(3.235.41.241) 您好!臺灣時間:2021/04/11 20:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃彥博
研究生(外文):Yen-po Huang
論文名稱:發展電化學式pH生物感測器
論文名稱(外文):Development of pH Electro-Chemical Biosensor
指導教授:周澤川李文福李文福引用關係
指導教授(外文):Tza-chuan ChouWen-Fu Lee
口試委員:周澤川李文福
口試委員(外文):Tza-chuan ChouWen-Fu Lee
口試日期:2013-07-22
學位類別:碩士
校院名稱:大同大學
系所名稱:化學工程學系(所)
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:111
中文關鍵詞:薄膜電化學微小化感測器pH 感測器氧化銥
外文關鍵詞:Iridium oxideMiniaturized sensorsElectrochemicalFilmpH sensor
相關次數:
  • 被引用被引用:1
  • 點閱點閱:499
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
pH 感測器被廣泛的使用於各種化工廠、實驗室及醫院,因為許多生物及化學的反應機構與pH有很大的關係,在臨床上也有許多透過檢測尿液及血液的pH值來判斷是否患有疾病。目前最常使用的為玻璃電極,但因玻璃電極易碎及無法微小化,不符合現在臨床上人體感測及微小化的趨勢,因此各種pH電極逐漸被研究出。
本研究使用的是氧化銥工作電極。文獻指出氧化銥是一個良好的pH感測器材料,在pH 2 ~ pH 12有良好的線性關係,而其靈敏度高,反應時間快速,在攪拌的液體也能準確的量測,其最大的優點是可由許多方法去製作。濺鍍氧化銥電極因價格高,因此本實驗使用電鍍的方式去製作氧化銥pH感測器,並將其用於感測人體尿液,結果顯示氧化銥電極在測量時會受到尿液中有機物質干擾,使得感測電壓偏差及侵蝕工作電極表面材質。故本研究使用Nafion修飾於電極表面,而實驗結果顯示修飾後氧化銥電極靈敏度83.6mV/pH ,且反應時間1~3秒,能在尿液中長時間感測,並杜絕外界干擾物質。
參考電極在電化學歷史上占有舉足輕重的地位,不僅能完成電化學感測,更能在二極式感測中提供穩定且不變的電位。考量各種感測器微小化的趨勢,參考電極也嘗試微小化,本研究使用的是在氯化銀電極上覆蓋一層含氯離子之膠體,再用絕緣層包覆住,結果顯示在1000秒感測其與商用Ag/AgCl參考電極之電位偏差小於15mV,可證明含有氯離子之膠體能維持參考電極之電中性,而覆蓋之氯丁二烯橡膠更能隔絕外界之干擾物,並防止電極內之氯離子流出。
綜合上述製備工作電極及參考電極,我們於此製作一微小化感測器,並採用滴入式方法感測,微量待測溶液即可進行感測,未來可期望此微小化感測器發展之潛力。
Since many biological and chemical reaction mechanisms was related with the change of pH value and detecting the pH value of urine and blood could diagnose the diseases in Clinical research, pH sensor has been wildly used in many chemical factory, laboratory and hospital. The most common measure tool is the glass electrode. But glass electrode which is frangible and difficult to miniaturization did not correspond to the trend of human body sensor and miniaturization in modern clinical research. Therefore, many kinds of pH electrode have been developed gradually.

In this study, we used iridium oxide as the working electrode. The early research shows that iridium oxide is a good pH sensor. It has some advantage like well linear relationship at pH 2 ~ pH 12, high sensitivity, fast reaction time and could be accurate measured with stirring. The most important thing is that it could be manufacture in many ways. Because sputtering iridium oxide electrode was expensive, we produced the iridium oxide pH sensor by electrodeposition. And this sensor was used to detect the human urine. The results show that the iridium oxide electrode was interfered by the organics in the urine. The organic matter caused the deviation of sense voltage and corroded the surface material of working electrode. Thus, we used the Nafion to modify the surface of electrode in this research. The results show that the modified iridium oxide electrode has higher sensitivity 83.6mV/pH and response time in 1~3 S. And it could be used to detect the urine for 1000s and isolate the interfering substances from outside.

Reference electrode played an important role in electrochemical history. It could apply on electrochemical sensing and provided stable potential in two-pole sensing. In order to minify the sensor, the reference electrode also need to be minified. The reference electrode in this research was silver chloride electrode which covered by a layer of gel containing chloride ion and coated by an insulating layer. From the result, the potential drift was 15mV with the commercial Ag/AgCl reference electrode in long reaction time. It proved that the gel containing chloride ion could keep neutral of reference electrode and the covered chloroprene rubber could insulate the interference from outside and prevent the outflow of chloride ion in electrode.
With the working and reference electrode investigated above, we produced a miniature sensor which could detect with smallest amount of test solution by drop-sensing. This miniaturized sensor will be expect to have a great potential.
摘要 I
Abstract III
致謝 VI
目錄 VII
表目錄 X
圖目錄 XI
第一章 緒論 1
1-1 前言 1
1-2 研究背景 1
1-2-1 尿液的組成 2
1-2-2泌尿道疾病及檢測方法 3
1-2-3 尿液的pH值對應之疾病 4
1-3 感測器 5
1-3-1 電化學感測器 7
1-3-2 感測器之特性 9
1-3-3 生物感測器 10
1-3-4 微小化感測器 11
1-4 pH感測器 12
1-4-1金屬氧化物感測原理及機制 15
1-4-2 氧化銥電極感測器 18
1-5 參考電極 20
1-5-1參考電極感測原理及機制 21
1-5-2 微小化參考電極感測器 22
第二章 相關原理 24
2-1 氧化銥電極感測原理及機制 24
2-2 改良式參考電極感測原理及機制 24
2-3 Nafion 原理 25
第三章 實驗 27
3-1 實驗藥品 27
3-2 實驗儀器及設備 28
3-3電極製備 29
3-3-1 循環伏安法電鍍 29
3-3-2 Nafion修飾工作電極 31
3-4 參考電極製備 31
3-5 微小化感測器製備 31
3-6 電位式感測原理 32
第四章 結果與討論 34
4-1 參考電極量測 34
4-1-1 自製參考電極 vs. 商用參考電極 36
4-1-2 改變氯離子膠體濃度之影響 38
4-1-3 改變保護層厚度之影響 42
4-1-4 改變製作保護層之溫度影響 45
4-1-5量測 pH3~pH10 buffer solution 47
4-1-6 於各種離子濃度之量測 49
4-1-7 尿液中量測 52
4-2 工作電極-氧化銥感測 54
4-2-1 氧化銥電極於各個pH solution 量測 58
4-2-2 氧化銥電極之靈敏度檢測 60
4-2-3 自製參考電極 vs. 商用參考電極 63
4-2-4 氧化銥電極之響應時間 66
4-2-5 氧化銥電極之可逆性檢測 69
4-2-6 氧化銥電極之穩定性檢測 71
4-2-7 氧化銥電極離子選擇性檢測 73
4-2-8 尿液檢測 75
4-3 Nafion 修飾氧化銥電極 78
4-3-1 Nafion 修飾氧化銥電極之靈敏度檢測 79
4-3-3 Nafion 修飾氧化銥電極之響應時間 82
4-3-5 Nafion 修飾氧化銥電極檢測尿液 85
4-4 微小化pH 感測器 87
4-4-1 滴入式感測 88
第五章 綜合討論與結論 91
參考文獻 93
[1] http://www.texascollative.org/spencer_urinalysis
[2] http://web.it.nctu.edu.tw/~hcsci/hospital/uti/uti0.html
[3] http://www.geonet.com.tw/product_meditest.html
[4] http://activity.ntsec.gov.tw/lifeworld/body_cl5.html
[5] Walgreens. com, http://www/walgreens.com/library/
[6] K. Yamanaka, Anodicahy electrodeposited iridium oxide films(AEIROF) from alkaline solution for electrcchromic display devices, Jpn. J. Appl. Phys. , 28(1989) 632-637.
[7] 曹永偉,感測器技術入門,1-3(2001)
[8] L. Laffel, “Ketone bodies: a review of physiology, pathophysiology, and application of monitoring to diabetes/metabolism research and reviews”, Diabetes/Metabolism Research and Reviews, 15, 412-426, 1999.
[9] T. J. Hwang, W. T. Han, “Complex impedance analysis of the glass/solution interface in the glass electrode for pH measurement”, Journal of Non-crystalline solids, 203, 1996, 345.
[10] A. J. Bard, L. R. Faulkner, Electrochemical methods: fundamentals and applications, John Wiley, New York, 2001.
[11] D. J. G. Ives, G. J. Janz, Reference electrodes, theory and practice, Academic Press, New York, 1961.
[12] T. Matsuo, M. Esashi, “Methods of ISFET fabrication”, Sens. Actuators, 1, 1981, 77.
[13] S. J. Schepel, N. F. de Rooij, G. Koning, B. Oeseburg, “In vivo experiments with a pH-ISFET electrode”, Med. Biol. Eng. Comp. ,22, 1984, 6.
[14] K. Shitashima, M. Kyo, Y. Koike, “Development of in situ pH sensor using ISFET”, ISFET, 2002, 106.
[15] M. A. Arnoid, “Fiber-optic chemical sensors”, Anal. Chem. ,64, 1992, 1015.
[16] O. Wolfbeis, “Fiber Optics Chemical Sensors and Biosensors”, CRC press, Boca Raton, FL, 1991, 359.
[17] J. Lin, “Recent Develop and applications of optical and fiber-optic pH sensors”, trends in analytical chemistry, vol.19, no.9, 2000, 541.
[18] F. Liebert, R.David Walt, “Synthesis of pH-sensitive modifified cellulose ether halfesters and their use in pH detecting systems based on fiber optics”, J. controlled Release, 35, 1995, 155.
[19] A. Talaie, “Conducting polymer based pH detector: a new outlook to pH sensing technology”, Polymer, Vol.38 No.5, 1997, 1145.
[20] A. Karyakin, M. Vuki, “Processible polyaniline as an advanced potentiometric pH transducer. Application to biosensors”, Anal. Chem. , 71, 1999, 2534.
[21] D. J. G. Ives, G. J. Janz, Reference electrodes, theory and practice, Academic Press, New York, 1961.
[22] D. Ammann, Ion-selective microelectrodes: Principles, Design and Application, Spring-Verlag, Berlin, New York, 1986.
[23] G. Edwall, Improved Antimony-Antimony(Iii) Oxide pH Electrodes, Med. Biol. Eng. Comput, 16(1987) 661-669.
[24] R. E. F. Einerhand, W. H. M. Visscher, E. Barendrecht, pH measurement in strong KOH solutions with a bismuth electrode, Electrochim. Acta, 34(1989) 345-353.
[25] C. C. Liu., B. C. Bocchicchio, P. A. Overmyer, M. R. Neumen, Palladium-palladium oxide miniature pH electrode, Science, 207(1980) 188-189.
[26] W. T. Grubb, L. H. King, palladium-palladium oxide pH electrodes, Anal. Chem. ,52(1980) 270-273.
[27] A. Fog, R. P. Buck, Electronic semiconducting oxide as pH sensors, Sens. Actuator, 5(1984) 137-146.
[28] S. Yao, M. Wang, M. Madou, A pH electrode based on melt-oxidized iridium oxide, J. Electrochem. Soc. , 148(2001) H29-H36.
[29] S. A. M. Marzouk, S. Ufer, R. P. Buck, T. A. Johnson, L. A. Dunlap, W. E. Cascio, Electrodeposited iridium oxide pH electrode for measurement of extracellular myocardial acidosis during acute ischemia, Anal. Chem. , 70(1998) 5054-5061.
[30] G. Papeschi, S. Bordi, C. Beni, L. Ventura, Use of an iridium electrode for direct measurement of PI of proteins after ioselectric-focusing in polyacrylasmide-gel, Biochimica Et Biophysica Acta, 453(1976) 192-199.
[31] P. J. Kinlen, J. E. Heider, D. E. Hubbard, A Solid-state pH sensors-based on a nafion-coated iridium oxide indicator electrode and a polymer-based silver-chloride reference electrode, Sens. Actuators B-Chem. , 22(1994) 13-25.
[32] I. Song, K. Fink, J. H. Payer, Metal oxide metal pH sensor: Effect of anions on pH measurements, Corrosion, 54(1998) 13-19.
[33] J. E. Baur, T. W. Spaine, Electrochemical deposition of iridium(IV) oxide from alkaline solutions of iridium(III) oxide, J. Electroanal. Chem. , 443(1998) 208-216.
[34] 萬其超,電化學,台灣商務印書館,第六章,1996年
[35] C. H. Hamann, W. Vielstich, A. Hamnett, Electrochemistry, Wiley-VCH, Weinheim, 2007.
[36] J. S. Newman, K. E. Thomas-Alyea, Electrochemical systems, Wiley-Interscience, Hoboken, N. J. , 2004.
[37] W. Yin. Liao and T. C. Chou, “Fabrication of a Planer-Form Screen-Printed Solid Electrolyte Modified Ag/AgCl Reference Electrode for Application in a Potentiometric Biosensor”, Anal. Chem. , 78(2006) 4219-4223.
[38] T. Schultz, S. Zhou, and K. Sundmacher, Review: Current status of and recent development in the direct methanol fuol cell, Chem. Eng. Techol. 24, 12(2001).
[39] L. L. Visch, P. Bergveld, W. Lamprecht, E. J. Gravenmade, pH measurement with an ion sensitive field effect transistor in the mouth of parients with xerostomia, IEEE Transactions on Biomedical Engineering 38(1991) 353-356.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔