(3.227.235.183) 您好!臺灣時間:2021/04/18 11:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:董冠廷
研究生(外文):KUAN-TING TUNG
論文名稱:鑽石薄膜進行熱處理及碳披覆以提升其電子場發射特性
論文名稱(外文):Enhancing Electron Field Emission Properties of Diamond Films by Post-annealing and Carbon Coating Processes
指導教授:施文欽
指導教授(外文):Wen-ching Shih
口試委員:施文欽
口試委員(外文):Wen-ching Shih
口試日期:2013-07-26
學位類別:碩士
校院名稱:大同大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:123
中文關鍵詞:微波電漿化學汽相沉積鑽石薄膜熱處理場發射
外文關鍵詞:annealingdiamond filmmicrowave plasma enhanced CVDelectron field emission
相關次數:
  • 被引用被引用:4
  • 點閱點閱:302
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本研究中,我們利用微波電漿化學汽相沉積系統分別成長微米晶鑽石及超奈米晶鑽石薄膜,對鑽石薄膜進行熱處理並通入乙炔,在適當熱處理溫度並碳披覆條件下可得到場發射的大幅度改善,並探討其影響機制。
鑽石薄膜經過熱處理並碳披覆後,經過XPS分析發現表面產生一些C-H鍵結,我們認為是熱處理氣氛中C2H2中的H使鑽石薄膜表面氫化所致,另外並經由Hall量測表面導電度發現經過熱處理後鑽石膜表面導電度上升,我們推測鑽石表面有石墨化的現象,並用O2電漿處理經過熱處理並碳披覆後的鑽石膜表面場發射有變差的現像,可以反向證明是因為O2電漿把表面經過熱處理後產生的石墨層蝕刻掉所致。透過改變熱處理條件,我們知道要有好的場發射改善,必須有足夠的熱處理溫度以及適當的時間。
結果顯示,在微米晶鑽石之熱處理碳披覆中, C2H2(600℃)條件下場發射有最佳改善,起始電場可由4 V/μm下降至1.6 V/μm,外加電場8.8 V/μm下其電流密度可由108 μA/cm2提升至3355 μA/cm2。超奈米晶鑽石熱處理碳披覆中,C2H2(600℃)之熱處理有最佳場發射改善。起始電場可由原先4.3 V/μm改善至1.6 V/μm,外加電場8.8 V/μm時,電流密度由原先154 μA/cm2大幅成長至4661 μA/cm2。
In this study, we grew microcrystalline diamond (MCD) and ultrananocrystalline diamond (UNCD) films by microwave plasma enhanced CVD (MPE-CVD) system. The diamond films were post-annealing with C2H2 processes, and the electron field emission (EFE) properties for diamond films was tremendously enhanced by these post-treatment and carbon coating.
Diamond films after annealing and carbon coated, after XPS analysis found that the surface produce some C-H bond, we believe that annealing atmosphere C2H2, H makes hydrogenated diamond film surface due to another surface Hall conductivity measurements found that after annealing the surface conductivity of the diamond film is increased, we considered that the diamond surface is like graphite and annealing with O2 plasma treatment and after the carbon coated diamond film surface to deteriorate the field emission is like, that can be reversed because O2 after annealing the surface of the plasma generated by the graphite layer etched away due. By changing the annealing conditions, we know have a good field emission improvement, the heat treatment temperature must be sufficient and appropriate time.
For MCD, the best EFE properties are obtained at 600℃ in an C2H2 environment for 30 min. The EFE behavior can be turned on at E0=1.6 V/μm, attaining EFE current density of 3355 μA/cm2 at an applied field of 8.8 V/μm. For UNCD, the best EFE properties are obtained at 600℃ in an C2H2 environment for 30 min. The EFE behavior can be turned on at E0=1.6 V/μm, attaining a large EFE current density of 4661 μA/cm2 at 8.8 V/μm.
致謝I
摘要II
abstractIV
圖目錄IX
表目錄XII
第一章 緒論1
1.1 前言1
1.2鑽石的特性與應用4
1.2.1石墨的晶體結構4
1.2.2鑽石的晶體結構5
1.2.3 鑽石薄膜的特性6
1.2.4 鑽石薄膜的應用7
1.3研究動機12
第二章 文獻回顧 14
2.1鑽石薄膜的分類與成長14
2.1.1鑽石薄膜的分類14
2.1.2鑽石薄膜之合成方法20
2.1.3鑽石薄膜的成長前處理24
2.2電子場發射理論33
第三章 研究方法與實驗步驟38
3.1實驗流程38
3.2製程設備與方法40
3.2.1微波電漿化學汽相沉積系統40
3.2.2熱化學汽相沉積系統45
3.2.3電漿處理系統49
3.3分析設備51
3.3.1電子場發射51
3.3.2顯微拉曼光譜53
3.3.3掃描式電子顯微鏡55
3.3.4 X-ray 光電子能譜儀56
3.3.5 霍爾電性測量57
第四章 研究結果與討論60
4.1微米晶鑽石的熱處理60
4.1.1溫度對微米晶鑽石場發射的影響65
4.1.2熱處理時間對微米晶鑽石場發射特性的影響70
4.2超奈米晶鑽石的熱處理76
4.2.1 熱處理溫度對超奈米晶鑽石場發射特性的影響81
4.2.2 熱處理時間對超奈米晶鑽石場發射特性的影響86
4.3場發射改善機制探討90
第五章 總結與未來展望97
[1]J. E. Field,“The Properties of Diamonds”, Academic, London (1979).
[2]A. L. Lavoisier, Memoire Academie des Science, 564 (1882).
[3]P. W. Bridgman, “Synthetic Diamonds”, Scient. Am. 193, 42 (1955).
[4]J. C. Angus, H. A. Will and W. S. Stanko, “Growth of Diamond Seed Crystals by Vapor Deposition”, J. Appl. Phys. 39, 2915 (1968).
[5]B. V. Spitsyn, L. L. Bouilov, and B. V. Derjaguin, “Vapor growth of
diamond on diamond and other surfaces”, J. Cryst. Growth 52, 219
(1981).
[6]Ferrari, A. Carlo, Robertson, and John, “Raman spectroscopy of amorphous, nanostructured, diamond-like diamond, and nanodiamond”, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 362, 2477 (2004).
[7]S. Jiao, A. Sumant, M. A. Kirk, D. M. Gruen, A. R. Krauss, and O. Auciello, ”Microstructure of ultrananocrystalline diamond films grown by microwave Ar-CH4 plasma chemical vapor deposition with or without added H2”, J. Appl. Phys. 90, 118 (2001).
[8]H. Liu, and David S. Dandy, “Diamond Chemical Vapor Deposition Nucleation and Early Growth Stages”, Noyes Publication, Park Ridge, New Jersey (1995).
[9]Jasprit Singh, McGraw-Hill, "Physics of Semiconductors and Their Heterostructures ", New York (1993)
[10]S. M. Sze, John Wiley &; Sons, "Physics of Semiconductor Devices, 2nd Edition", New York (1981)
[11]W. P. Kang, J. L. Davidson, A. Wisitsora-at, D. V. Kerns, and S, Kerns, “Recent development of diamond microtip field emitter cathodes and devices”, J. Vac. Sci. Technol. B, 19(3), 936 (2001)
[12]A. Lamouri, Y. Wang, G. T. Mearini, I. L. Krainsky, J. A. Dayton Jr., and W. Mueller, “Electron emission observations from as‐grown and vacuum‐coated chemical vapor deposited diamond”, J. Vac. Sci. Technol. B 14, 2046 (1996).
[13]J. van der Weide, Z. Zhang, P. K. Baumann, M. G. Wensell, J. Bernholc, and R. J. Nemanich, “Negative-electron-affinity effects on the diamond (100) surface”, Phy. Rev. B 50, 5803 (1994).
[14]M. W. Geis, N. N. Efremow, J. D. Woodhouse, M. D. Mcaleese, M. Marchywka, D. G. Socker, and J. F. Hochedez, “Diamond cold cathode”, IEEE Electr. Dev. Lett. 12, 456 (1991).

[15]W. P. Kang, J. L. Davidson, A. Wisitsora-at, D. V. Kerns, and S. Kerns, ”Recent development of diamond microtip field emitter cathodes and devices”, J. Vac. Sci. Technol. B 19, 936 (2001).
[16]A. T. Sowers, B. L. Ward, S. L. English, and R. J. Nemanich, “Field emission properties of nitrogen-doped diamond films”, Jpn. J. Appl. Phys. 86, 3973 (1999).
[17]P. T. Joseph, N. H. Tai, H. Niu, U. A. Palnitkar, W. F. Pong, H. F. Cheng, and I. N. Lin, “Structural modification and enhanced field emission on ultrananocrystalline diamond films by nitrogen ion implantation”, Diamond Relat. Mater. 17, 1812 (2008).
[18]Y. C. Lee, S. J. Lin, I. N. Lin, and H. F. Cheng, “Effect of boron doping on the electron-field-emission properties of nanodiamond films”, J. Appl. Phys. 97, 054310-1 (2005).
[19]C. F. Shih, K. S. Liu, and I. N. Lin, “Effect of nitrogen doping on the electron field emission properties of chemical vapor deposited diamond films”, Diamond Relat. Mater. 9, 1591 (2000).
[20]Y. H. Chen, C. T. Hu, and I. N. Lin, “Defect structure and electron field-emission properties of boron-doped diamond films”, Appl. Phys. Lett. 75, 2857 (1999).
[21]V. I. Polyakov, N. M. Rossukanyi, A. I. Rukovishnikov, S. M. Pimenov, A. V. Karabutov, and V. I. Konov, “Effects of post-growth treatment and coating with ultrathin metal layers on the band bending and field electron emission of diamond films”, J. Appl. Phys. 84, 2882 (1998).
[22]I. N. Lin, Y. H. Chen, and H. F. Cheng, “Modification of emission properties of diamond films due to surface treatment process”, Diamond Relat. Mater. 9, 1574 (2000).
[23]唐睿和, “鑽石薄膜進行熱處理及表面披覆以改善其場發射特性”
私立大同大學光電所碩士論文,(2012)
[24]C. Y. Wang, F. L. Zhang, T. C. Kuang, and C. L. Chen,
“Chemical/mechanical polishing of diamond films assisted by molten mixture of LiNO3 and KNO3,”, Thin Solid Films 496 (2), 698 (2006).
[25]W. Zhu, “Vacuum Microelectronics,” John Wiley &; Sons (2001).
[26]A.R. Krauss, O. Auciello, D.M. Gruen, A. Jayatissa, A. Sumant, J. Tucek, D.C. Mancini, N. Moldovan, A. Erdemir, D. Ersoy, M.N. Gardos, H.G. Busmann, E.M. Meyer, M.Q. Ding, “Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices” Diamond and Related Materials 10,(2001).
[27]Ferrari, Andrea Carlo, Robertson, and John, “Raman spectroscopy of amorphous, nanostructured, diamond-like carbon, and nanodiamond,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 362 , 2477 (2004).
[28]M. Veres, S. Toth, and M. Koos, “Grain boundary fine structure of ultrananocrystalline diamond thin films measured by Raman scattering,”Applied Physics Letters, 91 031913-1- 031913-3 (2007).
[29]M. Veres, S. Toth, E. Perevedentseva, A.Karmenyan, and M. Koos, “Raman spectroscopy of UNCD grain boundaries,”Volume . ISBN 978-1-4020-9915-1. Springer Netherlands, 115 (2009).
[30]A. C. Ferrari and J. Robertson , “Origin of the 1150-cm-1 Raman mode in nanocrystalline diamond,” Physical Review B 63 ,121405-1-121405-4 (2001).
[31]James Birrell, J. E. Gerbi, O. Auciello, J. M. Gibson, D. M. Gruen, and J. A. Carlisle, “ Bonding structure in nitrogen doped ultrananocrystalline diamond,” Journal of Applied Physics 93, 5606-5612 (2003).
[32]H. Yamada, A. Chayahara, Y. Mokuno, Y. Horino, S. Shikata, "Numerical analyses of a microwave plasma chemical vapor deposition reactor for thick diamond syntheses", Diamond and Related Material (2006).
[33]D. M. Bhusari, J. R. Yang, T. Y. Wang, and K. H. Chen, “Novel two stage method for growth of highly transparent nano-crystalline diamond films”, Materials Letter 36, 279 (1998).
[34]A. T. Sowers, B. L. Ward, S. L. Englih and R. J. Nemanich, “Field
emission properties of nitrogen-doped diamond films”, J. Appl.
Phys. 86, 3937 (1999).
[35]A. Hatta, K. Kadota, Y. Mori, T. Ito, T. Sasake, and A. Hiraki, S. Okada, "Pulse modulated electron cyclotron resonance plasma for chemical vapor deposition of diamond films." Applied Physics Letters 66 (13), (1995).
[36]S. Iijima, Y. Aikawa, and K. Baba, “Early formation of chemical vapor deposition diamond films”, Appl. Phys. Lett. 57 (25), 2646 (1990).
[37]N. Jiang, K. Sugimoto, K. Nishimura, Y. Shintani, and A. Hiraki, “Synthesis and structural study of nano/micro diamond overlayer films”, J. Cryst. Growth 242 (3-4), 362 (2002).
[38]H. Liu and D. S. Dandy, “Diamond chemical vapor deposition: Nucleation and Early Growth Stages”, Noyes, (1995).
[39]Z. Li, L. Wang, T. Suzuki, and Pirouz, “Orientation relationship between chemical vapor deposited diamond and graphite substrates”, J. Appl. Phys. 73(2), 711 (1993).
[40]D. N. Belton, S. J. Harris, S. J. Schmieg, A. M. Wiener, and T. A. Perry, “In situ characteristic of diamond nucleation and growth”, Appl. Phys. Lett. 54 (5), 416 (1989).
[41]N. Jiang, B. W. Sun, Z. Zhang, and Z. Lin, “Nucleation and initial growth of diamond film on Si substrate”, Journal of Materials Research 9 (10), 2695 (1994).
[42]W. L. Wang, K. J. Liao, L. Fang, J. Esteve, and M. C. Polo, “Analysis of diamond nucleation on molybdenum by biased hot filament chemical vapor deposition”, Diamond Relat. Mater. 10 (3-7), 383 (2001).
[43]S. Yugo, T. Kanai, T. Kimura, and T. Muto, “Generation of diamond nuclei by electric field in plasma chemical vapor deposition”, Appl. Phys. Lett. 58 (10), 1036 (1991).
[44]B. R. Stoner, G.-H. M. Ma, S. D. Wolter, and J. T. Glass, “ Characterization of bias-enhanced nucleation of diamond on silicon by invacuo surface analysis and transmission electron microscopy”, Phy. Rev. B 45 (19), 11067 (1992).
[45]J. Gerber, S. Sattel, H. Ehrhardt, J. Robertson, P. Wurzinger, and P. Pongratz, “Investigation of bias enhanced nucleation of diamond on silicon”, J. Appl. Phys. 79 (8), 4388 (1996).
[46]P. Reinke and P. Oelhafen, “Photoelectron spectroscopic investigation of the bias-enhanced nucleation of polycrystalline diamond films”, Phy. Rev. B 56 (4), 2183 (1997).
[47]R. Stockel, K. Janischowsky, S. Rohmfeld, J. Ristein, M. Hundhausen, and L. Ley, “Growth of diamond on silicon during the bias pretreatment in chemical vapor deposition of polycrystalline diamond films”, J. Appl. Phys. 79, 768 (1996).
[48]R. Stockel, M. Stammler, K. Janischowsky, and L. Ley, “Diamond nucleation under bias conditions”, J. Appl. Phys. 83, 531 (1998).
[49]J. Robertson, J. Gerber, S. Sattel, M. Weiler, K. Jung, and H. Ehrhardt, “Mechanism of bias-enhanced nucleation of diamond on Si”, Appl. Phys. Lett. 66 (24), 3287 (1995).
[50]S. P. McGinnis, M. A. Kelly, and S. B. Hagstrom, “Evidence of an energetic ion bombardment mechanism for bias-enhanced nucleation of diamond”, Appl. Phys. Lett. 66 (23), 3117 (1995).
[51]L. J. Huang, I. Bello, W. M. Lau, S. T. Lee, P. A. Stevens, and B. D. DeVries, “Synchrotron radiation x-ray absorption of ion bombardment induced defects on diamond(100)”, J. Appl. Phys. 76 (11), 7483 (1994).
[52]S. Barrat, S. Saada, I. Dieguez, and E, Bauer-Grosse, “Diamond deposition by chemical vapor deposition process: Study of the bias enhanced nucleation step”, J. Appl. Phys. 84 (4), 1870 (1998).
[53]D. Pradhan, L. J. Chen, Y. C. Lee, C. Y. Lee, N. H. Tai, and I. N. Lin, “Effect of titanium metal in the prenucleation of ultrananocrystalline diamond film growth at low substrate temperature”, Diamond Relat. Mater. 15, 1779 (2006).
[54]J. Shirafuji, Y. Sakamoto, A. Furukawa, H. Shigeta, T. Sugino ,“X-ray photoelectron spectroscopy of plasma-treaed surfaces of diamond films”, Diamond and Related Materials 4 (1995) 984-988.
[55]劉竣誠, “超奈米微晶鑽石薄膜在場發射元件上的應用與發展”
國立清華大學材料與工程學系碩士論文,(2007)
[56]P T Joseph , N H Tai , C H Chen , H Niu , H F Cheng , W F Pong and I N Lin , “ On the mechanism of enhancement on electron field emission properties for ultrananocrystalline diamond films due to ion imolantation” , J. Phys. D: Appl. Phys. 42 (2009)
[57]Y. Yamazaki, K. Ishikawa, N. Mizuochi. Yamasaki “ Structural change in diamond by hydrogen plasma treatment at room temperature ”, Diamond &; Related Materials 14 (2005) 1939 – 1942
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔