(3.230.143.40) 您好!臺灣時間:2021/04/21 18:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林秉宥
研究生(外文):Ping-Yu Lin
論文名稱:軟性顯示器UV固化型聚胺酯配向膜與基材黏著性改善之研究
論文名稱(外文):Study on the Adhesion Improvement of UV Curing Polyurethane Alignment and Substrate for Flexible Display
指導教授:黃繼遠
指導教授(外文):Chi-Yuan Huang
口試委員:黃繼遠
口試委員(外文):Chi-Yuan Huang
口試日期:2013-07-29
學位類別:碩士
校院名稱:大同大學
系所名稱:材料工程學系(所)
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:110
中文關鍵詞:軟性顯示器氬氣電漿接著性聚胺酯間隙物
外文關鍵詞:adhesionargon plasmaflexible displaypolyurethanespacer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:196
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究是利用微壓印及紫外光固化技術來進行可撓性面板間隙物(spacer)之製備,並對製程進行改良,主要改良重點在於塑膠基板間的間隙物(spacer)製程,重新設計與規劃製程之步驟,使其更加地符合滾動連續製程(roll to roll)之要件,並增強其抵抗外力所造成的形變,維持原有面板間隙值,以保證原光學顯示品質及耐用性,並改善間隙物(spacer)的機械特性。
實驗中使用氬氣電漿對於具有ITO塗層之PET高分子基材(PET/ ITO試片)進行表面處理後影響之剝離強度的研究。根據ASTM D3165-00規範製作黏著拉剪應力測試試片。此測試用於比較經由不同的氬氣電漿處理後所造成表面接著度之剪切強度。PET/ ITO試片經過電漿處理後,表面產生自由基 (Free Radicals),自由基經過曝氣轉變為過氧化物 (Peroxide) ,過氧化物濃度以 1,1-dipphenyl-2-picrylhydrazyl (DPPH∙) 方法計算。PET/ ITO試片表面形態及粗糙度與可濕性各別使用原子力顯微鏡 (AFM) 和靜態接觸角(Static Contact Angle)分析。由微區傅立葉轉換紅外線光譜 (Micro FTIR) 鑑別特徵官能基和表面粗糙度變化。
PET/ ITO試片黏著強度經由拉伸實驗方法量測,結果出現強度最佳化之電漿處理條件為20W處理3分鐘,自由基量為0.31×10-9 mol/mm2;電漿處理後的PET/ ITO試片,具有親水性(Hydrophilic)並且誘發錨定(Anchors)效應。由AFM檢測圖明顯可看出,表面出現了大量的凹痕,此凹痕的出現可提高拉伸試驗的剝離強度。經過電漿表面改質後,PET/ ITO試片之剝離強度由0.72 增加至 0.98 MPa。
其中針對紫外光起始劑含、膠體塗佈速度、壓印應力及丙酮稀釋含量對於間隙物的影響進行研究。結果發現,紫外光起始劑含量為3.0 wt%時,得到了最理想的光固化條件,並且發現若預先塗佈一層稀釋聚胺酯層可以提高後續聚胺酯塗佈之膠體塗層表面光滑平整度。通過增加此一預塗PU層的步驟可以有效降低經由電漿處理後試片表面粗糙度所造成的光散射,以得到強化配向膜與基材間黏著性同時增加透光率。
In this study, the nano-imprinting and UV curing technology were used to produce the spacer of flexible display, and to improve the methods of spacer production. The main that purpose was improving the plastics substrate manufacture and impact its stress resistance in order to maintain the value of spacer gap, which can keep original optical property and durability, and improving the mechanical property. The focus of this study was on the re-planning the process of the flexible display, so that the process would much more match the roll-to-roll(R2R) process.
In the investigation, effects of surface modification by argon plasma on shear strength of flexible device processed on ITO coated PET substrate (PET / ITO flake) were studied. Use to single lap shear specimens were tested according to ASTM D3165-00. This test was used to determine comparative shear strengths by various surface plasma treatment preparation. After plasma treated, the free radicals were generated on PET / ITO flake surfaces and then converted to peroxide offer exposed to air. The concentration of peroxides were estimated by the 1,1-dipphenyl-2-picrylhydrazyl (DPPH∙) method. The surface morphology and the wettability of PET / ITO flake were analyzed by atomic force microscopy (AFM) and static contact angle measurement, respectively. Identify the functional groups of the adhesive and their relative change was proved by Micro FTIR.
From the results, the optimum free radical content for offering high shear strength was 0.31×10-9 mol/mm2 at 20 W plasma-treated for 3 min. The plasma treated PET / ITO substrate surfaces possessed the hydrophilic property and introduced the number of anchors. AFM photographs shows that the surface of possessed many microporous. This microporous shear mechanism can offer shear strength as shear testing. As Surface modification by plasma treatment, the shear strength of PET / ITO flake with adhesive UV curing polyurethane(UV-PU) was increased from 0.72 to 0.98 MPa, respectively.
Influences of UV-photoinitiator content, spin-coating speed, molding pressure, and acetone dilution content on the micro-structured spacer of flexible panel were studied. Results showed that UV-photoinitiator content of 3.0 wt% in spacer material got the optimum UV-curing condition, also found precoating a PU layer can improve coating colloids surface smoothness. Through precoating a PU layer can reduce surface roughness PET / ITO flake by argon plasma treatment. Reduce the light scattering while achieving increased transmittance.
摘要 I
ABSTRACT III
CONTENTS V
TABLE LIST IX
FIGURE LIST X
CHAPTER I 1
1 INTRODUCTION 1
CHAPTER II 5
2 THEORIES AND LITERATURES REVIEW 5
2.1 Display 5
2.1.1 Electrophoretic display 5
2.1.2 Organic light emitting display 5
2.1.3 Liquid crystal display 6
2.2 Liquid crystal 8
2.2.1 Classification of liquid crystals 9
2.2.1.1 Smectic liquid crystal 10
2.2.1.2 Nematic liquid crystal 11
2.2.1.3 Cholesteric liquid crystal 12
2.3 The UV curing of resin 13
2.3.1 The unsaturated oligomers 13
2.3.2 Reactive diluent 13
2.3.3 Photoinitiator and photosensitizer 13
2.3.4 Mechanism of UV curing resin 15
2.3.4.1 Photocondensation polymerization 15
2.3.4.2 Photoaddition polymerization 15
2.4 Spacer 17
2.4.1 Ball spacer 18
2.4.2 Polymer wall 19
2.4.3 Photo spacer 20
2.5 Method of liquid crystal injection 21
2.5.1 Conventional method of liquid crystal injection 21
2.5.2 One drop filling method 22
2.5.3 Roller pressing method 23
2.6 Surface Modification of Polymers 24
2.6.1 Electron Beams 24
2.6.2 Glow Discharge 24
2.7 Adhesion 26
CHAPTER III 27
3 EXPERIMENT 27
3.1 Materials 27
3.1.1 The photoinitiator of Additives 27
3.1.2 The materials of NCO% titration 27
3.1.3 Film 28
3.1.4 Liquid Crystals 28
3.2 Experiment Techniques 32
3.2.1 Argon Plasma Treatment 32
3.2.2 Adhesion measurement by Single lap shear test 32
3.2.3 Contact angle measurement 33
3.2.4 AFM observation 33
3.2.5 Peroxide determination 33
3.2.6 IR Spectrum 33
3.3 Specimens preparing 34
3.3.1 Homogeneous mixing 34
3.3.2 Spin coating 35
3.3.3 UV curing 36
3.4 UV/Visible 38
3.5 Imprint process 39
3.6 Anti-Press test 40
3.7 Flexible property test 41
CHAPTER IV 42
4 RESULTS AND DISCUSSION 42
4.1 Effect of rotational speed rate on PU alignment 42
4.2 Effect of molding pressure on PU spacer material 51
4.3 The height of shaped spacer 56
4.4 The load capacity of spacer by anti-press test 59
4.5 Changes in PET / ITO flake surface wettability 62
4.6 Shear strength 64
4.7 FTIR spectroscopic analysis 68
4.8 Peroxide concentration 71
4.9 The effect of various plasma treatment conditions 74
4.10 Flexible property test of display device 80
4.11 The electro-optical characteristic of flexible display device 82
CHAPTER V 85
5 CONCLUSIONS 85
REFERENCES 89
[1]H. Nakagawa,Sharp Technical Journal 85 (2003) 5.
[2]D.J. Gundlach, Nat. Mater. 6 (3) (2007) 173.
[3]W.F. Smith, Nat. Nanotechnol. 2 (2) (2007) 77.
[4]M. Berggren, D. Nilsson, N.D. Robinson, Nat. Mater. 6 (1) (2007) 3.
[5]H. Sirringhaus, N. Tessler, R.H. Friend, Science 280 (1998) 1741.
[6]S. Logothetidis, Proceedings SPIE, International Offshore and Polar Engineering Conference, 2007, p. 6732.
[7]M. Yanaka, B.M. Henry, A.P. Roberts, C.R.M. Grovenor, G.A.D. Briggs, A.P. Sutton, T. Miyamoto, Y. Tsukahara, N. Takeda, R.J. Chater, Thin Solid Films 397 (2001) 176.
[8]A. Laskarakis, S. Logothetidis, J. Appl. Phys. 99 (2006) 66101.
[9]S. Logothetidis, Rev. Adv. Mater. Sci. 10 (2005) 387.
[10]C. M. Hsu, C. J. Chang, W. T. Wu, IDW 2009, 2009.
[11]C. M. Hsu, C. J. Chang, W. T. Wu, IDW 2009, 2009.
[12]S. J. Jang, J. H. Kim, J. H. Bae, Y. Choi, H. R. Kim, S. I. Kim, S. Shin, J. H. Kim, SID (2007) 120.
[13]S. Y. Hwang, H. Y. Jung, J. H. Jeong, H. Lee, Thin Solid Films, TSF-25673; P4, 2009.
[14]E. Herz, Electrophoretic Display Technology: The beginnings, the improvements, and a future in flexible electronics, (2006) 5.
[15]陳信吉、蕭忠信,可撓性平面顯示器產品及製程設備介紹,機械工業期刊,(2005) 63。
[16]吳忠幟,有機光電半導體與元件研究,工程科技通訊80期6月號, ( 2005) 159。
[17]C. M. Hsu, W. T. Wu, H. H. Lee, Displays 29 (2008) 268.
[18]蘇海清、盧英瑞、吳忠幟,顯示科技大未來,科學發展月刊,393 期,(2005) 18。
[19]黃雅鈴、傅永貴,類紙式膽固醇液晶顯示器,國立成功大學物理研究所碩士論文 (2005)。
[20]黃雅鈴、傅永貴,類紙式膽固醇液晶顯示器,國立成功大學物理研究所碩士論文 (2005)。
[21]P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed., Clarendon Press, Oxford (1993) 23.
[22]陳怡君、傅永貴,對膽固醇液晶雷射輸出大範圍調控之研究,國立成功大學物理研究所碩士論文,(2005)。
[23]趙中興,顯示器原理與技術,全華科技圖書股份有限公司,第十一章,(2002)。
[24]L. M. Blinov, V. G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials, Springer-Verlag Publishing Co., New York (1994) 22.
[25]許千樹,液晶顯示器技術手冊,全華科技圖書股份有限公司出版公司,第二章,(2004) 16。
[26]B. Bahadur, Liquid Crystals:Applications and Uses, 1, World Scientific, Singapore (1990) 30.
[27]F. Reinitzer, “Beitrage zur Kenntniss des Cholesterins,” Wiener Monatsschr, Fiir Chem, vol.9, (1888) 421.
[28]黃子強,液晶顯示原理,國防工業出版社,(2008) 14。
[29]松本正一,角田市良,液晶之基礎與應用,國立編譯館,(1996) 11。
[30]P. Swaraj, Surface Coatings-Science and Technology; Wiley: Chichester, Chapter 8, (1985) 601.
[31]J. W. Rosthauser, K. Nachtakamp, J. Coating Fabrics, 16 (1986) 39.
[32]J. Szmuszkovicz, M. P. Kane, L. G. Laurian, T. A. Scahill, J. Org. Chem., 46 (1981) 3562.
[33]Y. Ittah, Y. Sasson, I. Shahak, S. Tsaroom, J. Blum, J. Org. Chem., 43, (1978) 4271.
[34]A. Hassner and J. Galle, E. J. Org. Chem., 47 (1976) 2273.
[35]Y. G. Gololobov, I. N. Zhmurova, L. F. Kasukhin, Tetrahedron, 37 (1981) 437.
[36]D. H. Wadsworth, J. Org. Chem., 32 (1967) 1184.
[37]G. N. Chen, K. N. Chen, J. Appl. Polym. Sci. 71 (1999) 903.
[38]王德海,江櫺,紫外光固化材料,科學出版社,(2001) 23。
[39]C. M. Hsu, C. J. Chang, W. T. Wu , IDMC, Apr. 27-30, Taipei, Taiwan, p. Wed-P4-09 (2009).
[40]S. G. Kim, Y. S. Kim, A. K. Srivastava, S. T. Oh, G. D. Lee, S. H. Lee, Current Applied Physics 8 (2008) 142.
[41]H. Hah, S. J. Sung, M. Han, S. S. Lee, J. K. Park, Displays 29 (2008) 478.
[42]H. Lee, S. Hong, K. Yang, K. Choi, Microelectron. Eng. (2006) 323.
[43]S. Y. Hwang, H. Y. Jung, J. H. Jeong, H. Lee, Thin Solid Films 517 (2009) 4104.
[44]K. S. Bae, H. R. Kim, Y. M. Kim, J. H. Kim, SID DIGEST, (2007) 661.
[45]H. Hah, S. J. Sung, M. Han, S. S. Lee, J. K. Park, Displays 29 (2008) 478.
[46]C. Barron, J. Angele, L. Bajic, L. Dozov, J. Brill, J. Specht F. Leblanc, S. Perny, Journal of the SID, (2005) 193.
[47]李昌周、柯志諭、張耀仁、莊佳橙、楊仁傑、吳文端、許進明, 常壓下軟性液晶顯示器封裝技術,機械工業雜誌307 期10 月號, (2008) 45。
[48]K. C. Fan, J. Y. Chen, C. H. Wang, W. C. Pan, Sens. Actuators, A 147 (2008) 649.
[49]K. J. Lee, J. M. Park, H. C. Kim, J. H. Seo, Y. J. Kim, B. H. Jung, C. H. Park, IDW 09 (2009) 533 .
[50]W. T. Wu, Y. C. Kuo, C. M. Hsu, C. C. Li, C. Y. Ke, C. H. Hsiao, SID (2007) 393.
[51]Y. Uyama, K. Kato, Y. Ikada, Springer-Verlag Berlin Heidelberg, Advances in Polymer Science, 13 (1998)
[52]M.R. Wertheimer, A.C. Fozza, A. Hollander, Nucl. Instrum. Meth. B., 151, 65 (1999).
[53]D. Hegemann, H. Brunner, C. Oehr, Nucl. Instrum. Meth. B., 208, 281 (2003).
[54]B. Gupta, J. Hilborn, C. Hollenstein, C. J. G. Plummer, R. Houriet, N. Xanthopoulos, J. Appl. Polym. Sci., 78, 1083 (2000).
[55]V. S. Vorcik, V. Rybka, V. Hnatowicz, M. Novotna , M. Vognar, J. Appl. Polym. Sci., 64, 2529 (1997).
[56]W. Xu, P. Liu, H. Li, X. Xu, J. Appl. Polym. Sci., 78, 243 (2000).
[57]M. F. Grosso, V. C. Chappa, G. G. Bermudez, E. Forlerer, M. Behar, Surf &; Coat Technol., 202, 4227 (2008).
[58]W. Lin, Y. l. Hsieh. J. Polym, Sci. B: Polym Phys., 35, 1145 (1997).
[59]V. Svorcık, K. Kolarova, P. Slepicka , A. Mackova, M. Novotna, V. Hnatowicz, Polym. Deg. & Stab., 91, 1219 (2006).
[60]B. D. Washo, IBM J. Res. , 21(1977)190.
[61]S. A. Jenekhe, Polym. Eng. Sci., 23 (1983) 830.
[62]B. G. Higgins, Phys. Fluids, 29 (1986) 3522.
[63]J. H. Lai, Polym. Eng. Sci., 19 (1979) 1117.
[64]F. L. Givens, W. J. Daughton, J. Electrochem. Soc., 126 (1979) 269.
[65]W. J. Daughton, F. L. Givens, J. Electrochem. Soc., 129 (1982) 173.
[66]B. T. Chen, Polym. Eng. Sci., 23 (1983) 399.
[67]A. Weill, E. Dechenaux, Polym. Eng. Sci., 28 (1988) 945.
[68]L. L. Spangler, J. M. Torkelson, J. S. Royal, Polym. Eng. Sci., 30 (1990) 644.
[69]J. Q. Pham, P. F. Green, J. Chem. Phys., 116 (2002) 5801.
[70]J. H. Kim, J. Jang, W. C. Zin, Langmuir, 17 (2001) 2703.
[71]D. F. S. Petri, J. Braz. Chem. Soc., 13 (2002) 695.
[72]J. Yip, S.P Ng., J. Mater. Process. Technol,1( 2009) 58.
[73]Z. Xu, X. W. Jiang,. X. Zhang, Master Degree Paper of Xi’an Polytechnic University, (2009).
[74]W. M. Yu, K.W. Yeung, S. C. Harlock, G. A. V. Leaf, Textile Res.J 4 (1998) 289.
[75]R. Bongiovanni, A. D. Gianni, A. Priola, A. Pollicino. European Polymer Journal, 43, 3787 (2007).
[76]S. M. Mirabedini, H. Rahimi, S. Hamedifar, S. M. Mohseni, International Journal of Adhesion &; Adhesives., 24, 163 (2004).
[77]J. M. Yang, P. Y. Huang, M. C. Yang, W. Wang. J. Appl. Polym. Sci., 65 365 (1997).
[78]Z. Zheng, X. Tang, M. Shi, G. Zhou, J. Polym. Sci. Part B, Polym Phys., 42, 463 (2004).
[79]V. Svorcık, V. Kotal, P. Slepicka, O. Blahova, M. Spırkova, P. Sajdl, V. Hnatowicz. Nucl. Instrum. & Meth. B, 244, 365 (2006).
[80]M. Mucha, Prog. Polym. Sci. 28 (2003) 837
[81]Jee-Hyun Ryu, Young-Hun Choi, Kyung-Do Suh, Colloids and Surfaces A: Physicochem. Eng. Aspects 275 (2006) 126
[82]F. Z. Abdounea, L. Benkhaledb, L. Mechernenea, U. Maschkeb, Physics Procedia 2 (2009) 643
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔