(3.234.221.67) 您好!臺灣時間:2021/04/11 14:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃于恆
研究生(外文):Yu-Heng Huang
論文名稱:採用延伸閘極場效電晶體之八位元pH值類比/數位轉換器
論文名稱(外文):8-BIT CMOS PH-TO-DIGITAL CONVERTER WITH EGFET
指導教授:黃淑絹黃淑絹引用關係
指導教授(外文):Shu-Chuan Huang
口試委員:黃淑絹
口試委員(外文):Shu-Chuan Huang
口試日期:2013-07-15
學位類別:碩士
校院名稱:大同大學
系所名稱:電機工程學系(所)
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:72
中文關鍵詞:讀出電路溫度感測器類比/數位轉換器感測器
外文關鍵詞:temperature sensorreadout circuitsensorADC
相關次數:
  • 被引用被引用:0
  • 點閱點閱:123
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
一個數位輸出的酸鹼值感測系統包括了前端的讀出電路、溫度補償電路,以及後端的類比數位轉換器。本文探討酸鹼值感測系統前端部分的設計並以八位元雙斜率積分式類比數位轉換器實現完整架構。系統前端部分以低功率的CMOS臨界電壓來感測電路對酸鹼的變化,並使用溫度補償電路產生負溫度係數來補償讀出電路的溫度效應。電路模擬是使用3.3 伏特及台積電公司的 0.35um CMOS 的標準製程參數並用 HSPICE軟體完成模擬分析。
此酸鹼值感測器在0℃至100℃的溫度範圍內,模擬顯示能產生一個不受溫度影響並正比於酸鹼值的感測輸出電壓,其溫度係數為0.03mV⁄℃,靈敏度為46.88mV⁄pH。八位元雙斜率積分類比數位轉換器其在pH1到pH10的輸出值為15至196,適用於酸鹼值感測系統。
A pH value sensing system with digital outputs consists of readout circuit, a temperature compensation circuit in the front end and an analog-to-digital converter (ADC) in the back end. In this thesis, a low power consumption threshold-voltage based readout circuit is presented, and temperature compensation circuit is achieved by using a negative temperature coefficient generator to compensate the readout circuit. In addition, an 8-bit dual slope ADC is designed to convert the output of the pH sensor to a digital code. The simulation results obtained from HSPICE using a standard TSMC 0.35μm CMOS models and 3.3V power supply are presented in the thesis.
This sensor is almost insensitive to the temperature and is linear dependent to pH value. The simulation result shows that the voltage output of the sensor has the temperature coefficient of 0.03mV⁄℃ from 0℃ to 100℃, and sensitivity is 46.88mV⁄pH. The 8-bit dual slope ADC output code is from 15 to 196 for pH1 to pH10, which can meet the requirement of the pH value sensing system.
ACKNOWLEDGEMENT i
ENGLISH ABSTRACT ii
CHINESE ABSTRACT iii
CONTENTS iv
LIST OF FIGURES viii
LIST OF TABLES xi
CHAPTER 1 Introduction 1
1.1 Thesis Motivation 1
1.2 Thesis Organization 2
CHAPTER 2 ISFET Sensing Principle 3
2.1 General Background 3
2.2 ISFET Sensor Characteristic 4
2.3 The Undesirable Effects of ISFET 7
2.3.1 Light Effects 7
2.3.2 Noise Effects 7
2.3.3 Temperature Effects 7
2.3.4 Time-variant Effects 9
2.3.5 Hysteresis Effects 10
2.3.6 Flow Rate Effects 10
2.3.7 Body Effect 10
2.3.8 Life Cycle Effect 11
2.4 EGFET 11
CHAPTER 3 The Circuit Operation 12
3.1 ISFET Based PH Meter 12
3.1.1 Readout Circuit Related Research 13
3.1.2 Low Power Consumption Readout Circuit 16
3.1.3 The Adjustment Circuit 19
3.2 Design of Temperature Compensation Circuit Architecture 20
3.2.1 Temperature Dependence of Threshold Voltage 20
3.2.2 Threshold Voltage Extractor Theory 23
3.2.3 Temperature Compensation Circuit Architecture 25
3.2.4 Rail-to-rail Op-amp Design 27
3.2.5 Bandgap Voltage Generator Circuit 32
3.2.6 The Temperature Compensation Circuit 34
CHAPTER 4 A/D Converter Architectures 36
4.1 Introduction to Analog-to-digital Converter 36
4.2 Comparator 37
4.3 Design of Dual Slope ADC 38
4.3.1 Operation of the Single Slope ADC 38
4.3.2 Operation of the Dual Slope ADC 39
4.4 Design Specifications 40
4.4.1 Specification of Two Stage Op-amp 40
4.4.1.1 Design Procedure 41
4.4.1.2 Op-amp Simulation Result 44
4.4.2 Integrator 44
4.4.3 Comparator 45
4.4.4 Control Logic 45
4.4.5 8-bit Counter 46
CHAPTER 5 Simulation Results 47
5.1 The Pre-simulation Results of the 8-bit CMOS PH-to-digital Converter 47
5.2 The Post-simulation Results of the 8-bit CMOS PH-to-digital Converter 52
5.3 Chip Layout for the EGFET PH Sensor 54
5.4 Measurement Setup 55
5.5 Measurement Results 55
CHAPTER 6 Conclusions 57
6.1 Conclusion 57
6.2 Future Work 57
REFERENCES 58
[1] W. Y. Chung, C. H. Yang, Y. F. Wang, and Y. J. Chan, “A signal processing ASIC for ISFET-based chemical sensors,” Microelectronics Journal, vol 35, pp. 667-675, April 2004.
[2] S. Martinoia, L. Lorenzelli, G. Massobrio, P. Conci, and A. Lui, “Temperature effects on the ISFET behaviour: simulations and measurements,” Sensors and Actuators, vol. B50, 1998, pp. 60-68.
[3] R. E. Van Hal, J. C. Eijkel, and P. Bergveld, “A novel description of ISFET sensitivity with the buffer capacity and double-layer capacitance as key parameters,” Sens. Actuators B, vol. 24–25, pp. 201–205, 1995.
[4] M. Grattarola, G. Massobrio, and S. Martinoia, “Modeling H^+ -sensitive FET’s with SPICE,” IEEE Trans. Electron Devices, vol. 39, no. 4, Apr. 1992.
[5]P. Bergveld, “Thirty years of ISFETOLOGY what happened in the past 30 years and what may happen in the next 30 years,” Sens. Actuators B, vol. 88, pp. 1–20, 2000.
[6] Y. P. Tsividis, Operation and Modeling of the MOS Transistor, New York: McGraw-Hill, 1999.
[7] C. Y. Aw and P. W. Cheng, “A pH-ISFET sensor with on-chip temperature sensing,” IEEE Engineering in Medicine and Biology society, vol. 2, pp.772-773, 1988.
[8] P. K. Chan and D. Y. Chen, “A CMOS ISFET interface circuit with dynamic current temperature compensation technique,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 54, no. 1, pp. 119–129, Jan. 2007.
[9] S. M. Sze, Physics of Semicaonductor Device, 2nd Ed., New York: Wiley, 1981.
[10] S.Martinoia, L. Lorenzelli, G.Massobrio, P. Conci, and A. Lui, “Temperature effects on the ISFET behaviour: Simulations and measurements,” Sens. Actuators B, vol. 50, pp. 60–68, 1998.
[11] L. J. Bousse, D.Hafeman, and N. Tran, “Time dependence of the chemical response of silicon nitride surfaces,” Sens. Actuators B, vol. 1, pp. 361–367, 1991.
[12] K. J. Cao, A Chemical Sensor Design Using a Standard CMOS Process, Winnipeg, Manitoba, Canada, April 2007.
[13] L. Shepherd and C. Toumazou, “Towards an implantable ultra-low power biochemical signal processor for blood and tissue monitoring,” in Proc. IEEE ISCAS, May 2005, pp. 5226 – 5229.
[14] Y. T. Wang, R. L.Geiger, and S. C. Huang, “Threshold-based voltage reference with pn- junction temperature compensation,” in Proc. IEEE MWSCAS, Aug. 2-5 2009, pp. 156–159.
[15] R. K. Laker and M. C. Sansen, Design of Analog Integrated Circuits and System, McGRAW-HILL, 1994.
[16] M. G. Johnson, “An Input-Free VT Extractor Circuit Using a Two-transistor Differential Amplifier,” IEEE J. Solid-State Circuit, vol. 28, no. 6, JUNE 1993.
[17] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design, Saunders College Publishing HBJ, 2002.
[18] R. J. Baker, H. W. Li, and D. E. Boyce, “CMOS Circuit Design, Layout, and Simulation,” IEEE Press, 1998.
[19] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design, Oxford University Press, Fifth Impression 2008.
[20] M. Fekry and M. Bestauros, “Design and Implementation of a Dual Slope ADC for PTAT Temperature Sensors Used in HDRC Vision Applications,” Bachelor Thesis 2010.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔