(3.230.143.40) 您好!臺灣時間:2021/04/21 06:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李致一
研究生(外文):LI CHIH YI
論文名稱:場發射陣列製作與選區成長奈米碳管
論文名稱(外文):Fabricated of field emitter array with selective growth of carbon nanotubes
指導教授:施文欽
指導教授(外文):Prof. Wen-Ching Shih
口試委員:施文欽
口試委員(外文):Prof. Wen-Ching Shih
口試日期:2013-07-30
學位類別:碩士
校院名稱:大同大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:96
中文關鍵詞:奈米碳管場發射特性
外文關鍵詞:nanotubesfield emission property
相關次數:
  • 被引用被引用:2
  • 點閱點閱:251
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  本論文主要有四個部份,首先利用直流濺鍍機台在矽基板上成長催化金屬薄膜,再利用熱化學氣相沉積法成長奈米碳管,先使用氫氣做前處理使鐵薄膜顆粒化,再通入乙炔氣體成長奈米碳管,藉由實驗參數的控制,我們可以改變奈米碳管的形貌和品質,而場發射特性也隨著奈米碳管的形貌和品質之改變而有所不同。在二極式的架構下,陽極和陰極的間隙約為275 μm,我們在1.17 V/μm電場強度下可獲得0.45 uA/cm2的電流密度
  目的是為了要成長奈米碳管於三極式場發射元件上,藉由黃光室的旋轉塗佈、曝光顯影等定義出陣列孔洞的步驟,再成功的利用電漿處理系統除掉鉬層、濕蝕刻的幫助下去除二氧化矽層和可選擇性深度的矽基板孔洞,然後在Mo/SiO2/Si之三極式結構中的陣列孔洞內成長奈米碳管。
This thesis has four main parts, the first to use the DC sputtering machine reminders growth on Si substrateOf the metal film, and then using thermal chemical vapor deposition growth of carbon nanotubes, the first history of using hydrogen as a pre-processing granulated iron thin films, and then pass into acetylene gas CNTs, with the control of experimental parameters, we can alter the morphology and quality of carbon nanotubes, and also with the CNT field emission properties and morphology changes in quality varies. In the framework of two-pole, anode and cathode gap of about 275 μm, in 1.17 V / μm field strength available under the current density of 0.45 mA/cm2
Purpose is to want to grow CNTs at three-pole field emission element, yellow room by spin coating, exposure, development and other steps to define an array of holes, and then successfully removed by plasma processing system molybdenum layer, with the help of wet etching silicon dioxide layer and selectively removing the silicon substrate depth of holes, and then Mo/SiO2/Si structure of the three-pole array of holes inside CNTs.
致謝 I
摘要. . .II
Abstract . .III
表目錄. VII
圖目錄. XIII
第一章 序論1
1.1 電子場發射理論1
1.2 顯示器簡介6
1.2.1以SPINDT做為陰極場發射源. 9
1.2.2 以奈米碳管做為陰極場發射源9
1.3 場發射燈源(Field Emission Lighting)介紹10
1.3.1 平面式場發射燈源(Field Emission Lighting)11
1.3.2 燈管式場發射燈源(Field Emission Lighting)12
1.3.3 場發射燈源(Field Emission Lighting)的優勢12
1.4 研究動機..15
第二章 奈米碳管的性質及應用..17
2.1 碳材料簡介..17
2.2 奈米碳管的結構和性質..23
2.3 奈米碳管的成長機制26
2.3.1 成核理論26
2.3.2 成長機制28
2.3.3 成長模式30
2.4 奈米碳管的成長方法31
2.4.1 化學氣相沉積法32
2.4.2 電漿輔助化學氣相沉積法33
第三章 實驗流程與儀器簡介..34
3.1 實驗流程34
3.2 金屬濺鍍系統35
 3.3 電漿處理系統與濕式蝕刻 ..36
 3.4 奈米碳管應用於陣列孔洞矽基板之製作 ..38
 3.5陣列孔洞矽基板之製作.39
 3.6 熱化學汽相沉積系統43
 3.7分析設備.45
  3.7.1電子場發射量測系統.45
  3.7.2顯微拉曼光譜.47
  3.7.3掃描式電子顯微鏡.48
第四章 結果與討論..49
 4.1 鐵催化金屬之製作與前處理50
  4.1.1沉積鐵催化金屬薄膜.50
  4.1.2 催化劑的前處理51
 4.2 以鐵催化金屬成長奈米碳管53
  4.2.1製程溫度對奈米碳管特性的影響.53
  4.2.2 成長時間對奈米碳管特性的影響60
  4.2.3 氣體流量對奈米碳管特性的影響65
 4.3 以最佳條件選區成長奈米碳管71
第五章 結論及未來展望. 78
參考文獻79
[1] R. H. Fowler, L. Nordheim, “Electron Emission in Intense Electric Field,” 1928
[2] R. Saito, “Physical Properties of Carbon Nanotubes,” Imperial College Press, pp. 11(1998)
[3] J. Roberson, “Diamond-like amorphous carbon,”Materials Science and EngineeringR, 37, pp. 129-281(2002)
[4] H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, “C60:Buckminsterfullerene,” Nature, 318, pp. 162-163 (1985)
[5] J. H. Schon, Ch. Kloc, and B. Batlogg, “High-Temperature Superconductivity in Lattice-Expanded C60,” Science, 293, pp. 2432-2434 (2001)
[6] S. Iijima, “Helical microtubules of graphitic carbon,” Nature, 354, pp. 56-58 (1991)
[7] S. Iijima, T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter,” Nature,363, pp. 603-605 (1993)
[8] W. Jacob, W. Moller,“On the structure of thin hydrocarbon flims,”Applied PhysicsLetters, 63, pp. 1771-1773(1993)
[9] M. S. Dresselhaus , G. Dresselhaus, and P. Avouris (Eds.), “Carbon Nanotubes:Synthesis, Structure, Properties, and Applications,” Springer-Verlag Berlin Heidelberg,(2001)
[10] F. A Lindemann, “The Calculation of Molecular Vibration Frequencies,” Physik. Z.,11, pp. 609-612 (1910)
[11] F. G. Shi, J. Mater. Res. 9, 1307 (1994).
[12] E. F. Kukovitsky, S. G. L’vov, and N. A. Sainov, “VLS-growth of carbon nanotubes from the vapor,” Chemical Physics Letters, 317, pp. 65-70 (2000)
[13] De-Chang Li, Liming Dai, Shaoming Huang, Albert W. H. Mau, Zhong L. Wang,“Structure and growth of aligned carbon nanotube films by pyrolysis,” Chemical Physics Letters, 316, pp. 349-355 (2000)
[14] S. B. Sinnott, R. Andrews, D. Qian, A. M. Rao, Z. Mao, E. C. Dickey, F. Derbyshire,“Model of carbon nanotube growth through chemical vapor deposition,” Chemical Physics Letters, 315, pp. 25-30 (1999)
[15] G. S. Choi, Y. S. Cho, S. Y. Hong, J. B. Park, K. H. Son, and D. J. Kim, “Carbon nanotubes synthesized by Ni-assisted atmospheric pressure thermal chemical vapor deposition,” Journal of Applied Physics, 91, pp. 3847-3854 (2002)
[16] H. Cui, G. Eres, J. Y. Howe, A. Puretkzy, M. Varela, D. B. Geohegan, and D. H.Lowndes, “Growth behavior of carbon nanotubes on multilayered metal catalyst film in chemical vapor deposition,” Chemical Physics Letters, 374, pp. 222-228 (2003)
[17] C. J. Lee, and J. Park, “Growth and structure of carbon nanotubes produced by thermal chemical vapor deposition,” Carbon, 39, pp. 1891-1896 (2001)
[18] Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush, M. P. Siegal, and P. N.Provencio, “Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass,”Science, 282, pp. 1105-1107 (1998)
[19] M. Chhowalla, K. B. K. Teo, C. Ducati, N. L. Rupesinghe, G. A. J. Amaratunga, A. C.Ferrari, D. Roy, J. Robertson, and W. I. Milne, “Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition,” Journal of Applied Physics, 90, pp. 5308-5317 (2001)
[20] G. T. A.Kovacs, N. I. Maluf, and K. E. Petersen, “Bulk micromachining of silicon,” Proceedings of IEEE, vol. 86, pp.1536-1551, 1998.
[21] H. Seidel, ”The mechanism of anisotropic silicon etching and its relevance for micromachining,” Proceedings of Transducers, pp.120-125, 1987.
[22] K. Tokoro, D. Uchikawa, M. Shikida, and K. Sato, “Anisotropic etching properties of silicon in KOH and TMAH solutions,” IEEE Micromechatronics and Human Science, pp. 65-70, 1998.
[23]Lab2 二氧化矽(SiO 2)遮罩蝕刻 - 國立高雄第一科技大學機械系 余志成 c 2007
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔