(18.232.55.103) 您好!臺灣時間:2021/04/23 02:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李韋廷
研究生(外文):Wai-ting Li
論文名稱:廢食用油進行連續式填充床反應生產生質柴油
論文名稱(外文):Continuous production of biodiesel using packed bed reactor from waste cooking oil
指導教授:游吉陽
指導教授(外文):Chi-yang Yu
口試委員:游吉陽
口試委員(外文):Chi-yang Yu
口試日期:2013-07-26
學位類別:碩士
校院名稱:大同大學
系所名稱:生物工程學系(所)
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:86
中文關鍵詞:生質柴油填充床
外文關鍵詞:packed bedBiodiesel
相關次數:
  • 被引用被引用:0
  • 點閱點閱:149
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究係以廢食用油為油源,使用Novozym 435固定化酵素為催化劑,以連續式填充床反應器進行轉酯化,生產生質柴油,並以tert-butanol為溶劑。首先探討連續式填充床反應器的最適化條件,以反應曲面法和Box-Behnken實驗設計,探討反應溫度、醇油莫耳比和流速對轉化率的影響。溫度和流速對脂肪酸甲酯轉化率有顯著的影響;最適化條件為59℃、流速0.1 ml/min與醇油莫耳比4.77:1,預測之脂肪酸甲酯轉化率為87.5%,實際實驗值為87 ± 2 %。於最適條件下,連續操作填充床反應器九天,脂肪酸甲酯轉化隨時間呈線性衰退,由91.6%下降至63.1%;經由tert-butanol清洗填充床反應器,轉化率可回復至74%。填充床反應器重複使用30次,反應完以tert-butanol清洗,脂肪酸甲酯轉化率略為下降,平均值為82%。以減壓濃縮方式移除產物中共溶劑tert-butanol,進一步以PD206樹脂移除副產物甘油,脂肪酸甲酯含量由未處理之52 ± 1.5%提升至72.5 ± 0.8%。此外廢食用油先以Candida rugosa脂解酶水解成脂肪酸,再進行填充床反應,轉化率達98 ± 1%,脂肪酸甲酯含量82.9 ± 0.9%,較直接使用廢食用油轉酯化時有顯著提升。
In this study, waste cooking oil was converted to biodiesel (fatty acid methyl esters, FAME) continuously using a packed-bed reactor containing Novozym 435 as a catalyst. tert-Butanol was used as a co-solvent. Response surface methodology and Box-Behnken design were employed to evaluate the effects of reaction temperature, flow rate, and methanol to oil molar ratio on the molar conversion of biodiesel. The results showed that flow rate and temperature had significant effects on the molar conversion. The optimum conditions were as follows: 59 ℃, methanol to oil molar ratio of 4.77:1, flow rate of 0.1 ml/min;The predicted and experimental values of molar conversion were 87.5% and 87 ± 2%, respectively. When the packed-bed reactor was operated continuously for nine days, the conversion of FAME decreased linearly from the initial 91.6% to 63.1%, the conversion could be recovered to 74% after washing the reactor with tert-butanol. When washing with tert-butanol after each cycle, the packed-bed reactor could be reused for 30 cycles with little decrease in the conversion FAME;the average conversion of 30 cycles was 82%.The content of FAME in product was increased from 52 ± 1.5% to 72.5 ± 0.8% after removing the tert-butanol with a rotary evaporator followed by adsorbing glycerol with PD206 resin. When waste cooking oil was first hydrolyzed to fatty acids with Candida rugosa lipase followed by esterification within packed-bed reactor, the conversion and content of FAME were 98 ± 1% and 82.9 ± 0.9%, respectively, which were significantly higher than those of direct transesterification.
誌謝 I
摘要 II
目錄 V
圖目錄 VII
表目錄 VIII
第一章 前言與文獻回顧 1
1.1生質柴油簡介 1
1.2生質柴油生產方式 2
1.3轉酯化反應 6
1.4脂解酶之簡介 11
1.5 Candida antarctica lipase B和Novozym 435之簡介 14
1.6填充床反應器介紹 20
1.7 tert-butanol溶劑的使用 24
1.8反應曲面法RSM之應用 26
1.9實驗目的 36
第二章 材料與方法 37
2.1實驗藥品 37
2.2實驗設備 38
2.3實驗方法 39
2.3.1基質前處理 39
2.3.2填充床反應器 39
2.3.3 TLC分析 42
2.3.4 GC分析 42
2.5連續式填充床操作穩定性 47
2.6連續式填充床重覆使用性 47
2.7酸價測定 48
2.8廢食用油之水解 49
第三章 結果與討論 50
3.1以反應曲面法尋求最適化反應條件 50
3.2基質與溶劑中水份的影響 63
3.3連續操作穩定性 64
3.4填充床反應器重覆使用性 66
3.5水解廢食用油之脂肪酸進行填充床反應 68
3.6脂肪酸甲酯密度和黏度測定 69
第四章 結論 73
附錄 81
自述 86
Bisen, P., Sanodiya, B., Thakur, G., Baghel, R., Prasad, G. 2010. Biodiesel production with special emphasis on lipase-catalyzed transesterification. Biotechnology Letters, 32, 1019-1030.
Box, G.E.P., J., S.H., Hunter, W.G. 1978. Statistics for experimenters. Wiley.
Canakci, M., Sanli, H. 2008. Biodiesel production from various feedstocks and their effects on the fuel properties. Journal of Industrial Microbiology and Biotechnology, 35, 431-441.
Chang, C., Chen, J.H., Chang, C.M., Wu, T.T., Shieh, C.J. 2009. Optimization of lipase-catalyzed biodiesel by isopropanolysis in a continuous packed-bed reactor using response surface methodology. New Biotechnology, 26, 187-192.
Chang, H.M., Liao, H.F., Lee, C.C., Shieh, C.J. 2005. Optimized synthesis of lipase-catalyzed biodiesel by Novozym 435. Journal of Chemical Technology &; Biotechnology, 80, 307-312.
Chen, H.C., Ju, H.Y., Wu, T.T., Liu, Y.C., Lee, C.C., Chang, C., Chung, Y.L., Shieh, C.J. 2011. Continuous production of lipase-catalyzed biodiesel in a packed-bed reactor: optimization and enzyme reuse study. Journal of Biomedicine and Biotechnology, 2011, 1-6.
Chen, J.W., Wu, W.T. 2003. Regeneration of Immobilized Candida antarctica. Journal of Biomedicine and Biotechnology, 95, 466-469.
Fjerbaek, L., Christensen, K.V., Norddahl, B. 2009. A review of the current state of biodiesel production using enzymatic transesterification. Biotechnology and Bioengineering, 102, 1298-1315.
Fukuda, H., Kondo, A., Noda, H. 2001. Biodiesel fuel production by transesterification of oils. Journal of bioscience and bioengineering, 92, 405-416.
Ghaly, A.E., Dave, D., Brooks, M.S., Budge, S. 2010. Production of biodiesel by enzymatic transesterification: review. American Journal of Biochemistry and Biotechnology, 6, 54-76.
Hama, S., Tamalampudi, S., Yoshida, A., Tamadani, N., Kuratani, N., Noda, H., Fukuda, H., Kondo, A. 2011a. Enzymatic packed-bed reactor integrated with glycerol-separating system for solvent-free production of biodiesel fuel. Biochemical Engineering Journal, 55, 66-71.
Hama, S., Tamalampudi, S., Yoshida, A., Tamadani, N., Kuratani, N., Noda, H., Fukuda, H., Kondo, A. 2011b. Process engineering and optimization of glycerol separation in a packed-bed reactor for enzymatic biodiesel production. Bioresource Technology, 102, 10419-10424.
Haraldsson, G.G., Kristinsson, B., Sigurdardottir, R., Gudmundsson, G.G., Breivik, H. 1997. The preparation of concentrates of eicosapentaenoic. Journal of the American Oil Chemists' Society, 74, 1419-1424.
Hasan, F., Shah, A.A., Hameed, A. 2006. Industrial applications of microbial lipases. Enzyme and Microbial Technology, 39, 235-251.
Himmelblau, D.M. 1970. Process analysis by statistical methods. Wiley.
Jegannathan, K.R., Abang, S., Poncelet, D., Chan, E.S., Ravindra, P. 2008. Production of biodiesel using immobilized lipase—a critical review. Critical Reviews in Biotechnology, 28, 253-264.
Kirk, O., Christensen, M.W. 2002. Lipases from Candida antarctica unique biocatalysts from a unique origin. Organic Process Research &; Developmen, 6, 446-451.
Kulkarni, G.M., Dalai, A.K. 2006. Waste cooking oils an economical source for biodiesel a review. Industrial &; Engineering Chemistry Research, 45, 2901-2913.
Lai, C.C., Zullaikah, S., Vali, S.R., Ju, Y.H. 2005. Lipase-catalyzed production of biodiesel from rice bran oil. Journal of Chemical Technology &; Biotechnology, 80, 331-337.
Li, L., Du, W., Liu, D., Wang, L., Li, Z. 2006. Lipase-catalyzed transesterification of rapeseed oils for biodiesel production with a novel organic solvent as the reaction medium. Journal of Molecular Catalysis B: Enzymatic, 43, 58-62.
Liu, Y., Yan, Y., Hu, F., Yao, A.n., Wang, Z., Wei, F. 2010. Transesterification for biodiesel production catalyzed by combined lipases: Optimization and kinetics. American Institute of Chemical Engineers Journal, 56, 1659-1665.
Montgomery, D.C. 2009. Design and analysis of experiments. Wiley.
Nielsen, N.S., Yang, T., Xu, X., Jacobsen, C. 2006. Production and oxidative stability of a human milk fat substitute produced from lard by enzyme technology in a pilot packed-bed reactor. Food Chemistry, 94, 53-60.
Pryde, E.H. 1983. Vegetable oils as diesel fuels overview. Journal of the American Oil Chemists' Society, 80, 1557-1558.
Qian, Z., Horton, J.R., Cheng, X., Lutz, S. 2009. Structural redesign of lipase B from Candida antarctica by circular permutation and incremental truncation. Journal of Molecular Biology, 393, 191-201.
Royon, D., Daz, M., Ellenrieder, G., Locatelli, S. 2007. Enzymatic production of biodiesel from cotton seed oil using t-butanol as a solvent. Bioresource Technology, 98, 648-653.
Schmid, R.D., Verger, R. 1998. Lipases:interfacial enzymes with attractive applications. Angewandte Chemie International Edition, 37, 1608-1633.
Schwad, A.W., M.O.Bagby, B.Freedman, a. 1987. Preparation and properties of diesel fuels from vegetable oils. Fuel, 66, 1372-1378.
Shimada, Y., Watanabe, Y., Samukawa, T., Sugihara, A., Noda, H., Fukuda, H., Tominaga, Y. 1999. Conversion of vegetable oil to biodiesel using immobilized Candida antarctica lipase. Journal of the American Oil Chemists' Society, 76, 789-793.
Shimada, Y., Watanabe, Y., Sugihara, A., Tominaga, Y. 2002. Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing. Journal of Molecular Catalysis B: Enzymatic, 17, 133-142.
Sonntag, N.O.V. 1979. Bailey,s Industrial oil and fat products Wiley.
Talukder, M.M.R., Wu, J.C., Chua, L.P.L. 2010. Conversion of waste cooking oil to biodiesel via enzymatic hydrolysis followed by chemical esterification. Energy &; Fuels, 24, 2016-2019.
Uppenberg, J., Mogens Trier Hansen, Patkar, S., Jones, T.A. 1994. The sequence, crystal structure determination and refinement of two crystal forms of lipase B from Candida antarctica. Current Biology, 2, 293-308.
Wang, L., Du, W., Liu, D., Li, L., Dai, N. 2006a. Lipase-catalyzed biodiesel production from soybean oil deodorizer distillate with absorbent present in tert-butanol system. Journal of Molecular Catalysis B: Enzymatic, 43, 29-32.
Wang, X., Liu, X., Zhao, C., Ding, Y., Xu, P. 2011. Biodiesel production in packed-bed reactors using lipase-nanoparticle biocomposite. Bioresource Technology, 102, 6352-6355.
Wang, Y., Ou, S., Liu, P., Xue, F., Tang, S. 2006b. Comparison of two different processes to synthesize biodiesel by waste cooking oil. Journal of Molecular Catalysis A: Chemical, 252, 107-112.
Wang, Y., Wu, H., Zong, M.H. 2008. Improvement of biodiesel production by lipozyme TL IM-catalyzed methanolysis using response surface methodology and acyl migration enhancer. Bioresource Technology, 99, 7232-7237.
Watanabe, Y., Shimada, Y., Sugihara, A., Noda, H., Fukuda, H., Tominaga, Y. 2000. Continuous production of biodiesel fuel from vegetable oil using immobilized Candida antarctica lipase. Journal of the American Oil Chemists' Society, 77, 355-360.
Watanabe, Y., Shimada, Y., Sugihara, A., Tominaga, Y. 2001. Enzymatic conversion of waste edible oil to biodiesel fuel in a fixed-bed bioreactor. Journal of the American Oil Chemists' Society, 78, 703-707.
Wu, W.H., Foglia, T.A., Marmer, W.N., Phillips, J.G. 1999. Optimizing production of ethyl esters of grease using 95% ethanol by response surface methodology. Journal of the American Oil Chemists' Society, 76, 517-521.
Xavier, M.F., Reyes, H.R., Garcia, H.S., Charles G. Hill, J., Amundson, a.C.H. 1990. Immobilized lipase reactors for modification of fats. Journal of the American Oil Chemists' Society, 67, 890-910.
Yates, F. 1970. Experimental design selected papers. Wiley.
Yu, D., Tian, L., Wu, H., Wang, S., Wang, Y., Ma, D., Fang, X. 2010. Ultrasonic irradiation with vibration for biodiesel production from soybean oil by Novozym 435. Process Biochemistry, 45, 519-525.
吳宗達. 2007. 以連續式填充床生物反應器探討脂解酵素催化生質柴油之最優化合成. 生物產業科技學系. 碩士論文, 大葉大學.
呂世欽. 2004. 白殭菌蛋白質分解酵素發酵製備之研究探討. 應用化學系. 碩士論文, 朝陽科技大學.
李晉嘉. 2003. 以反應曲面法研究生化柴油之最優化酵素合成. 食品工程學系. 碩士論文, 大葉大學.
林聖倫. 2008. 漁船用油添加黏稠劑研究及車用引擎與漁船實程測試. 環境工程學系. 碩士論文, 成功大學.
張雅琪. 2008. 嗜鹽菌Haloferax mediterranei生產類胡蘿蔔素之最適化探討. 生物工程系. 碩士論文, 大同大學.
陳志平. 2004. 生質柴油技術. 第10期, 化工技術.
陳佳偉. 2009. 固定化脂肪分解酵素應用於大豆油水解之研究. 化學工程學系. 碩士論文, 成功大學.
郭亮均. 2011. 建立Candida rugosa 和 Novozym 435 兩步驟酵素方法製備生質柴油. 化學工程與材料工程研究所 . 碩士論文, 東海大學.
陳奕宏, 林佳融, 陳律言, 張慶源, 謝哲隆, 張家翼. 2012. 生質柴油之脂肪酸組成與燃料性質. 第3期, 化工技術.
黃韋誠. 2003. 以反應曲面法探討鱈魚魚漿製品最適化研究. 食品科學系. 碩士論文, 屏東科技大學.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔