跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/20 04:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾莉雅
研究生(外文):Li-Ya Tseng
論文名稱:白芥子酸及香豆酸抑制人類大腸直腸癌細胞侵入轉移性之機轉
論文名稱(外文):Mechanisms of sinapinic acid and m-coumaric acidon the suppressions of invasion and metastasis inhuman colorectal adenocarcinoma cells
指導教授:翁家瑞翁家瑞引用關係
指導教授(外文):Chia-Jui Weng
學位類別:碩士
校院名稱:台南應用科技大學
系所名稱:生活應用科學研究所
學門:民生學門
學類:生活應用科學學類
論文種類:學術論文
論文出版年:2011
畢業學年度:101
語文別:中文
論文頁數:96
中文關鍵詞:大腸直腸癌、侵入、黏附蛋白、白芥子酸、香豆酸
外文關鍵詞:colorectal cancerinvasionadhesion proteinsinapinic acidcoumaric acid
相關次數:
  • 被引用被引用:0
  • 點閱點閱:588
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Colorectal cancer is the leading cause of cancer mortality, and metastasis is responsible for approximately 40 % of death in colon cancer patients. Hence, the effective inhibition on metastasis should prolong the life of colon cancer patients. Epithelial-mesenchymal transition (EMT) is an essential step for metastasizing and several adhesion proteins and chemokines are associated to the step. The regulation of adhesion proteins and chemokine are supposed to be able to inhibit cell metastasis. Sinapinic acid (3,5-dimethoxy-4-hydroxycinnamic acid, SA) and m-coumaric acid (3-hydroxycinnamic acid, m-CA) are cinnamic acid analogues that widely exist in a variety of plant foods. A variety of physiological activities, such as the inhibition of tumor necrosis factor, anti-inflammation, anti-oxidation, and anti-allergy, have been found in SA and m-CA. However, the effect of SA and m-CA on inhibiting cancer cell invasion is still unclear. The purpose of this study was to investigate the effect and mechanism of SA and m-CA on the inhibition of colorectal cancer cells invasion. The colorectal cancer cells, Colo205 and HT29, were treated with SA and m-CA at a nontoxic dose (0, 10, 50, 100, 150 M), and the cell-matrix adhesion and EMT status were determined. Western blotting was employed to analyze the levels of adhesion-related proteins and chemokines. Moreover, the inhibitory activities on invasion and tube formation of SA and m-CA were also assayed. The results showed that SA and m-CA significantly inhibited cell-matrix adhesion and EMT of Colo205 and HT29 cells at a concentration of  100 M; the increase of E- and P-cadherin and decrease of N-cadherin, vimentin, CXCR2, CXCR4, and CXCL8 in Colo205 and HT29 cells by treating with SA and m-CA were detectable; the cell invasion and tube formation inhibited by SA and m-CA were further verified. In conclusion, SA and m-CA might be the natural bioactives that having the capability to inhibit invasion of colorectal cancer cell. The anti-invasion effect of SA and m-CA was through inhibiting cell adhesion activity via increasing E- and P-cadherin and decreasing N-cadherin, vimentin, CXCR2, CXCR4, and CXCL8 as well as suppressing the angiogenesis.

目錄………………………………………………………………………I
圖目錄…………………………………………………………….……III
表目錄………………………………………………………………….VI
中文摘要…………………………………………………………………1
Abstract………………………………………………………………3
第一章、 前言...…………………………………………………………5
第二章、文獻整理…………………………………………………..……6
壹、癌症………………………………………………………..…………6
貳、大腸直腸癌之簡介…………………………………………..………6
參、腫瘤轉移與侵入…………………………………………….……...12
肆、上皮-間質細胞轉型 (epithelial-mesenchymal transition, EMT)
與黏附蛋白、趨化因子之關係……………...................................29
伍、天然多酚類化合物……………………………………………...….37
陸、研究目的………………………………………………………...….42
柒、研究架構………………………………………………………...….43
第三章、材料與方法………………………………………...………….44
第四章、結果………………………………………………...………….54
一、白芥子酸及香豆酸對人類大腸直腸癌細胞 Colo205 與
HT29 細胞存活率之影響…………………………….…....... 54
二、白芥子酸及香豆酸對大腸直腸癌細胞 MMP-9 與 MMP-2
活性之影響……………………..…………………………...…54
三、白芥子酸及香豆酸對大腸直腸癌細胞 uPA 活性之影響....55
四、白芥子酸及香豆酸對大腸直腸癌細胞-間質黏附能力之影響...55
五、白芥子酸及香豆酸對人類大腸直腸癌細胞抑制 EMT 分析..56
六、白芥子酸及香豆酸對 -catenin, snail, 1-integrin 蛋白
表現量之分析………………………………...……….……….56
七、白芥子酸及香豆酸對鈣黏蛋白 E-cadherin 與 P-cadherin
蛋白表現量之分析……………………………………….……57
八、白芥子酸及香豆酸對鈣黏蛋白 N-cadherin 與 vimentin
蛋白表現量之分析……………………………………………..57
九、白芥子酸及香豆酸對趨化因子 CXCR2, CXCR4, CXCL8
蛋白表現量之分析……….........................................................58
十、白芥子酸及香豆酸對大腸直腸癌細胞侵入能力之影響….....58
十一、白芥子酸及香豆酸對 HUVEC 細胞脈管成形之影響….....59
第五章、討論…………………………………………...……………….60
第六章、結論…………………...……………………………………….83
參考文獻……………………………………………………….……….84





台灣地區 2011 年主要死因統計 (2012)。2012年 08 月 16 日,
取自:行政院衛生署衛生統計資訊網,http://www.doh.gov.tw。
Aksenova, M. V., Stoyanova, H. D., Butterfield, E. Y., Stove, C., Jacobs, K., Van den, E. G., Bracke, M. P- cadherin in adhesion and invasion: opposite roles in colon and bladder carcinoma. Int. J. Cancer. 2002, 5, 1031-1044.
American Joint Committee on Cancer (2012. 09. 27). Cancer Staging Manual. http://www.cancerstaging.org/products/pasteditions.html
Amalinei, C., Caruntu, I. D., Balan, R. A. Biology of metalloproteinass. Rom. J. Morphol. Embryol. 2007, 48, 323-334.
Arnaoutova, I., Kleinman, H. K. In vitro angiogenesis:endothelial cell tube formation assay on basement membrane extract. Nat. Protoc. 2010, 5, 628-635.
Boyer, B., Valles, A. M., Edme, N. Induction and regulation of epithelial-mesenchymal transitions. Biochem. Pharmacol. 2000, 60, 1091-1099.
Brooks, S. A., Lomax-Browne, H. J., Carter, T. M., Kinch C. E., Hall, D. M. S. Molecular interactions in cancer cell mestastasis. Acta histochemica. 2010, 112, 3-25.
Cancer syndrome (2012. 04. 25). Metastatic signs and symptoms. http://cancersyndrome.com/colon.html
Chakraborti, S., Mandal, M., Das, S., Mandal, A., Chakraborti, T. Regulation of matrix metalloproteinases: an overview. Mol Cell Biochem. 2003, 253, 269-285.
Chapman, C. H., Shen, J., Filion, E. J., Tran, P. T., Hara, W., Asuncion, A., Marko, D., Wakelee, H., Berry, G. J., Dimmick, K. W., Loo, B. W., Jr, G. J. Marked tumor response and fatal hemoptysis during radiation for lung cancerin a human immunodeficiency virus-positive patient taking nelfinavir. J Thorac Oncol. 2009, 4, 1587-1589.
Chung, T. W., Lee, Y. C., Kim, C. H. Hepatitis B viral HBx induces matrix metalloproteinase-9 gene expression through activation of ERK and PI-3K/AKT pathways; involvement of invasive potential. FASEB J. 2010, 18, 1123 – 1125. Constance E. B.; Lynn M. M.; Matrix metalloproteinases: a tail of a frog that became a prince. Nature. 2002, 3, 207-214.
Constance, E. B., Lynn, M. M. Matrix metalloproteinases: a tail of a frog that became a prince. Nature. 2002, 3, 207-214.
Dass, K., Ahmad, A., Azmi, A. S., Sarkar, S. H., Sarkar, F. H. Evolving role of uPA/uPAR system in human cancers. Cancer Treat. Rev. 2008, 34, 122-136.
Denham, L. J., Kerstetter, J. C., Herrmann, P. C. The complexity of the count: considerations regarding lymph node evaluation in colorectalcarcinoma. J Gastrointest Oncol. 2012, 3, 342-352.
Desgrosellier, J. S., Cheresh, D. A. Integrins in cancer: biological implications and therapeutic opportunities. Nature Reviews Cancer. 2010, 10, 9-22.
Dimitra, B., William, G. S. S. Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs): Positive and negative regulators in tumor cell adhesion; Seminars in Cancer Biology. 2010, 20, 161-168.
Fidler, I. J. Angiogenic heterogeneity: regulation of neoplastic angiogenesis by the organ microenviroment. J. Natl. Cancer Inst. 2001, 93, 1040-1041.
Franzen, C. A., Todorović, V., Desai, B. V., Mirzoeva, S., Yang, X. J., Green, K. J., Pelling, J. C. The desmosomal armadillo protein plakoglobin regulates prostate cancer cell adhesionand motility through vitronectin-dependent Src signaling. PLoS One. 2012, 7, e42132. doi: 10.1371.
Friedenreich, C., Norat, T., Steindorf, K., Boutron-Ruault, M. C., Pischon, T., Mazuir, M., Clavel-Chapelon, F., Linseisen, J., Boeing, H., Bergman, M., Johnsen, N. F., Tjonneland, A., Overvad, K., Mendez, M., Quirόs, J. R., Martinez, C., Dorronsoro, M., Navarro, C., Gurrea, A. B., Bingham, S., Khaw, K. T., Allen, N., Key, T., Trichopoulou, A., Trichopoulos, D., Orfanou, N., Krogh, V., Palli, D., Tumino, R., Panico, S., Vineis, P., Bueno-de-Mesquita, H. B., Peeters, P. H., Monninkhof, E., Berglund, G., Manjer, J., Ferrari, P., Slimani, N., Kaaks, R., Riboli, E. Physical activity and rish of colon and rectal cancers: the European prospective investigation into cancer and nutrition. Cancer Epidemiol Biomarkers Prev. 2006, 15, 2398 – 2407.
Gao, J. Y., Song, B. R., Peng, J. J., Lu, Y. M. Correlation between mitochondrial TRAP-1 expression and lymph node metastasis incolorectal cancer. World J Gastroenterol. 2012, 18, 5965-5971.
Geiger, T. R., Peeper, D. S. Metastasis mechanisms. Biochim. Biophys. Acta-Rev. Cancer. 2009, 1796, 293-308.
Gonzalez, D., Rojas, A., Herrera, M. B., Conlan, R. S. iNOS Activation Regulates β-catenin Association with Its Partners in Endothelial Cells. PLoS One. 2012. in process.
Grille, S. J., Bellacosa, A., Upson, J., Klein-Szanto, A. J., Van, R. F., Lee, K. W., Donowitz, M., Tsichlis, P. N., Larue, L. The protein kinase akt induces epithelial mesenchymal transition and promotes enhanced motility and invasiveness of squamous cell carcinoma lines. Cancer Res. 2003, 63, 2172-2178.
Harre, U., Georgess, D., Bang, H., Bozec, A., Axmann, R., Ossipova, E., Jakobsson, P. J., Baum, W., Nimmerjahn, F., Szarka, E., Sarmay, G., Krumbholz, G., Neumann, E., Toes, R., Scherer, H. U., Catrina, A. I., Klareskog, L., Jurdic, P., Schett, G. Induction of osteoclastogenesis and bone loss by human autoantibodies against citrullinated vimentin. J Clin Invest. 2012. 122, 5, 1791-802.
He, Z. D.; Qiao, C. F.; Han, O. B. Authentication and quantive analysis on the chemical profile of Cassiac Bark (Cortex Cinnamomi) by high-pressure liquid chromatography. J. Agric. Food Chem. 2005. 53, 2424-2428.
Herszényi, L., Hritz, I., Lakatos, G., Varga, M. Z., Tulassay, Z. The behavior of matrix metalloproteinases and their inhibitors in colorectal cancer. Int J Mol Sci. 2012, 13, 13240-13263.
Hill, K. S., Gaziova, I., Harrigal, L., Guerra, Y. A., Qiu, S., Sastry, S. K., Arumugam, T., Logsdon, C. D., Elferink, L. A. Met Receptor Tyrosine Kinase Signaling Induces Secretion of the Angiogenic Chemokine Interleukin-8/CXCL8 in Pancreatic Cancer. Published online. 2012, Papers in Press.
Hinoda, Y., Okayama, N., Takano, N., Fujimura, K., Suehiro, Y., Hamanaka, Y., Hazama, S., Kitamura, Y., Kamatani, N., Oka, M. Association of functional polymorphisms of matrix metalloproteinase (MMP)-1 and MMP-3 genes with colorectal cancer. Int. J. Cancer. 2002, 102, 526 – 529.
Hiroki, K. Multiple roles of angiotensin in colorectal cancer. World J Clin Oncol. 2012, 3, 150-154.
Hong, S. W., Kang, Y. K., Lee, B., Lee, W. Y., Jang, Y. G., Paik, I. W., Lee, H. Matrix metalloproteinase-2 and -7 expression in colorectal cancer. J Korean Soc Coloproctol. 2011, 27, 133-139.
Illman, S. A., Keski, O. J., Lohi, J. Promoter characterization of the human and mouse epilysin (MMP-28) genes. Gene. 2001, 275, 185-194.
Jean, P. T., Hervé, A. R., Huang, Y. J., Nieto, M. A. Epithelial-Mesenchymal Transitions in Development and Diseas. Cell. 2009, 139, 871-890
Joyce, J. A., Pollard, J. W. Microenvironmental regulation of metastasis. Nat. Rev. 2009, 9, 239 – 252.

Kang, N. J., Lee, K. W., Kim, B. H., Bode, A. M., Lee, H. J., Heo, Y. S., Boardman, L., Limburg, P., Lee, H. J., Dong, Z. Coffee phenolic phytochemicals suppress colon cancer metastasis by targeting MEK and TOPK. Carcinogenesis. 2011, 32, 921-928.
Kapral, M., Wawszczyk, J., Jurzak M., Hollek, A., Węglarz, L. The effect of inositol hexaphosphate on the expression of selected metalloproteinases and their tissue inhibitors in IL-1β-stimulated colon cancer cells. Int J Colorectal Dis. 2012, 27, 1419-1428.
Karlsson, P. C.; Huss, U.; Jenner, A.; Halliwell, B.; Bohin, L. and Ratter, J. J. Human fecal water inhibits COX-2 in coloic HT29 cell: Role of phenolic 1. Journal of Nutrition. 2005,135, 2343-2349.
Kaseb, A. O., Hassan, M. M., Lin, E., Xiao, L., Kumar, V., Pathak, P., Lozano, R., Rashid, A., Abbruzzese, J. L., Morris, J. S. V-CLIP: Integrating plasma vascular endothelial growth factor into a new scoring system to stratify patients with advanced hepatocellular carcinoma for clinical trials. Cancer. 2010, 14, 1938-1946.
Kennedy, A. R. Prevention of carcinogenesisi by protease inhibitors. Cancer Res. 1994, 54, 1999-2005.
Kinzler, K. W., Vogelstein, B. lessons from hereditary colorectal cancer. Cell. 1996, 87, 159 – 170.
Kune, G. A., Vitetta, L. The causes of ordinary colorectal adenomas: the key to the control of colorectal cancer? J. R. Soc. Med. 1995, 88, 625 – 628.
Linda, L. J., Richard D., Donald, J. H. Matrix metallo-proteinases. Curr. Opin. Chem. Biol. 1999. 2, 466-471.
Liotta, L. A., Rao, C. N., Barsky, S. H. Tumour invasion and the extracellular matrix. Lab Invest. 1983, 49, 636-649.
Lue, H., Dewor, M., Leng, L., Bucala, R., Bernhagen, J. Activation of the JNK signalling pathway by macrophage migration inhibitory factor (MIF) and dependence on CXCR4 and CD74. Cell Signal. 2011, 23, 135-144.
Lund, L. R., Romer, J., Bugge, T. H., Nielsen, B. S., Frandsen, T. L. Functional overlap between two classes of matrix-degrading proteases in wound healing. EMBO. J. 1999, 18, 4645-4656.
Lyndsay, V., Rhodes, M. R., Bratton, Y. Z., Syreeta, L. T., Shannon, E., Muir, V. A., Salvo, C. R., Tate, S. E., Kenneth, P., Nephew, B. M., Collins, B., Matthew, E. B. Effects of SDF-1–CXCR4 signaling on microRNA expression and tumorigenesis in estrogen receptor-alpha (ER-α)-positive breast cancer cells. Experimental Cell Research. 2011. 2573-2581.
MacDonald, N. J., Steeg, P. S. Molecular basis of tumor metastasis. In The molecular pathology of cancer. Lemoine N. R.; Wright N. A. Eds. Cold spring Harbor Laboratory. NY. 1993, 175-199.
Madenspacher, J. H., Azzam, K. M., Gong, W., Gowdy, K. M., Vitek, M. P., Laskowitz, D. T., Remaley, A. T., Wang, J. M., Fessler, M. B. Apolipoproteins and Apolipoprotein Mimetic Peptides Modulate Phagocyte Trafficking through Chemotactic Activity. J Biol Chem. 2012, 287, 43730-40.
Maret, D., Sadr, M. S., Sadr, E. S., Colman, D. R., Del Maestro, R. F., Seidah, N. G. Opposite roles of furin and PC5A in N-cadherin processing. Neoplasia. 2012, 4, 880-892.
Marisa, L., Ichanté, J. L., Reymond, N., Aggerbeck, L., Delacroix, H., Mucchielli-Giorgi, M. H. MAnGO: an interactive R-based tool for two-colour microarray analysis. Bioinformatics. 2007, 1, 23, 2339-41.
Mason, S. D., Joyce, J. A. Proteolytic networks in cancer. Trends Cell Biol. 2011, 21, 228 – 237.
Mondino, A., Blasi, F. uPA and uPAR in fibrinolysis,immunity and pathology. Trends Immunol. 2004, 25, 450-455.
Palmer, T. D., Aahby, W. J., Lewis, J. D., Zijlstra, A. Targeting tumor cell motility to prevent metastasis. Adv. Drug Deliv. Rev. 2011. 63, 568-581.
Ploug, M., Rahbek, N. H., Nielsen, P. F., Roepstorff, P., Dano, K. Glycosylation profile of a recombinant urokinase-type plasminogen activator receptor expressed in Chinese hamster ovary cells. J. Biol. Chem. 1998, 273, 13933-13943.
Quesada, V., Ordonez, G. R., Sanchez, L. M., Puente, X.S., Lopes-Otin, C. The Degradome database:mammalian proteases and diseases of proteolysis. Nucleic Acids Res. 2009, 37, D239-43.
Ringe, J., Strassburg, S., Neumann, K., Endres, M., Notter, M., Burmester, G. R., Kaps, C., Sittinger, M. Towards in situ tissue repair: human mesenchymal stem cells express chemokinereceptors CXCR1, CXCR2 and CCR2, and migrate upon stimulation with CXCL8 but not CCL2. J Cell Biochem. 2007, 101, 135-146.
Robert V., Hideaki, N. Matrix metalloproteinases and Tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ. Res. 2003. 92, 827-839.
Rodríguez, D., Morrison, C. J., Overall, C. M. Matrix metalloproteinases: what do they not do? New substrates and biological roles identified by murine models and proteomics. Biochim. Biophys. Acta-Mol. Cell Res. 2010, 1803, 39-54.
Rooprai, H. K., Rucklidge, G. J., Panou, C., Pilkington, G. J. The effects of exogenous growth factors on matrix metalloproteinase secretion by human brain tumour cells. Br J Cancer. 2000, 82, 52-55.
Roy, M., Bremnes, C. C., Rafael, S. Angiogenesis in non-small cell lung cancer: The prognostic impact of neoangiogenesis and the cytokines VEGF and bFGF in tumours and blood. Lung Cancer. 2006, 51, 143-158.
Salomé, S., Pinho, H. O., Mihai, N. L., Joana, G., Célia, L., Fátima, G., Celso, A. R. Novel peptide mimetic small molecules of the HAV motif in N-cadherin inhibit N-cadherin-mediated neurite outgrowth and cell adhesion. Peptides. 2009, 2380-2387.
Sathish, K., Jill, A. M. The CXCL12/CXCR4 axis promotes ligand-independent activation of the androgen receptor. Molecular and Cellular Endocrinology. 2012, 249-263.
Seleit, I. A., Samaka, R. M., Basha, M. A., Bakry, O. A. Impact of E-cadherin expression pattern in melanocytic nevi and cutaneous malignant melanoma. Anal Quant Cytol Histol. 2012, 34, 204-213.
Semih, D., Qibo, Z., Alison, C., Pridmore, T. J., Mitchell, A. F., Craig, M. Pneumolysin-induced CXCL8 production by nasopharyngeal epithelial cells is dependent on calcium flux and MAPK activation via Toll-like receptor 4. Microbes and Infection. 2011, 65-75.
Severi, T., van Malenstein, H., Verslype, C., van Pelt, J. F. Tumor initiation and progression in hepatocellular carcinoma: risk factor, classification, and therapeutic targets. Acta Pharmacol. Sin. 2010, 31, 1409 – 1420.
Shin, S. Y., Han, N. S., Park, Y. C., Kim, M. D., Seo, J. H. Production of resveratrol from p-coumaric acid in recombinant Saccharomyces cerevisiae expressing 4-coumarate:coenzyme A ligase and stilbene synthase genes. Enzyme Microb Technol. 2011, 48, 48-53.
Smith, H. W., Marshall, C. J. Regulation of cell signaling by uPAR. Nat. Rev. Mol. Cell Biol. 2010, 11, 23-36.
Soleas, G. J., Diamandis, E. P., Goldberg, D. M. Resveratrol: a molecule whose time has come? And gone? Clin. Biochem. 1997, 30, 91-113.
Stéphanie, G., Jacques, H. Role of Cancer Microenvironment in Metastasis: Focus on Colon Cancer. Cancer Microenviron. 2008. 1, 69–83.
Stetler-Stevenson, W. G., Aznavoorian, S., Liotta, L. A. Toumor cell interactions with the extracellular matrix during invasion and metastasis. Annu. Rev. Cell Biol. 2003, 9, 541 – 573.
Takahashi, S., Iiai, T., Shimada, Y., Kobayashi, Y., Suda, K., Iwaya, A., Maruyama, S., Tani, T., Hatakeyama, K. A long-term survival case of far-advanced coloncancer with Virchow’s lymph node and lung metastasis that responded to multidisciplinary therapy. Gan To Kagaku Ryoho. 2009, 36, 127 – 129.
Thiery, J. P., Sleeman, J. P. Complex networks orchestrate epithelial-mesenchymal transitions. Mol Cell Biol. 2006, 131-142.
Visse R., Nagase H. Matrix metalloproteinases and tissue Inhibitors of    metalloproteinases : structure, function and biochemistry. Circ. Res. 2003. 92, 827-839.
Wang, D., Wise, M. L., Li, F., Dey, M. Phytochemicals Attenuating Aberrant Activation of β-Catenin in Cancer Cells. PLoS One. 2012, 7, 50508.
Waugh, D. J., Wilson, C. The interleukin-8 pathway in cancer. Clin. Cancer Res. 2008, 14, 6735 – 6741.
Weng C. J., Wu C. F., Huang H. W., Wu C. H., Ho C. T., Yen G. C. Eualuation of Anti-invasion effect of Resveratrol and related Methoxy Analogues on Human Hepatocarcinoma Cells. J. Agric. Food Chem. 2010a, 58, 2886-2894.
Weng, C. J., Wu, C. F., Huang, H. W., Ho, C. T., Yen, G. C. Anti-invasion effects of 6-shogaol and 6-gingerol, two active components in ginger, on human hepatocarcinoma cells. Mol. Nutr. Food Res. 2010b, 54, 1618-1627.
Weng, C. J., Yen, G. C. Chemopreventive effects of dietary phytochemicals against cancer invasion and metastasis: phenolic acids, monophenol, polyphenol, and their derivatives. Cancer Treat. Rev. 2011, 38, 76-87.
Weng, C. J., Yen, G. C. Flavonoids ubiquitous dietary phenolic subclass, exert extensive in vitro anti-invasive and in vivo anti-metastaic activities. Cancer Metastasis Rew. 2012, 31, 1-2, 323-351.
Whittaker, S., Marais, R., Zhu, A. X. The role of signaling pathways in the development and treatment of hepatocellular carcinoma. Oncogene. 2010, 29, 4989-5005.
Wilhelm, S. M., Adnane, L., Newell, P., Villanueva, A., Llovet, J. M., Lynch, M. Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol Cancer Ther. 2008, 7, 3129-40.
Woessner, J., Jr, F. The family of matrix metalloproteinases. Ann. NY. Acad. Sci. 1994, 732, 11-21.
World Health Organization (2012. 03. 21). Cancer incidence and mortality in 2008 . http://globocan.iarc.fr/.
Yang, K., Kurihara, N., Fan, K., Newmark, H., Rigas, B., Bancroft, L., Corner, G., Livote, E., Lesser, M., Edelmann, W., Velcich, A., Lipkin, M., Augenlicht, L. Dietary induction of colonic tumors in a mouse model of sporadic colon cancer. Cancer Res. 2008, 68, 7803 – 7810.
Yoichi, M., Nobuo, O., Hirozumi, S., Akira, Y., Hiroki, T., k., Hitoshi, F., Hiromitsu, T., Zhimin, T., Sushovan, G. CXCL8/IL-8 and CXCL12/SDF-1α Co-operatively Promote Invasiveness and Angiogenesis in Pancreatic Cancer. Int J Cancer. 2009, 15, 124, 853–861.
Yuan, Z. Q., legendre, B., Cai, D. Q., Cao, J., Zhu, J., Weber, T. K. High throughput detection of microsatellite instability (MSI) in sporadic colorectal cancer by MSI COPPER denaturing high performance liquid chromatography. Pathology. 2009, 41, 393 – 394.
Zhang, Z., Ratnayaka, S. N., Wirth, M. J. Protein UTLC-MALDI-MS using thin films of submicrometer silica particles. J Chromatogr A. 2011, 1218, 7196-202.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊