1.Aizerman M. A., Braverman, E. M., Rozonoer, L. I., (1964). “Theoretical Foundations of the Potential Function Method in Pattern Recognition Learning,“Autom. Remote Control, vol. 25.
2.Berry, M.J.A., &; Linoff, G. (1996). Mastering Data Mining, the Art and Science of Customer Relationship Management. NY: John Wiley and Sons.
3.Buttrey, S.E. &; Karo, C. (2002). “Using K-nearest- neighbor classification in the leaves of a tree,” Computational Statistics and Data Analysis, 40(1), 27-37.
4.Brachman, R.J., Khabaza, T., Kloesgen, W., Shapiro, G.P. &; Simoudis, E.(1996), “Mining business databases,” Communications of the ACM, vol.39, no.11, 42-48.
5.Benamor N., Benferhat S., &; Elouedi Z., (2004) “Naive Bayes vs Decision Trees in Intrusion Detection Systems,” In The 19th ACM Symposium On Applied Computing, 420-424.
6.Hsu C. W., Chang C. C. &; C. J. Lin (2003). “A Practical Guide to Support Vector Classification,” Technical Report, Department of Computer Science and Information Engineering, University of National Taiwan, Taipei, 1-12.
7.Chen, I.C. K., Coffey, J. T., &; Mudge, T. N. (1996). “Analysis of Branch Prediction Via Data Compression,“ ASPLOS VII, 128-137, Cambridge, Massachusetts.
8.Davidson, I. (2002). “Understanding K-means non-hierarchical clustering,” SUNY Albany Technical Report, 2-25.
9.Fayyad, U. &; Piatetsky-Shapiro, G. &; Smyth, P. (1996). “From Data Mining to Knowledge Discovery in Databases,” Advances in Knowledge Discovery and Data Mining, Calif.: AAAI Press, 37–54.
10.Haykin, S., (1999). Neural Networks, A Comprehensive Foundation 2nd Edition, Prentice Hall.
11.Zha H., Ding C., M. Gu, X. He, &; H.D. Simon. (2001). “Spectral rlaxation for k-means clustering,” Neural Information Processing Systems vol.14 (NIPS), 1057–1064.
12.Han J.&; Kamber M., (2006). Data Mining, Concepts and Techniques (2nd ed.), Morgan Kaufmann. ,New York.
13.He, J., A. Tan, C. L. Tan, &; S. Y. Sung, (2003). “On quantitative evaluation of clustering systems,” Clustering and Information Retrieval Anonymous, 105-134.
14.Hui, S. C. &; Jha, G. (2000). “Data mining for customer service support, “Information &; Management, 38(1), 1-13.
15.Huang, C. L., Chen, M. C. &; Wang, C. J., (2007) “Credit scoring with a data mining approach based on support vector machines,” Expert Systems with Application, vol.33, 847-856.
16.IBM SPSS Modeler 15 Applications Guide (2011).
17.MacQueen J. B. (1967). “Some Methods for classification and Analysis of Multivariate Observations,” Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, University of California Press, 1, 281-297.
18.Joachims, T. (1998). “Text categorization with support vector machines,” In Proceedings of European conference on machine learning (ECML). Chemintz, DE, 137–142.
19.Kanungo, T., Mount, D., Netanyahu, N., Piatko, C., Silverman, R., and Wu (2000). “An efficient K-means clustering algorithm: Analysis and implementation,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7), 881–892.
20.Lippmann, R., (1987). “An Introduction to Computing with Neural Nets,” IEEE ASSP MAGAZINE, pp. 4-22.
21.Martens, D., Baesens, B., Gestel, T. V. &; Vanthienen, J., (2007). “Comprehensible credit scoring models using rule extraction from support vector machines,” European Journal of Operational Research, vol.183, 1466-1476.
22.Neethu Baby &; Priyanka L.T, (2008). “Customer Classification And Prediction Based On Data Mining Technique,“ International Journal of Emerging Technology and Advanced Engineering, Volume 2, Issue 12, December 2012.
23.Ott, J., (2000). “Successfully development and Implementing Continuous relationship management,” eBusiness executive report, 26-30.
24.Peppers, D. &; Rogers, M. (1999). The One to One Future, Doubleday, N.Y.
25.Pontil, M. &; Verri, A. (1998). “Support vector machines for 3D object recognition.,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(6), 637–646.
26.Quinlan, J. R., (1986). “Induction of Decision Trees,” Machine Learning, vol.1, no.1, 81-106.
27.Ribeiro, B. (2002). "On Data Based Learning Using Support Vector Clustering," Proceeding of the 9th International Conference on Neural Information Processing, 5 ,2516-2521.
28.Moro S., R. Laureano and Cortez P. (2011). “Using Data Mining for Bank Direct Marketing: An Application of the CRISP-DM Methodology,” In P. Novais et al. (Eds.), Proceedings of the European Simulation and Modelling Conference - ESM'2011, 117-121.
29.Scott, N. (2006). “The basis for bibliomining: frameworks for bringing together usage-based data mining and bibliometrics through data warehousing in digital library services“. Information Processing and Management, 42, 785-804.
30.Santos, Y. M. &; Amaral, L.Y. (2004). “Mining geo-referenced data with qualitative spatial reasoning strategies. “ Computers and Graphic,28(3), 371-379.
31.Stern, H. S. (1996). “Neural Networks in Applied Statistics,” Technometrics, 38, 205-216.
32.Tay, F. E. H., &; Cao, L. J., (2001). “Application of support vector machines in financial time series forecasting”, Omega, vol. 29, iss. 4, 309-317.
33.UC Irvine Machine Learning Repository, http://archive.ics.uci.edu/ml/
34.Vapnik, V. (1995). The Nature of Statistical Learning Theory, Springer-Verlag, New York.
35.Vellido, A., Lisboa, P. J. G., &; Vaughan, J. (1999). “Neural networks in business: a survey of applications (1992–1998),” Expert Systems with Applications, 17, 51-70.
36.Yu, G. X., Ostrouchov, G., Geist, A., &; Samatova, N.F. (2003). “An SVM-based algorithm for identification of photosynthesis-specific genome features,” In 2nd IEEE computer society bioinformatics conference, CA, USA, 235–243.
37.Zhang, G., Patuwo, B. E., &; Hu, M. Y. (1998). “Forecasting with artificial neural networks: the state of the art,” International Journal of Forecasting, 14, 35-62.
38.廖述賢、溫志皓 (2009),資料採礦與商業智慧,雙葉書廊有限公司,台北市。
39.尹相志,SQL Server 2005資料採礦聖經 (2006),學貫行銷股份有限公司,台北市。
40.謝邦昌,類神經網路概述及實例 (2006),輔仁大學統計學系,http://140.136.11.11/Teachonline/謝邦昌/DOWNLOAD/neural.doc
41.黃建銘 (2005),支撐向量機的自動參數選擇,國立台灣科技大學資訊工程系碩士論文。42.黃上益 (2007),運用資料探勘技術於動脈粥狀硬化預測模式之研究,國立雲林科技大學工業工程與管理研究所碩士論文。43.吳植森,鄭清俊 (2005),應用類神經網路與支援向量機於目標客戶選取,國立成功大學資訊管理研究所碩士論文。44.周俊宏 (2006),運用支撐向量機與類神經網路於信用卡授信決策之研究,台灣科技大學資訊管理研究所碩士論文。