(100.25.42.117) 您好!臺灣時間:2021/04/21 17:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:白明弘
研究生(外文):Ming-Hung Pai
論文名稱:探討5,11-雙(三乙基矽烷基乙炔基)雙噻吩蒽有機薄膜電晶體的特性及應用於光感測元件
論文名稱(外文):Studies on the Characteristics and Application to Light Sensor of 5,11-Bis(triethylsilylethynyl) Anthradithiophene Organic Thin Film Transistor
指導教授:郭欽湊
指導教授(外文):Chin-Tsou Kuo
口試委員:郭欽湊
口試委員(外文):Chin-Tsou Kuo
口試日期:2013-07-18
學位類別:碩士
校院名稱:大同大學
系所名稱:化學工程學系(所)
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:140
中文關鍵詞:光感測雙噻吩蒽有機薄膜電晶體
外文關鍵詞:light sensorOrganic Thin Film TransistorAnthradithiophene
相關次數:
  • 被引用被引用:1
  • 點閱點閱:203
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文使用5,11-雙(三乙基矽烷基乙炔基)雙噻吩蒽為半導體層,並以液滴法塗佈,探討有機薄膜電晶體的特性以及應用在光感測器上的探討。首先是不同溫度對於元件電特性的影響,將1wt%的TES-ADT溶於苯甲醚 (沸點151℃)中,在0.1 大氣壓下分別以60℃ 90℃以及120℃退火元件,結果發現以60℃退火的10個元件平均載子位移率(6.50 ± 3.58) × 10^-2 cm^2/Vs,比90℃以及120℃退火的元件要來的優異。而選用不同的半導體層溶劑來製作元件上,用氯苯為溶劑的五個元件平均載子位移率可達0.21 cm^2/Vs以上,起始電壓也在2伏特以下,而就載子位移率來看溶劑效應為:氯苯>甲苯>苯甲醚>氯仿>1,2-二氯苯。接著是老化試驗,元件在前150天的保存之下特性仍相當穩定,而在300天時雖然特性有稍微下降但仍非常穩定。
將TES-ADT以及TIPS-PEN兩種半導體材料應用於光感測元件,以TES-ADT為材料的元件在黑暗環境下量測其載子位移率、起始電壓以及介面最大電荷陷阱數分別為:5.95 x10^-2 cm2/Vs,4.8 V以及 1.01x10^12 1/eVcm^2,照射729 Lux的可見光時數據變化為5.20 x10^-2 cm^2/Vs, 21.4 V與2.04x10^12 1/eVcm^2 , 進一步以1307 Lux以及4890照度的光源去照則數據依序為1.81 x10^-2 cm^2/Vs, 30 V, 4.13x10^12 1/eVcm^2 以及4.81 x10^-2 cm2/Vs,31.6 V,5.71x10^12 1/eVcm^2,光敏度在這三個照度(729、1307與4890 Lux)下也分別為:1.53x10^6 (VG=6 V)、7.52x10^3 (VG=4 V)以及1.61x10^5 (VG=5 V),相較於以TIPS-PEN製作的元件僅有8.78 (VG=5 V)、279 (VG=2 V)以及8250 (VG=4 V)來說,算是光敏感度相當高的材料。而將光源替換成波長365 nm的紫外光,以TES-ADT與TIPS-PEN製備的元件光敏度為2.97 x10^6 (VG= 2 V)與3.77 x10^4 (VG= 4 V),換句話說,不管是在可見光源或是紫外光源的照射下,TES-ADT都具備了較高的光敏感度,此乃因TIPS-PEN
之吸收係數遠大於TES-ADT。
接著做長時間的照光探討,以729 Lux的可見光源照射一小時,以TES-ADT製作的元件起始電壓從1.3 V增至16.6 V,Dit值由9.66x10^11增至2.04x10^12 1/eVcm^2,反觀以TIPS-PEN製作的元件特性變化都不大,表示材質耐光性高。至於以TES-ADT為材料作光電記憶元件,在重複照光(writing)以及移除光源(erasing)的過程中,汲極最大電流值在照光狀態下量測約落在-20.9 ?嫀到-23.2 ?嫀,而移除光源後約在-18.9 μA到-20.2 μA。轉換特性圖的部份,照光時元件的起始電壓值大約落在16.7 V到22.1 V,而把光源移除後約在8.1 V至11.3 V。另一方面,將開關電流比的數據取對數,在未照光的情況下,數值約落在6.0到6.4之間,而照光約在5.06到5.13左右,表示有一定的規律性,也證明了TES-ADT這個材料具有可作記憶電晶體的潛力。
In this study, the characteristics and application to light sensor of organic thin-film transistors (OTFTs) fabricated with 5,11-bis(triethylsilylethynyl) anthradithiophene (TES-ADT) as a semiconducting layer by drop casting have been investigated. The average mobility of the TES-ADT (1 wt % TES-ADT in anisole) OTFTs subjected to thermal annealing treatment at 60 ℃ and 0.1 atm for 30min exhibits (6.50 ± 3.58) × 10^-2 cm^2/Vs, which is better than those of the devices subjected to heat treatment at 90 ℃ and 120 ℃. The optimal characteristics of the five OTFTs fabricated with TES-ADT in chlorobenzene solution can achieved the mobility of 0.21 cm^2/Vs and threshold voltage was less than 2 V. Following is the observed order of performance of TES-ADT OTFTs for several solvents: chlorobenzene > toluene > anisole > chloroform > 1,2-dichlorobenzene. On the other hand, the characteristics of device exhibit quite stable until 150 days. The electrical characteristics degraded slightly when device after 300 days of
storage.
The effects of visible light and UV illuminations on the electrical and photosensing properties of the TES-ADT and 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-PEN) thin film transistors were investigated. The mobility, threshold voltage, and maximum number of interface traps for the TES-ADT OTFT under dark and visible light with different light intensities were found to be 5.95 x10^-2 cm^2/Vs, 4.8 V, and 1.01x10^12 1/eVcm^2, and 5.20 x10^-2 cm^2/Vs, 21.4 V, and 2.04x10^12 1/eVcm^2 of 729 Lux ; 1.81 x10^-2 cm2/Vs, 30 V, and 4.13x10^12 1/eVcm^2 of 1307 Lux ; and 4.81 x10^-2 cm^2/Vs, 31.6 V, and 5.71x10^12 1/eVcm^2 of 4890 Lux, respectively. The TES-ADT OTFT under visible light illumination exhibits a high photosensitivity, 1.53x10^6 of 729 Lux, 7.52x10^3 of 1307 Lux, and 1.61x10^5 of 4890 Lux at VG=6 V, 4 V, and 5 V, respectively. However, the TIPS-PEN OTFT under visible light illumination were found to be 8.78 of 729 Lux, 279 of 1307 Lux, and 8250 of 4890 Lux at VG=5 V, 2 V, and 4 V, respectively. On the other hand, the photosensitivity of TES-ADT and TIPS-PEN OTFTs subjected to UV illumination at 365 nm were found to be 2.97 x10^6 (VG= 2 V) and 3.77 x10^4 (VG= 4 V), respectively. In other words, the light sensitivity of TES-ADT OTFT is larger than that of TIPS-PEN OTFT under UV and visible light illumination, which is due to the absorption coefficient of TIPS-PEN larger than that of TES-ADT.
Under 729 Lux intensity of visible light illumination for 1 hour, The threshold voltage and maximum number of interface traps for the TES-ADT OTFT is from 1.3 to 16.6 V and 9.66x10^11 to 1.88x10^12 1/eVcm^2, respectively. However, TIPS-PEN OTFT exhibit quite stable characteristics.
Finally, studied on the optoelectronic memory elements for the photoresponsive TES-ADT OTFTs subjected to 729 Lux intensity of light illumination (writing) and turning off light source (erasing) have been carried out. The maxima drain current shifts from -20.9 ?嫀 to -23.2 ?嫀 and from -18.9 μA to -20.2 μA during writing and erasing process, respectively. The threshold voltage and LOG (on/off current ratio) lies on 16.7~22.1 V and 5.06~5.13, 8.1~11.3 V and 6.0~6.4 during writing/ erasing process, respectively. It is indicated that the TES-ADT OTFTs is suitable for memory device applications.
中文摘要I
英文摘要III
目錄VI
圖目錄VIII
表目錄XIX
第一章 緒論1
第二章 電晶體原理3
2-1 原理3
2-2電晶體各項參數介紹與計算4
2-3電晶體應用在感光元件的參數討論6
第三章 文獻回顧7
3-1有機薄膜電晶體7
3-2電晶體構造與操作原理8
3-3 5,11-雙(三異丙基矽烷基乙炔基)雙噻吩蒽電晶體10
3-4 6,13-雙(三異丙基矽烷基乙炔基) 五環素電晶體13
3-5有機薄膜電晶體應用於光感測元件(Phototransistor)16
3-6 研究動機22
第四章 實驗23
4-1 藥品23
4-2 儀器24
4-3 實驗步驟29
第五章 結果與討論32
5-1 熱退火溫度的效應32
5-2 不同溶劑對於元件電特性的影響44
5-3 老化試驗61
5-4 以溶液製程的OTFT應用於光感測元件65
5-4-1以不同強度的可見光源照射元件對電特性的影響65
5-4-2以紫外光照射元件的探討87
5-4-3長時間照光元件的穩定度探討92
5-4-4探討光照的記憶效應以及再現性103
第六章 結論108
第七章 參考文獻111
[1]T. W. Kelley, D. V. Muyres, P. F. Baude, T. P. Smith, and T. D. Jones, Mater. Res. Soc. Symp. Proc. 771, 169 (2003).
[2]簡榮宏、葉安祺、陳存任(2005):有機薄膜電晶體材料與應用技術發展。The Chinese Chem. Soc. 63, 241 (2005).
[3]F. Yan, S. M. Mok, J. Yu, H. L.W. Chan, and M. Yang, Biosens. Bioelectron. 24, 1241 (2009).
[4]F. Marinelli, A. Dell’Aquila, and L. Torsi, Sens. Actuators B 140, 445 (2009).
[5]T. N. T. Nguyen, Y. G. Seol, and N. E. Lee, Org. Electron. 12, 1815 (2011).
[6]K. Kim, Y. K. Yoon, M. O. Mun, S. P. Park, S. S. Kim, S. Im, and J. H. Kim, J. Supercond. 15, 595 (2002).
[7]施敏(1990)。半導體元件之物理與技術,p. 319-320,台北:儒林圖書公司。
[8]A. E. Amrani, B. Lucas, and B. Ratier, Synth. Met. 161, 2566 (2012).
[9]孫允武(2011)。半導體物理與元件課程教材第四章,中興大學物理學系,取自http://140.120.11.1/semicond/handout/chap4.pdf。
[10]F. Yakuphanoglu and W. A. Farooq, Synth. Met. 161, 379 (2011).
[11]J. E. Lilienfeld, U.S. Patent No.1 745, 175 (1930).
[12]J. Bardeen and W. H. Brattain, Phys. Rev. 74, 230 (1948).
[13]A. Tsumura, H. Koezuka, and T. Ando, Appl. Phys. Lett. 49, 1210 (1986).
[14]H. Koezuka, A. Tsumura, and T. Ando, Synth. Met. 18, 699 (1987).
[15]J. Smith, R. Hamilton, I. McCulloch, N. S. Stutzmann, M. Heeney, D. D. C. Bradley, and T. D. Anthopoulos, J. Mater. Chem. 20, 2562 (2010).
[16]C. R. Newman, C. D. Frisbie, D. A. da Silva Filho, J. L. Bredas, P. C. Ewbank, and K. R. Mann, Chem. Mater. 16, 4436 (2004).
[17]M. M. Payne, S. R. Parkin, J. E. Anthony, C. C. Kuo, and T. N. Jackson, J. Am. Chem. Soc. 127, 4986 (2004).
[18]K. C. Dickey, S. Subramanian, J. E. Anthony, L. H. Han, and S. Chen, Appl. Phys. Lett. 90, 244103 (2007).
[19]W. H. Lee, D. H. Kim, J. H. Cho, Y. J. Jang, and J. A. Lim, Appl. Phys. Lett. 91, 092105 (2007).
[20]S. S. Lee, M. A. Loth, J. E. Anthony, and Y. L. Loo, J. Am. Chem. Soc. 134, 5436 (2012).
[21]J. E. Anthony, J. S. Brooks, D. L. Eaton, and S. R. Parkin, J. Am. Chem. Soc., 123, 9482 (2001).
[22]S. K. Park, T. N. Jackson, J. E. Anthony, and D. A. Mourey, Appl. Phys. Lett. 91, 063514 (2007).
[23]G. Giri, E. Verploegen, S. C. B. Mannsfeld, S. A. Evrenk, D. H. Kim, S. Y. Lee, H. A. Becerril, A. A. Guzik, M. F. Toney, and Z. Bao, Nature 480, 504 (2011).
[24]C. S. Kim, S. Lee, E. D. Gomez, J. E. Anthony, and Y. L. Loo, Appl. Phys. Lett. 93, 103302 (2008).
[25]Y. Y. Noh, K. Yase, and D. Y. Kim, J. Appl. Phys. 98, 074505 (2005).
[26]M. Debucquoy, S. Verlaak, S. Stoedel, K. Myny, J. Genoe, and P. Hermans, Appl. Phys. Lett. 91, 103508 (2007).
[27]H. W. Zan and S. C. Kao, IEEE Electron Dev. Lett. 30, 721 (2009).
[28]B. Lucas, A. Amrani, M. Chakaroun, B. Ratier, R. Antony, and A. Moliton, Thin Solid Films 517, 6280 (2009).
[29]B. Gunduz and F. Yakuphanoglu, Sens. Actuators A 178, 141 (2011).
[30]李維峯(2012):可溶性有機半導體多環芳香族衍生物之合成及其應用於有機薄膜電晶體。大同大學碩士論文。
[31]Illumination Technologies (2001). High color temperature output, from: http://www.isuzuoptics.com.tw/data/product/it/accessories/option_hc.pdf
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔