solid-State Lett., 5 (2002) A47.
[30]Z. Chen, J. R. Dahn, J. Electrochem. Soc., 149 (2002) A1184.
[31]G. X. Wang, S. B. Bewlay, J. Yao, J. H. Ahn, S. X. Dou, H. K. Liu, Electrochem. Solid-State Lett., 7 (2004) A503.
[32]A. Yamada, S. C. Chung, J. Electrochem. Soc., 148 (2001) A960.
[33]N. Penazzi, M. Arrabito, M. Piana, S. Bodoardo, S. Panero, I. Amdei, J. Eur. Ceram. Soc., 24 (2004) 1381.
[34]P. P. Prosini, D. Zane, M. Pasquali, Electrochim. Acta, 46 (2001) 3517.
[35]M. Abbate, S. M. Lala, L. A. Montoro, J. M. Rosolen, Electrochem. Solid-State Lett., 8 (2005) A288.
[36]A. Shenouda, H. K. Liu, J. Alloys Compd, 477 (2009) 498.
[37]M. Wakihara, Mater. Sci. Eng., R, R33 (2001) 109.
[38]M. Yoshio, H. Wang, K. Fukuda, Y. Hara, Y. Adachi, J. Electrochem. Soc., 147 (2000) 1245.
[39]H. Buqa, A. Wursig, J. Vetter, M. E. Spahr, F. Krumeich, P. Novak, J. Power Sources, 153 (2006) 385.
[40]C. S. Wang, G. T. Wu, X. B. Zhang, Z. F. Qi, W. Z. Li, J. Electrochem. Soc., 145 (1998) 2751.
[41]R. Malini, U. Uma, T. Sheela, M. Ganesan, N. G. Renganathan, Ionics, 15 (2009) 301.
[42]J. Cabana, L. Monconduit, D. Larcher, M. R. Palacin, Adv. Mater., 22 (2010) E170.
[43]T. Takamura, S. Ohara, M. Uehara, J. Suzuki, K. Sekine, J. Power Sources, 129 (2004) 96.
[44]A. N. Dey, J. Electrochem. Soc., 118 (1971) 1547.
[45]R. A. Sharma, R. N. Seefurth, J. Electrochem. Soc., 123 (1976) 1763.
[46]B. A. Boukamp, G. C. Lesh, R. A. Huggins, J. Electrochem. Soc., 128 (1981) 725.
[47]H. Li, X. Huang, L. Chen, Z. Wu, Y. Liang, Solid State Lett., 2 (1999) 547.
[48]W. R. Liu, Z. Z. Guo, W. S. Young, D. T. Shieh, H. C. Wu, M. H. Yang, N. L. Wu, J. Power Sources, 140 (2005) 139.
[49]J. Yang, B. F. Wang, K. Wang, Y. Liu, J. Y. Xie, Z. S. Wen, Solid State Lett., 6 (2003) A154.
[50]N. Dimov, S. Kugino, M. Yoshio, J. Power Sources, 136 (2004) 108.
[51]X. G. Zhang, H. L. Zhang, Z. G. Zhang, F. L. Zhao, C. Liu, H. M. Cheng, Electrochim. Acta, 51 (2006) 4994.
[52]J. Shu, H. Li, R. Yang, Y. Shi, X. Huang, Electrochem. Commun., 8 (2006) 51.
[53]J. J. Zhang, Y. Y. Xia, J. Electrochem. Soc., 153 (2006) A1466.
[54]J. Hassoun, S. Panero, B. Scrosati, J. Power Sources, 160 (2006) 1336.
[55]S. Y. Chew, Z. P. Guo, J. Z. Wang, J. Chen, P. Munroe, S. H. Ng, L. Zhao, H. K. Liu, Electrochem. Commun., 9 (2007) 941.
[56]K. Wang, X. He, J. Ren, L. Wang, C. Jiang, C. Wan, Electrochim. Acta, 52 (2006) 1221.
[57]D. Fauteux, R. Koksmang, J. Appl. Electrochem, 23 (1993) 1.
[58]J. T. Vaughey, J. O’Hara, M. M. Thackeray, Electrochem. Solid-State Lett., 3 (2000) 13.
[59]O. Mao, R. A. Dunlap, J. R. Dahn, J. Electrochem. Soc., 146 (1999) 405.
[60]K. D. Kelper, J. T. Vaughey, M. M. Thackeray, Electrochem. Solid-State Lett., 2 (1999) 307.
[61]J. Yang, Y. Takeda, N. Imanishi, O. Yamamoto, J. Electrochem. Soc., 146 (1999) 4009.
[62]G. X. Wang, J. Yao, H. K. Liu, S. X. Dou, J. H. Ahn, Electrochim. Acta, 50 (2004) 517.
[63]Y. Wang, J. Y. Lee, J. Power Sources, 144 (2005) 220.
[64]J. O. Besebhard, J. Yang, M. Winter, J. Power Sources, 68 (1997) 87.
[65]R. A. Huggins, J. Power Sources, 81-82 (1999) 13.
[66]I. A. Courtney, J. R. Dahn, J. Electrochem. Soc., 144 (1997) 2045.
[67]T. Brousse, R Retoux, U. Herterich, D. M. Schleich, J. Electrochem. Soc., 145 (1998) 1.
[68]Y. Wang, F. Su, J. Y. Lee, X. S. Zhao, Chem. Mater., 18 (2006) 1347.
[69]D. Deng, J. Y. Lee, Chem. Mater., 20 (2008) 1841.
[70]S. H. Ng, D. I. D. dos Santos, S. Y. Chew, D. Wexler, J. Wang, S. X. Dou, H. K. Liu, Electrochem. Commun., 9 (2007) 915.
[71]J. Liu, Y. Li, X. Huang, R. Ding, Y. Y. Hu, J. Jiang, L. Liao, J. Mater. Chem., 19 (2009) 1859.
[72]X. W. Lou, Y. Wang, C. Yuan, J. Y. Lee, L. A. Archer, Adv. Mater., 18 (2006) 2325.
[73]P. Wu, N. Du, H. Zhang, J. X. Yu, Y. Qi, D. Yang, Nanoscale, 3 (2011) 746.
[74]Y. Li, S. M. Zhu, Q. L. Liu, J. J. Gu, Z. P. Guo, Z. X. Chen, C. L. Feng, D. Zhang, W. J. Moon, J. Mater. Chem., 22 (2012) 2766.
[75]N. Yang, S. M. Zhu, D. Zhang, S. Xu, Mater. Lett., 62 (2008) 645.
[76]B. J. Landi, M. J. Ganter, C. D. Cress, R. A. DiLeo, R. P. Raffaelle, Energy Environ. Sci., 2 (2009) 638.
[77]R. S. Ruoff, D. Qian, W. K. Liu, C. R. Physique, 4 (2003) 993.
[78]Z. Wang, G. Chen, D. G. Xia, J. Power Sources, 184 (2008) 432.
[79]M. Wachtler, J. O. Besenhard, M. Winter, J. Power Sources, 94 (2001) 189.
[80]L. Noerochim, J. Z. Wang, S. L. Chou, H. J. Li, H. K. Liu, Electrochim. Acta, 56 (2010) 314.
[81]M. S. Park, S. A. Needham, G. X. Wang, Y. M. Kang, J. S. Park, S. X. Dou, H. K. Liu, Chem. Mater., 19 (2007) 2406.
[82]L. Noerochim, J. Z. Wang, S. L. Chou, D. Wexler, Carbon, 50 (2012) 1289.
[83]Z.Y. Wang, G. Chen, D.G. Xia, J. Power Sources, 184 (2008) 432.
[84]M. Mohamedi, S. J. Lee, D. Takahashi, M. Nishizawa, T. Itoh, I. Uchida, Electrochim Acta, 46 (2001) 1161.
[85]G. Du, C. Zhong, P. Zhang, Z. Guo, Z. Chen, H. Liu, Electrochim. Acta, 55 (2010) 2582.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top