跳到主要內容

臺灣博碩士論文加值系統

(44.192.94.177) 您好!臺灣時間:2024/07/21 22:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉俊興
研究生(外文):Jiun-shing Liu
論文名稱:氧化錳系複合材料超級電容之研究
論文名稱(外文):Study of Manganese oxides-base Composites Supercapacitors
指導教授:胡毅胡毅引用關係
指導教授(外文):Yi Hu
口試委員:胡毅
口試委員(外文):Yi Hu
口試日期:2013-07-16
學位類別:博士
校院名稱:大同大學
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:130
中文關鍵詞:氧化錳超級電容奈米金奈米銀奈米碳管
外文關鍵詞:manganese oxidesnano gold particlesnano silver particlecarbon nano-tube
相關次數:
  • 被引用被引用:0
  • 點閱點閱:532
  • 評分評分:
  • 下載下載:145
  • 收藏至我的研究室書目清單書目收藏:0
摘要
本研究以改善氧化錳超級電容的氧化錳薄膜電極內電阻過高,導電不佳使電容無法提升等問題為目標。分別就電鍍以及化學沉積法兩種方法以添加物的方式改善導電性問題。其一為以定電壓沉積氧化錳/貴金屬複合薄膜分析在電鍍過程之中個元素價態及表面形貌的變化及對於氧化錳薄膜在電化學行為的影響。首先使用過錳酸鉀及三氯化金為原料在ITO試片上共沉積氧化錳/金複合電極,其結果發現隨著金的添加薄膜的含水量便會下降,但含水氧化錳的比例及導電度上升,使得試片隨著金的含量增加電雙層電容下降,擬電容上升,整體電容呈現正成長。另一部分則採用價格較低的銀於電鍍過程中加入氧化錳做相關性質得討論,其結果顯示微量銀的添加會使薄膜之中存在Ag2O增加薄膜的擬電容特性,不過含量大於1.2 mole%時會有純銀顆粒的析出,導致在高頻時內電阻下降,但因介面存在Schottky barriers及銀顆粒大小使得電容量下降。 就化學沉積法部分,為以噴塗的方式以過錳酸鉀及奈米碳管為原料,因過錳酸鉀與碳反應形成氫氧化錳,且因氫氧化錳的關係使得漿料鍍於ITO/PET基材上可得附著性良好的且均勻包覆奈米碳管的薄膜。
Abstract
The specific capacitance of MnO2 thin film decreases with increasing film thickness due to the poor conductivity of MnO2 (10-5-10-6 S cm-1) and limit the charge/discharge rate for high-power applications .
Due to their excellent electrical conductivity and high specific surface area, Nanocomposite of manganese oxides/Au thin films were electrodeposited on ITO glass substrate by the potentiostatic method in KMnO4/AuCl3 aqueous solution. The thickness of the thin films was about 50~100nm composed of manganese oxide nanoparticles. MnOOH formed as the primary phase under electrodeposition without Au addition. The films exhibit the mixture of amorphous MnO2‧nH2O and MnOOH phases under electrodeposition with Au addition. The electrodes with 0.4% Au showed excellent capacitive behavior in the 0.1 M KNO3 electrolyte, with highest specific capacitance of 305F/g at a scan rate of 20mVs-1. The nanocomposite films became looser with lots of small crevices when Au was added from the SEM surface morphology observation. This gives smaller diffusion impedance and larger capacitance through the interconnected pores for proton diffusion. The electrode for nano-supercapacitors with silver/manganese oxides thin film were obtained by electrochemical deposition method. These thin films were potentiostaticly deposited (-0.7V v.s. open circuit) on ITO substrate with potassium permanganate and silver acetate solution for 200s. The thickness of the thin films was in the range of 100~300nm and composed of MnOx nanoparticles. The silver acted as a reduction agent and resulted in the valence change for Mn from +4 to 3+. Such a nanostructure of the thin film with MnOx nanoparticles and Ag2O results in much higher capacitance. It was suggested that the addition of silver oxide would promote the pseudo-capacitance by increasing the impedance of the thin films.
carbon nanotubes are now intensively used with MnO2 to make nanocomposites. In this study, multi-walled carbon nanotubes (MWCNTs) were used to make nanoconposites to improve the conductivity of manganese oxides films by spray coating technology. As a result, Mn(OH)2 did not only cover on the surface of MWCNTs uniformly but also embedded into MWCNTs.
目錄I
圖目錄VI
表目錄X
第一章 前言1
第二章 原理及文獻回顧.3
2-1電容器簡介3
2-1-1電池與電容的差異.3
2-1-2電容的極化特性4
2-2電容的分類8
2-2-1有機介電質-薄膜電容8
2-2-2無機介電質9
2-2-2-1雲母電容器.9
2-2-2-2陶瓷電容器9
2-2-2-3半導體電容器10
2-2-3氣體電容器11
2-2-4電解電容器-鋁箔電容11
2-2-5固態電容12
2-2超級電容器簡介14
2-4 超級電容的儲能機制及表面電化學行為16
2-4-1電雙層特性16
2-4-2擬電容特性20
2-5 超級電容的種類與發展23
2-5-1碳系材料23
2-5-2導電高分子23
2-5-3 過渡金屬氧化物24
2-6氧化錳及氧化錳複合超級電容文獻回顧27
2-6-1 化學沉積法27
2-6-2 固相合成法28
2-6-3微乳化法28
2-6-4 溶膠凝膠法29
2-6-5水熱合成法29
2-6-6熔鹽法30
2-6-7電沉積法31
2-7 超級電容近期發展現況回顧33
2-8電解質選用36
2-8-1溶劑的種類及選用36
2-8-2電解質的選用41
2-8-2-1酸性水溶液電解質42
2-8-2-2鹼性電解質43
2-8-2-3中性水溶液電解液43
2-8-2-4有機電解質43
2-8-2-5無機固態電解質44
2-8-2-6聚合物電解質45
2-8-2-7 離子液體46
2-9 實驗設計與考量48
第三章 實驗步驟53
3-1實驗耗材53
3-2氧化錳/奈米金複合薄膜超級電容之製作流程54
3-3含銀氧化錳薄膜超級電容之製作流程54
3-4以噴塗方式於可繞曲式PET基材上製備氫氧化錳/多壁奈米碳管奈米複合電極超級電容之製作流程55
3-5儀器分析.56
第四章 氧化錳/奈米金複合薄膜超級電容之研究59
4-1前言59
4-2結果與討論61
4-2-1結構分析61
4-2-2表面形貌62
4-2-3 薄膜內部結構分布與電子束繞射65
4-2-4 電子能帶分析67
4-2-5電化學特性分析73
4-2-6 阻抗分析77
4-3結論79
第五章 含銀氧化錳薄膜超級電容之研究80
5-1 前言80
5-2結果與討論81
5-2-1表面形貌81
5-2-2薄膜內部結構分布與電子束繞射82
5-2-3電子能譜分析85
5-2-4 溶液pH值變化88
5-2-5電化學特性89
5-2-6阻抗分析92
5-2-7薄膜表面電性94
5-3結論96
第六章以噴塗方式於可繞曲式PET基材上製備氫氧化錳/多壁奈米碳管奈米複合電極超級電容97
6-1前言97
6-2結果與討論98
6-2-1 表面形貌98
6-2-2結構分析101
6-2-3電子能譜儀101
6-2-4薄膜內部結構分布104
6-2-5 電化學特性分析106
6-2-6薄膜附著力測試109
6-3結論110
第七章 總結111
參考文獻113

參考文獻
[1] B. E. Conway “Electrochemical Supercapacitor Scientific Fundamentals and Technological Applications” Kluwer Academic/Plenum Publishers (1999)
[2] A. J. Moulson “Electroceramics. Materials, Properties, Applications 2nd edition” John Wiley &; Sons Ltd (2003)
[3] P P. Olbrich. "Advanced Coating Technology for Film Capacitor Applications". Applied Films GmbH &; Co. KG. CARTS USA 2005..
[4] J. Ho, T. R. Jow, S. Boggs, Historical Introduction to Capacitor Technology, Electrical Insulation Magazine, IEEE Vol 26 , 1 p20-25 2010
[5] H Kishi, Y Mizuno, H Chazono “Base-metal electrode-multilayer ceramic capacitors: past, present and future perspectives” Japanese journal of applied physics, p1-15 2003
[6] F. F. Mazda, Discrete electronic components, Cambridge University Press, ch4. 1981
[7] Ming-Liao Tsai, Pei-Jiun Chen, Jing-Shan Do ” Preparation and characterization of Ppy/Al2O3/Al used as a solid-state capacitor” Journal of Power Sources 133 (2004) 302–311
[8] Prymak, John D., "Replacing MnO2 with Conductive Polymer in Tantalum Capacitors," CARTS-Europe '99, Lisbon, Portugal, Oct. 18-22, 1999.
[9] Bard, Allen J. Electrochemical methods: fundamentals and applications. 2nd edition John Wiley &; Sons, Inc (2003)
[10] Hainan Wang and Laurent Pilon “Accurate Simulations of Electric Double Layer Capacitance of Ultramicroelectrodes” J. Phys. Chem. C, 115, 16711–16719 (2011)
[11] T. Miettinen, J. Ralston, D. Fornasiero” The limits of fine particle flotation” Minerals Engineering 23, 5, , 420–437 (2010)
[12] Itoi, H.; Nishihara, H.; Kogure, T.; Kyotani, T. Three-Dimensionally Arrayed and Mutually Connected 1.2-Nm Nanopores for High-Performance Electric Double Layer Capacitor. J. Am. Chem. Soc. 2011, 133, 1165−1167.
[13] Lu, W.; Hartman, R.; Qu, L.; Dai, L. Nanocomposite Electrodes for High-Performance Supercapacitors. J. Phys. Chem. Lett. 2011, 2, 655−660.
[14] Masarapu, C.; Zeng, H. F.; Hung, K. H.; Wei, B. Effect of Temperature on the Capacitance of Carbon Nanotube Supercapacitors. ACS Nano 2009, 3, 2199−2206.
[15] Kamat, P. V. Graphene-Based Nanoassemblies for Energy Conversion. J. Phys. Chem. Lett. 2011, 2, 242−251
[16] Suh‐Cem Pang, Marc A. Anderson, and Thomas W. Chapman . Novel Electrode Materials for Thin‐Film Ultracapacitors: Comparison of Electrochemical Properties of Sol‐Gel‐Derived and Electrodeposited Manganese Dioxide” J. Electrochem. Soc. 2000 147(2): 444-450
[17] Y. U. Jeong, A. Manthiram” Nanocrystalline Manganese Oxides for Electrochemical Capacitors with Neutral Electrolytes” J. Electrochem. Soc. 2002 149 pA1419-A1422.
[18] H. Y. Lee, J. B. Goodenough, “Supercapacitor behavior with KCl electrolyte”, J Solid State Chemistry 144. 1999 220-225.
[19] K. Sailoux et al, “Lithium intercalation in vanadium pentoxide aerogels” J. Electrochem. Soc, 142, 1995 p.L191-L192
[20] H. P. Wong et al., Synthesis and characterization of polypyrrole/vanadium pentoxide nanocomposite aerogels J Mater Chem. 8(1998)1019-1027.
[21] Grace Wee, Huan Zhong Soh, Yan Ling Cheah, Subodh G. Mhaisalkar and Madhavi Srinivasan” Synthesis and electrochemical properties of electrospun V2O5 nanofibers as supercapacitor electrodes” . Mater. Chem., 2010,20, 6720-6725
[22] C. Z. Yuan, L. Chen, B. Gao, L. H. Su, and X. G. Zhang, “Synthesis and utilization of RuO2‧xH2O nanodots well dispersed on poly(sodium 4-styrene sulfonate) functionalized multi-walled carbon nanotubes for supercapacitors,” Journal of Materials Chemistry, vol. 19, no. 2, pp. 246–252, 2009
[23] C. C. Hu and W. C. Chen, “Effects of substrates on the capacitive performance of RuOx‧nH2O and activated carbon-RuOx electrodes for supercapacitors,” Electrochimica Acta, vol. 19, no. 21, pp. 3469–3477, 2004
[24] H. Kim and B. N. Popov, “Characterization of hydrous ruthenium oxide/carbon nanocomposite supercapacitors prepared by a colloidal method,” Journal of Power Sources, vol. 104, no. 1, pp. 52–61, 2002
[25] Y. Yamada, T. Imamura, H. Kakiyama, H. Honda, S. Oi, and K. Fukuda, “Characteristics of meso-carbon microbeads separated from pitch,” Carbon, vol. 12, no. 3, pp. 307–319, 1974
[26] Nam K W, Kim K B. “A study of the preparation of NiOx electrode
via electrochemical route for supercapacitor applications and their charge storage mechanism. J. Electrochem. Soc., 2002, 149(3): A346−A354
[27] Boschloo G, Anders H. Spectroelectrochemistry of nanostr- uctured NiO [J]. J Phys Chem B, 2001, 105(15): 3039-3043
[28] Kuo‐Chuan Liu and Marc A. Anderson” Porous Nickel Oxide/Nickel Films for Electrochemical Capacitors” J. Electrochem. Soc. 1996 143(1): 124-130
[29] Jeong Y U, Manthiram A. Amorphous tungsten oxide/ ruthenium oxide composites for electrochemical capacitors. [J]. ibid, 2001, 148(3): A189-A192
[30] Gruption A A F, Lassali T A F.Effect of the Co3O4 introduction in the pseudocapacitive behavior of IrO2- based electrode[J]. ibid. 2001,148(9):A1015-A1022.
[31] Wu N L, et al. Synthesis and characterization of Sb-doped. SnO2 xerogel electrochemical capacitors [J]. ibid, 2001,. 148(6): A550-A556
[32] Kohichi Kameyama, et al. Preparation of ultrafine RuO2-. TiO2 binary oxide particles by a Sol-Gel process, [J]. J. Electrochem Soc, 1993, 140(4): 1034-1037
[33] Patil U M, GuraV K V, Fulari V J, et al. Characterization of honeycomb-like-Ni(OH)2 thin films synthesized by chemical bath deposition method and their super capacitor application[J] . J Power Sources, 2009, 188: 338-342
[34] G.X. Pan, X. Xia, F. Cao, P.S. Tang, H.F. Chen “Porous Co(OH)2/Ni composite nanoflake array for high performance Supercapacitors” Electrochimica Acta 63 (2012) 335– 340
[35]Peng Yu, Xiong Zhang, Yao Chen, Yanwei Ma “Solution-combustion synthesis of ε-MnO2 for supercapacitors” Materials Letters 64 (2010) 61–64
[36] Raj Kishore Sharma, Hyung-Suk Oh, Yong-Gun Shul, Hansung Kim “Carbon-supported, nano-structured, manganese oxide composite electrode for electrochemical supercapacitor” Journal of Power Sources 173 (2007) 1024–1028
[37] Suh-Cem Pang, Marc A. Anderson, Thomas W. Chapmanb,” Novel Electrode Materials for Thin-Film Ultracapacitors: Comparison of Electrochemical Properties of Sol-Gel-Derived and Electrodeposited Manganese Dioxide” Journal of The Electrochemical Society, 147 (2) 444-450 (2000)
[38] Wei Xiao, Hui Xia, Jerry Y.H. Fuh, Li Lu “Growth of single-crystal α-MnO2 nanotubes prepared by a hydrothermal routeand their electrochemical properties” Journal of Power Sources 193 (2009) 935–938
[39] Chi-Chang Hu, Ta-Wang Tsou “Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition” Electrochemistry Communications 4, 2 (2002) 105–109
[40] Chi-Chang Hu, Ta-Wang Tsou “The optimization of specific capacitance of amorphous manganese oxide for electrochemical supercapacitors using experimental strategies” Journal of Power Sources 115 (2003) 179–186
[41] Yi-Shiun Chen and Chi-Chang Hu “Capacitive Characteristics of Binary Manganese-Nickel Oxides Prepared by Anodic Deposition” Electrochem. Solid-State Lett. 2003 volume 6, issue 10, A210-A213
[42] K. R. Prasad, N. Miura,” Potentiodynamically deposited nanostructured manganese dioxide as electrode material for electrochemical redox supercapacitors”, J. power Sorces 135(2004) 354-360.
[43] Jeng-Kuei Changa, Shih-Hsun Hsub, Wen-Ta Tsai , I-Wen Sun “A novel electrochemical process to prepare a high-porosity manganese oxide electrode with promising pseudocapacitive performance” Journal of Power Sources 177 (2008) 676–680
[44] Masaharu Nakayama, Taku Kanaya, Ryota Inoue ” Anodic deposition of layered manganese oxide into a colloidal crystal template for electrochemical supercapacitor” Electrochemistry Communications 9 (2007) 1154–1158
[45] Minghao Yu, Teng Zhai , Xihong Lu, Xiaojun Chen, Shilei Xie, Wei Li, Chaolun Liang,Wenxia Zhao, Liping Zhang, Yexiang Tong, “Manganese dioxide nanorod arrays on carbon fabric for flexible solid-state supercapacitors” J. of Power Sources 239 (2013) 64-71
[46] Donghai Wang,etc “Self-Assembled TiO2–Graphene Hybrid Nanostructures for Enhanced Li-Ion Insertion” ACS Nano, 2009, 3 (4), pp 907–914
[47] Zhong-Shuai Wu, etc “Graphene Anchored with Co3O4 Nanoparticles as Anode of Lithium Ion Batteries with Enhanced Reversible Capacity and Cyclic Performance”GCS Nano, 2010, 4 (6), pp 3187–3194

[48] Guangmin Zhou.etc.” Graphene-Wrapped Fe3O4 Anode Material with Improved Reversible Capacity and Cyclic Stability for Lithium Ion Batteries”,Chem. Mater. 2010, 22, 5306–5313
[49] 程能林,溶劑手冊第4版,化學工業出版社2008
[50]近藤精一 “吸附科學”第二版 丸善株式會社2001
[51] 陳柏余 離子液體的發展及其在電話學與其他領域的應用-獨特溶劑系統chemistry(the Chinese Chem.Soc.,Taipei) June.2006 vol. 64, No.2 P235~p258
[52] Welton T “Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis”. Chem Rev. 1999 Aug 11;99(8):2071-2084
[53] P. Gouerec, H. Talbi, D. Miousse, F. Tran-Van, L.H. Dao, K.H. Lee, “Preparation and Modification of Polyacrylonitrile Microcellular Foam Films for Use as Electrodes in Supercapacitors “J.Electrochem. Soc. 148, (2001). A94
[54]S.T. Mayer, R.W. Pekala, J.L. Kaschmitter, “The Aerocapacitor: An Electrochemical Double‐Layer Energy‐Storage Device” J. Electrochem. Soc.140, (1993). 446
[55] M. Ishikawa, M. Morita, M. Ihara, Y. Matsuda, “Electric Double‐Layer Capacitor Composed of Activated Carbon Fiber Cloth Electrodes and Solid Polymer Electrolytes Containing Alkylammonium Salts” J. Electrochem. Soc.141 (1994), 1730
[56] A. Rudge, J. Davey, I. Raistrick, S. Gottesfeld, J. P. Ferraris, “Conducting Polymers as Active Materials in Electrochemical Capacitors,” J. of Power Sources, 47, 1-2, 1994, pp. 89-107
[57] A. Rudge, J. Davey, I. Raistrick, S. Gottesfeld, “A study of the electrochemical properties of conducting polymers for application in electrochemical capacitors” Electrochim. Acta 37(1994), 273.
[58] S. Sarangapani, B.V. Tilak, C.P. Chen, “Materials for Electrochemical Capacitors Theoretical and Experimental Constraints” J. Electrochem. Soc.143(1996), 3791.
[59] J. P. Zheng, P. J. Cygan, T. R. Jow, “Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors” J. Electrochem. Soc. 142(1995), 2699.
[60] C. C. Hu, Y. H. Huang, “Cyclic Voltammetric Deposition of Hydrous Ruthenium Oxide for Electrochemical Capacitors” J. Electrochem. Soc. 146(1999), 2465.
[61] J. J. Jow, H. J. Lee, H. R. Chen, M. S. Wu, T. Y. Wei, “Anodic, cathodic and cyclic voltammetric deposition of ruthenium oxides from aqueous RuCl3 solutions”Electrochim Acta 52(2007), 2625.
[62] J. Wei, N. Nagarajan, I. Zhitomirsky, “Manganese oxide films for electrochemical supercapacitors” J. Mater. Process. Technol. 186, (2007)356–361
[63] M. Wu, G. A. Snook, G. Z. Chen, D. J. Fray, “Redox deposition of manganese oxide on graphite for supercapacitors” Electrochem. Commun. 6, (2004)499
[64] R. N. Reddy, R.G. Reddy, “Sol–gel MnO2 as an electrode material for electrochemical capacitors” J. Power Source 124, 330 (2003)
[65] D. J. Jones, E. Wortham, J. Rozi’ere, F. Favier, J. L. Pascal, L. Monconduit, “Manganese oxide nanocomposites: preparation and some electrochemical properties” J. Phys. Chem. Solids 65, (2004)235.
[66] S. C. Pang, M. A. Anderson, T. W. Chapman, “Novel Electrode Materials for Thin‐Film Ultracapacitors: Comparison of Electrochemical Properties of Sol‐Gel‐Derived and Electrodeposited Manganese Dioxide” J. Electrochem. Soc. 147, (2000) 444.
[67] J. H. Jiang, A. Kucernak, “Electrochemical supercapacitor material based on manganese oxide: preparation and characterization” Electrochim. Acta 47, (2002)2381.
[68] R. K. Sharma, H.-S. Oh, Y.-G. Shul, H. Kim, “Carbon-supported, nano-structured, manganese oxide composite electrode for electrochemical supercapacitor” J. Power Sources 173, (2007) 1024–1028
[69] Y. T. Wu, C. C. Hu, “Effects of Electrochemical Activation and Multiwall Carbon Nanotubes on the Capacitive Characteristics of Thick MnO2 Deposits” J. Electrochem. Soc. 151, (2005).A2066
[70] K. C. Liu, M. A. Anderson, “Porous Nickel Oxide/Nickel Films for Electrochemical Capacitors” J. Electrochem. Soc. 143(1996), 124.
[71] V. Srinivasan, J. W. Weidner, “An Electrochemical Route for Making Porous Nickel Oxide Electrochemical Capacitors” J. Electrochem. Soc. 144(1997), L210.
[72] E. E. Kalu, T. T. Nwoga, V. Srinivasan, J. W. Weidner, “Cyclic voltammetric studies of the effects of time and temperature on the capacitance of electrochemically deposited nickel hydroxide” J. Power Sources 92, (2001) 163.
[73] M. S. Wu, Y. A. Huang, C. H. Yang, J. J. Jow, “Electrodeposition of nanoporous nickel oxide film for electrochemical capacitors” Int. J. Hydrogen Energy 32(2007), 4153.
[74] S. L. Xiong, C.H. Yuan, X.G. Zhang, B.J. Xi, Y. T. Qian, “Controllable Synthesis of Mesoporous Co3O4 Nanostructures with Tunable Morphology for Application in Supercapacitors “Chemistry - A European Journal 15, (2009)21, 5320–5326
[75] J.S Foord, R.B. Jackman, G. C. Allen, Philos. “An X-ray photoelectron spectroscopic investigation of the oxidation of Manganese” Mag. (1984).A49, 657
[76]T.L. Barr, “An ESCA study of the termination of the passivation of elemental metals”J. Chem. Phys. 82, 1801(1978)
[77] W.P. Kilroy*, S. Dallek, J. Zaykoski “Synthesis and characterization of metastable Li–Mn–O spinels from Mn(V)” J. of Power Sources 105 (2002) 75–81
[78] J. F. Moulder, W.F. stickle, K. D. Bompen, Handbook of photoelectron spectroscopy, Perkin Elmer, Eden Praire, (1991)
[79] X. Han et al. Hu Ying. “Effect of in situ oxidization with potassium permanganate on the morphologies of SEBS membranes.” Polymer Degradation and Stability 92(2007), 75-85
[80] M. Chigane, M Ishikawa, “Manganese Oxide Thin Film Preparation by Potentiostatic Electrolyses and Electrochromism” J. Electrochem. Soc., 147 (6) (2000) 2246-2251
[81] Mamiko Yamashita…etc “Coprecipitation of gold(III) complex ions with manganese(II) hydroxide and their stoichiometric reduction to atomic gold (Au(0)): Analysis by Mossbauer spectroscopy and XPS“ J. of Colloid and Interface Science 319, 25–29 (2008)
[82] T. Brousse, M. Toupin, R. Dugas, L. Athouel, O. Crosnier, D. Belanger, “Crystalline MnO2 as Possible Alternatives to Amorphous Compounds in Electrochemical Supercapacitors” J. Electrochem. Soc., 153, A2171 (2006)
[83] B. Vincent Crist ”Handbooks of Monochromatic XPS Spectra. Volume Two - Commercially Pure Binary Oxides” XPS International, 2007 p37-42
[84] S. Komaba, A. Ogata, T. Tsuchikawa, “Enhanced supercapacitive behaviors of birnessite” Electrochem Commun. 10(2008), 1435-1437.
[85] R.N. Reddy, R.G. Reddy, “Sol–gel MnO2 as an electrode material for electrochemical capacitors” J. Power Sources 124(2003), 330
[86] M. Toupin, T. Brousse, D. Belanger, “Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor” Chem. Mater. 16(2004), 3184
[87] C.-C. Hu, T.-W. Tsou, “Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition” Electrochem. Commun. 4, 105(2002).
[88] E. Beaudrouet, A. Le Gal La Salle, D. Guyomard, “Nanostructured manganese dioxides: Synthesis and properties as supercapacitor electrode materials” Electroch. Acta 54(2009) , 1240.
[89] M.-S. Wu, P.-C.J. Chiang, “Fabrication of Nanostructured Manganese Oxide Electrodes for Electrochemical Capacitors” Electrochem. Solid-State Lett. 7(2004), A123.
[90] R. N. Reddy, R. G. Reddy, “Synthesis and electrochemical characterization of amorphous MnO2 electrochemical capacitor electrode material” J. Power Sources 132(2004), 315.
[91] T. Brousse, M. Toupin, R. Dugas, L. Athouel, O.Crosnier, D. Belanger, “Crystalline MnO2 as Possible Alternatives to Amorphous Compounds in Electrochemical Supercapacitors” J. Electrochem. Soc. 153(2006), A2171.
[92] G.-X. Wang, B.-L. Zhang, Z.-L. Yu, M.-Z. Qu, “Manganese oxide/MWNTs composite electrodes for supercapacitors” Solid State Ionics 176 (2005), 1169.
[93] S.-C. Pang, M.A. Anderson, T.W. Chapman, “Novel Electrode Materials for Thin‐Film Ultracapacitors: Comparison of Electrochemical Properties of Sol‐Gel‐Derived and Electrodeposited Manganese Dioxide” J. Electrochem. Soc. 147(2000), 444.
[94] V. Subramanian, H. Zhu, B. Wei, “Synthesis and electrochemical characterizations of amorphous manganese oxide and single walled carbon nanotube composites as supercapacitor electrode materials” Electrochem. Commun. 8 (2006), 827.
[95] J. Zhou, J. Cheiftz, R. Li, F. Wang, X. Zhou, T.-K. Sham, X. Sun, Z. Ding, “Tailoring multi-wall carbon nanotubes for smaller Nanostructures” Carbon 47(2009), 829.
[96] S. I. A. Razak, A.L. Ahmad, S. H. S. Zein, A. R. Boccaccini, “MnO2-filled multiwalled carbon nanotube/polyaniline nanocomposites with enhanced interfacial interaction and electronic properties” Scripta Mater. 61(2009), 592.
[97] L. Demarconnay, E.Raymundo-Pinero, F. Beguin, “Adjustment of electrodes potential window in an asymmetric carbon/MnO2 supercapacitor” J. Power Sources 196, (2011) 580-586.
[98] T. Brousse, P.L. Taberna, O. Crosnier, R. Dugas, P. Guillemet , Y. Scudeller , Y. Zhou, F. Favier , D. B’elanger , P. Simon, “Long-term cycling behavior of asymmetric activated carbon/MnO2 aqueous electrochemical supercapacitor” J. of Power Sources 173(2007), 633–641.
[99] A. L. M. Reddy, M. M. Shaijumon, S. R. Gowda, P. M. Ajayan, “Multisegmented Au-MnO2/Carbon Nanotube Hybrid Coaxial Arrays for High-Power Supercapacitor Applications” J. Phys. Chem. C114 (2010), 658–663.
[100] Y. Wang, H. Liu, X. Sun, I. Zhitomirsky, “Manganese dioxide–carbon nanotube nanocomposites for electrodes of electrochemical supercapacitors” Scripta Mater. 61(2009),1079–1082.
[101] S.-L. Chou, J.-Z. Wang, S.-Y. Chew, H.-K. L. S.-Xue Dou, “Electrodeposition of MnO2 nanowires on carbon nanotube paper as free-standing, flexible electrode for supercapacitors” Electrochem. Commun. 10(2008), 1724-1727.
[102] D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B. K. Price&; J.M. Tour “Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons”Nature 458(2009), 872-876.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊