(3.238.250.105) 您好!臺灣時間:2021/04/20 05:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:郭家瑋
研究生(外文):Chia-Wei Kuo
論文名稱:正交分頻多工系統中以低複雜度之子區塊置換性部分傳輸序列法降低峰均功率比
論文名稱(外文):A LOW-COMPLEXITY SUBBLOCK-PERMUTED PTS SCHEME FOR PAPR REDUCTION IN OFDM SYSTEMS
指導教授:古聖如
指導教授(外文):Sheng-Ju Ku
口試委員:古聖如
口試委員(外文):Sheng-Ju Ku
口試日期:2013-07-17
學位類別:碩士
校院名稱:大同大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:47
中文關鍵詞:反快速傅立葉轉換正交分頻多工峰均功率比部分傳輸序列
外文關鍵詞:PTSpartial transmit sequencesIFFTpeak-to-average power ratioOFDMInverse fast Fourier transformPAPRorthogonal frequency division multiplexing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:151
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
正交分頻多工(orthogonal frequency division multiplexing,OFDM)技術因為具有高資料傳輸率及對多路徑衰減的抵抗力強等優點,目前廣為各種無線傳輸系統所採用。正交分頻多工系統的主要缺點之一是傳輸信號具有高峰均功率比(peak-to-average power ratio,PAPR)。由於部分傳輸序列法(partial transmit sequences,PTS)能在不造成信號失真的情況下有效降低OFDM系統的峰均功率比,使其成為一個非常具有吸引力的解決方案。但是,部分傳輸序列法在相位因子最佳化過程中需要較高的計算複雜度。本論文提出了一個低計算複雜度之子區塊置換性PTS法,用來增進PAPR的降低效能。在所提出之方法中,我們利用頻域信號子區塊之互相交換來增加時域之候選信號的個數。再利用離散時間之傅立葉轉換(discrete-time Fourier transform,DTFT)中頻率位移的特性,降低所增加的反快速傅立葉轉換之計算。另外,我們使用一組價值函數(cost function)來降低最佳化過程中產生後選信號所需要的計算複雜度。模擬結果顯示所提出之置換性PTS法比傳統PTS法有較好的PAPR降低效能,且具有較低的計算複雜度。
Orthogonal frequency division multiplexing (OFDM) is an efficient technique for high-speed data rate wireless transmission systems because of high spectral efficiency and robust to multipath fading. One of the main drawbacks of OFDM systems is the high peak-to-average power ratio (PAPR) in the transmitted signals. Partial transmit sequences (PTS) scheme is a very attractive scheme because it has good PAPR reduction performance without any distortion in the transmitted signals for OFDM systems. However, the conventional PTS scheme requires high computational complexity for finding the optimal phase rotation vector. A new permutation-based PTS scheme for OFDM systems has been proposed to enhance the PAPR reduction performance method in this thesis. In the proposed PTS method, we increase the number of candidate signals by permuting the subblocks of the frequency-domain signal. Then we use the frequency shifting property of discrete-time Fourier transform (DTFT) to reduce the additional inverse fast Fourier transform (IFFT) computations of the permuted subblocks. In addition, we use a cost function to select the samples for PAPR estimation of each candidate signal, which can largely reduce the computational complexity of the process to find the optimal candidate signal. Simulation results show that the proposed PTS scheme has better PAPR reduction performance and less computational complexity than the conventional PTS scheme.
致謝 ii
ABSTRACT iv
CONTENTS (目錄) vi
LIST OF FIGURES (圖目錄) viii
LIST OF TABLES (表目錄) x
第壹章 緒論 1
1.1 研究動機 1
1.2 研究目的 1
1.3 論文架構 2
第貳章 研究背景 3
2.1 OFDM系統及PAPR 3
2.2 降低PAPR之方法 5
2.2.1 裁切法 6
2.2.2 非線性壓縮轉換法 6
2.2.3編碼技術 6
2.2.4 星座擴充法 7
2.2.5 主動式星座擴充法 7
2.2.6選擇性映射(SLM)法 8
2.2.7 部分傳輸序列(PTS)法 9
2.2.8 以價值函數降低複雜度之PTS 10
2.3 總結 12
第參章 低計算複雜度置換性PTS法 21
3.1 置換性PTS法 21
3.2 降低計算複雜度 22
3.2.1 減少IFFT之運算 22
3.2.2 減少計算PAPR的取樣點個數 23
3.3 計算複雜度分析 25
3.4 總結 26
第肆章 PAPR降低效能與計算複雜度比較 30
4.1 PAPR的降低效能比較 30
4.2 計算複雜度分析 32
4.3 總結 33
第伍章 結論 39
參考文獻 40
[1] Y. Wu and W. Y. Zou, “Orthogonal frequency division multiplexing: A multi-carrier modulation scheme,” IEEE Trans. Consum. Electron., vol. 41, no. 3, pp. 392-399, Aug. 1995.
[2] H. Han and J. H. Lee, “An overview of peak-to-average power ratio reduction techniques for multicarrier transmission,” IEEE Wireless Commun., vol. 12, no. 2, pp. 56-65, Apr. 2005.
[3] “IEEE Standard for Local and Metropolitan Area Networks − Part 16: Air Interface for Fixed Broadband Wireless Access Systems, Amendment 2: Physical and Medium Access Control Layers for Combined Fixed and Mobile Operation in Licensed Bands,” IEEE Computer Society and the IEEE Microwave Theory and Techniques Society, February 2006.
[4] ETSI, “Digital Video Broadcasting (DVB): Framing structure, channel coding and modulation for digital terrestrial television,” ETS 300 744 v1.3.3, Sept. 2000.
[5] T. Jiang, W. Xiang, H. H. Chen, and Q. Ni, “Multicast broadcasting services support in OFDMA-based WiMAX systems,” IEEE Commun. Magazine, vol. 45, no. 8, pp. 78–86, Aug. 2007.
[6] ETSI, “LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation (3GPP TS 36.211 version 9.1.0 Release 9), ETSI TS 136 211 V9.1.0, Apr. 2010.
[7] J. Tellado, Multicarrier Modulation with Low PAR: Applications to DSL and Wireless. Norwell, MA: Kluwer, 2000.
[8] J. S. Chow, J. A. C. Bingham, and M. S. Flowers, “Mitigating clipping noise in multi-carrier systems,” in Proc. 1997 IEEE Int. Commun. Conf. (ICC ‘97), Montreal, Canada, Jun. 1997, pp. 715–719.
[9] H. Saeedi, M. Sharif, and F. Marvasti, “Clipping noise cancellation in OFDM systems using oversampled signal reconstruction,” IEEE Commun. Lett., vol. 6, no. 2, pp. 73–75, Feb. 2002.
[10] X. Wang, T.T. Tjhung, and C. S. Ng, “Reduction of peak-to-average power ratio of OFDM system using a companding technique,” IEEE Trans. Broadcast., vol. 45, no. 3, pp. 303-307, Sept. 1999.
[11] T. Jiang and G. Zhu, “Nonlinear companding transform for reducing peak-to-average power ratio of OFDM signals,” IEEE Trans. Broadcast., vol. 50, no. 3, pp. 342-346, Sept. 2004.
[12] X. Huang, J. Lu, J. Zheng, K. B. Letaief, and J. Gu, “Companding transform for reduction in peak-to-average power ratio of OFDM signals,” IEEE Trans. Wireless Commun., vol. 03, no. 6, pp. 2030-2039, Nov. 2004.
[13] T. Jiang, Y. Yang, and Y. H. Song, “Exponential companding technique for PAPR reduction in OFDM systems,” IEEE Trans. Broadcast., vol. 51, no. 2, pp. 244-248, June 2005.
[14] C.-L. Wang and S.-J. Ku, “A low-complexity companding transform for peak-to-average power ratio reduction in OFDM systems,” in Proc. 2006 IEEE Int. Conf. Acoust., Speech, Signal Processing (ICASSP 2006), Toulouse, France, May 2006, IV 329-332.
[15] A. E. Jones, T. A. Wilkinson, and S. K. Barton, “Block coding scheme for reduction of peak to mean envelope power ratio of multicarrier transmission schemes,” Electron. Lett., vol. 30, pp. 2098-2099, Dec. 1994.
[16] R. van Nee, “OFDM codes for peak-to-average power reduction and error correction,” in Proc. 1996 IEEE Global Telecommun. Conf. (GLOBECOM ’96), London, England, Nov. 1996, vol. 1, pp. 740-744.
[17] Brian Scott Krongold and Douglas L. Jones, “PAR reduction in OFDM via active constellation extension,” IEEE Trans. Broadcast., vol.49, no. 3, pp. 258-268, Sept. 2003.
[18] M. Sharif and B. Hassbi, “A deterministic algorithm that achieves the PMEPR of clogn for multicarrier signals,” in Proc. 2003 IEEE Int. Conf. Acoust., Speech, and Signal Process., (ICASSP 2003), Hong Kong, Apr., 2003, pp. 540-543.
[19] Y.-J. Kou, W.-S. Lu, and A. Antoniou, “A new peak-to-average power ratio reduction algorithm for OFDM systems via constellation extension,” IEEE Trans. Wireless Commun., vol. 6, no.5, pp. 1823-1832, May 2007.
[20] C.-L. Wang, Y.-C. Tsai, and S.-J. Ku, “A low-complexity constellation extension scheme for PAPR reduction of OFDM signals,” in Proc. 2009 IEEE Veh. Technol. Conf. - Fall (VTC 2009-Fall), Anchorage, Alaska, Sept. 2009.
[21] B. S. Krongold and D. L. Jones, “PAR reduction in OFDM via active constellation extension,” IEEE Trans. Broadcast., vol. 49, no. 3, pp. 258-268, Sept. 2003.
[22] L. Wang and C. Tellambura, “An adaptive-scaling algorithm for OFDM PAR reduction using active constellation extension,” in Proc. 2006 IEEE Veh. Technol. Conf. - Fall (VTC 2006-Fall), Montreal, Canada, Sept. 2006.
[23] K. Bae, J. G. Andrews, and E. J. Powers, “Adaptive active constellation extension algorithm for peak-to-average ratio reduction in OFDM,” IEEE Commun. Lett., vol. 14, no. 1, pp. 39-41, Jan. 2010.
[24] R. W. Bauml, R. F. H. Fischer, and J. B. Huber, “Reducing the peak-to-average power ratio of multicarrier modulation by selected mapping,” Electron. Lett., vol. 32, pp. 2056–2057, Oct. 1996.
[25] M. Breiling, S. H. Muller, and J. B. Huber, “SLM peak-power reduction without explicit side information,” IEEE Commun. Lett., vol. 5, pp. 239–241, June 2001.
[26] R. W. Bauml, R. F. H. Fisher, and J. B. Huber, “Reducing the peak-to-average power ratio of multicarrier modulation by selected mapping,” Electron. Lett., vol. 32, no. 22, pp. 2056-2057, Oct. 1996.
[27] C.-L. Wang, M.-Y. Hsu, and Y. Ouyang, “A low-complexity peak-to-average power ratio reduction technique for OFDM systems,” in Proc. 2003 IEEE Global Telecommun. Conf. (GLOBECOM 2003), San Francisco, CA, Dec. 2003, pp. 2357-2379.
[28] C.-L. Wang and Y. Ouyang, “Low-complexity selected mapping schemes for peak-to-average power ratio reduction in OFDM systems,” IEEE Trans. Signal Processing, vol. 53, pp. 4652–4660, Dec. 2005.
[29] C.-L. Wang and S.-J. Ku, “Novel conversion matrices for simplifying the IFFT computation of an SLM-based PAPR reduction scheme for OFDM systems,” IEEE Trans. Commun., vol. 57, no. 7, pp. 1903-1907, July 2009.
[30] P.-Y. Lin and J.-S. Lin "A Novel Block SLM Scheme for PAPR Reduction of OFDM Systems," in Proc. 2012 IEEE International Conf. on Signal Processing, Communication and Computing (ICSPCC 2012), Hong Kong, Aug. 2012, pp. 578-582.
[31] D.-W. Lim, J.-S. No, C.-W. Lim, and H. Chung, “A new SLM OFDM scheme with Low complexity for PAPR reduction,” IEEE Signal Processing Lett., vol. 12, no.2, pp. 93-96, Feb, 2005.
[32] H. Breiling, S. H. Muller-Weinfurtner, and J. B. Huber, “SLM peak-power reduction without explicit side information,” IEEE Commun. Lett., vol. 5, no. 6, pp. 239-241, June 2001.
[33] L. J. Cimini and N. R. Sollenberger, “Peak-to-average power ratio reduction of an OFDM signal using partial transmit sequence,” IEEE Commun. Lett., vol. 4, no. 3, pp. 86-88, March 2000.
[34] A. D. S. Jayalath and C. Tellambura, “Adaptive PTS approach for reduction of peak-to-average power ratio of OFDM signal,” Electron. Lett., vol. 36, no. 14, pp. 1226-1228, Jul. 2000.
[35] J.-C. Chen, “Partial Transmit Sequences for Peak-to-Average Power Ratio Reduction of OFDM Signals with the Cross-Entropy Method”, IEEE Signal Process. Lett., vol. 16, no. 6, pp. 545-548, June 2009.
[36] A. Alavi, C. Tellambura, and I. Fair, “PAPR reduction of OFDM signals using partial transmit sequence: An optimal approach using sphere decoding,” IEEE Commun. Lett., vol. 9, no. 11, pp. 982-984, Nov. 2005.
[37] A. Ghassemi and T. A. Gulliver, “PTS-Based Radix FFT for PAPR Reduction in OFDM Systems,” in Proc. 2007 IEEE Wireless Commun. and Netw. Conf. (WCNC 2007), Hong Kong, Mar. 2007, pp. 1324-1329.
[38] Y.-R. Tsai and S.-J. Huang, “PTS with non-uniform phase factors for PAPR reduction in OFDM systems,” IEEE Commun. Lett., vol. 12, no. 1, pp. 20-22, Jan. 2008.
[39] S. H. Muller and J. B. Huber, “OFDM with reduced peak-to-average power ratio by optimum combination of partial transmit sequences,” Electron. Lett., vol. 33, no. 5, pp. 368-369, Feb. 1997.
[40] S. H. Muller and J. B. Huber, “A novel peak power reduction scheme for OFDM,” in Proc. 1997 IEEE Int. Symp. Personal, Indoor Mobile Radio Commun. (PIMRC ’97), Helsinki, Finland, Sept. 1997, vol. 3, pp. 1090-1094.
[41] S.-J. Ku and C.-L. Wang "A new side-information free PTS scheme for PAPR reduction in OFDM systems," in Proc. 2012 IEEE 8th International Conf. on Wireless and Mobile Computing, Networking and Comm. (WiMob 2012), Barcelona, Spain, Oct. 2012, pp. 108–112
[42] S. H. Han and J. H. Lee, “PAPR reduction of OFDM signals using a reduced complexity PTS technique,” IEEE Signal Process. Lett., vol. 11, no. 11, pp. 887-890, Nov. 2004.
[43] Y. Xiao, X. Lei, Q. Wen, and S. Li G., “A class of low complexity PTS techniques for PAPR reduction in OFDM systems,” IEEE Signal Process. Lett., vol. 14, no. 10, pp. 680-683, Oct. 2007.
[44] A. Ghassemi and T. A. Gulliver, “A low complexity IFFT-based PTS technique for PAPR reduction in OFDM Systems,” in Proc. 2007 IEEE Veh. Technol. Conf. - Fall (VTC 2007-Fall), Baltimore, MD, Sept. 2007, pp. 616-619.
[45] X. Qi, Y. Li, and H. Huang, “A Low Complexity PTS Scheme Based on Tree for PAPR Reduction,” Commun. Lett., IEEE, vol. 16, pp. 1486-1488, Sept. 2012.
[46] S.-J. Ku, C.-L. Wang, and C.-H. Chen, "A Reduced-Complexity PTS-Based PAPR Reduction Scheme for OFDM Systems," IEEE Trans. Wireless Commun., vol 9, no. 8, pp. 2455–2460, Aug. 2010.
[47] A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals &; systems, 2nd ed. United States: Prentice Hall, 1996.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔