跳到主要內容

臺灣博碩士論文加值系統

(44.200.145.223) 您好!臺灣時間:2023/05/29 01:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:傅立民
研究生(外文):Li-Min Fu
論文名稱:人體生醫植入硫酸鈣材料 轉化動力學之研究
論文名稱(外文):Kinetics Study of Implementable Biomaterials from Calcium Sulfate Composites
指導教授:林 郁 進
指導教授(外文):Yu-Chin Lin
口試委員:薛文景陳建仲
口試委員(外文):Wen-Ching SayJian-Jhong Chen
口試日期:2013-06-11
學位類別:碩士
校院名稱:環球科技大學
系所名稱:生物技術研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:125
中文關鍵詞:硫酸鈣骨缺陷磷酸鈣轉化速率趨勢線生物相容性
外文關鍵詞:Calcium SulfateBone RegenerationCalcium PhosphateDissolution KineticsStrengthen effects
相關次數:
  • 被引用被引用:0
  • 點閱點閱:87
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
生醫硫酸鈣在植入人體內與骨組織接觸時可能具有骨誘導性。但是,由於過快的吸收速度,會在骨填補處再次產生骨缺陷現象,反而不利於骨組織生長。磷酸鈣所含之鈣磷成分與人體骨骼比例相似,但需經過相當長的時間才能完全被吸收,所以導引骨生長速度極為緩慢。本實驗探討硫酸鈣與磷酸鈣以不同比例混和,並以水合法製成複合材料,利用SEM、EDS、XRD對材料進行分析,建立化學轉化反應動力學方程式。實驗中可推測水份添加量與其轉化率及機械強度之關係。轉化速率再經程式推導後而可得知穩定二水硫酸鈣相之轉化速率係與受硬化後之材料孔隙率大小影響。本研究並針對材料衰減實驗的結果,將所得到之轉化趨勢線,歸納出材料轉化率反應之參考因素。同時討出在變化不同比例含量下,人體生醫植入硫酸鈣材料之物理、機械性質及生物相容性之變化。
Using implementable calcium sulfate in human body may promote bone regeneration, however, it was absorbed rather quickly and resulting a deficiency in the surrounding area. On the other hand, calcium phosphate contains similar compositions that are found in human bones, conversely, due to its low dissolution rate, calcium phosphate take a longer time to achieve a completely hardening in clinical. It seems that neither calcium sulfate nor calcium phosphate alone would be an ideal bone filling material by themselves. In this study, the properties of composite materials by mixing hydrated Calcium Sulfate and Calcium Phosphate in different weight ratio were investigated. The physical properties, mechanical properties, degradation rate and bio-compatibility were analyzed by using SEM, EDS, and XRD. A novel chemical kinetic formula to describe the dissolution rate against temperature is then established. The results show that the calcium sulfate and calcium phosphate composites had best physical and mechanical properties when the percentage of calcium sulfate are contained between 70 ~ 90 weight%. The addition of calcium phosphate is clearly showing its strengthen effects on calcium sulfate. The calcium phosphate concentration promotes the cell activity is shown in this study as well.
誌 謝 iii
摘 要 iv
Abstract v
目 錄 vi
表 目 錄 ix
圖 目 錄 x
略字解 xiv
第一章 緒 論 1
一、背景 1
二、動機與目的 3
第二章 總 論 5
第一節 骨組織與損傷修復機制 5
一、骨組織 5
二、骨組織細胞 6
三、骨組織生長機制 9
四、具骨引導性之磷酸鈣系材料於骨修復的過程 11
第二節 生醫材料 12
一、生醫材料種類 12
二、生醫材料與體內組織反應 14
三、生醫植入材料分類 16
四、生醫陶瓷分類 20
(一)惰性及近惰性生醫陶瓷 20
(二)表面活性生醫陶瓷 21
(三)可吸收性生醫陶瓷 25
(四)複合生醫陶瓷材料 26
(五)半水硫酸鈣的製造與水合 27
(六)三鈣磷酸鹽(TCP) 30
(七)二氧化鈦 32
第三節 模擬人工體液與反應動力學 35
一、模擬人工體液 35
二、反應動力學 37
第四節 實驗材料選用與整理 41
第三章 材料與方法 42
第一節 實驗藥品 42
第二節 實驗儀器 42
第三節 實驗方法與流程 43
一、實驗方法 43
二、實驗試片之製備 45
三、試片分析與檢測 45
(一)物理性質測定 45
(二)機械性質檢測 47
(三)衰減實驗及反應動力學 51
第四章 結果與討論 52
第一節 實驗試片 52
第二節 物理性質 68
第三節 機械性質 73
第四節 衰減實驗與反應動力學 78
一、不同組別試片的衰減率變化 78
二、反應動力學 83
三、純硫酸鈣在各個溫度下的衰減率與活化能 93
第五章 結 論 103
參考文獻 104
附錄 114
發表著作 123

Aman M. I.etal 2001. Evaluation of ceramics composed of different hydroxyapatite to tricalcium phosphate ratios as carriers for rhBMP-2. Biomaterials, 22(12): 1643-1651.
Bell W.H.. 1960. Resorption characteristics of bone and plaster. Oral Surg, 39: 727.
Bettany J. T., Bettany, Peet N. M., Wolowacz R. G., Skerry T. M., and Grabowski P. S., 2000. Tetracyclines induce apoptosis in osteoclast. Bone, 27(1):75-80.
Block M. S., Kent J. N., and Guerra L. S., 1997. Implants in density. pp. 45-62. W. B. Saunders Company.
Bobby K. B. T., Vikas V. P., and David S. B., 1990. Calcium sulfate- and Calcium Phosphate-Based Bone Substitutes. Bone Grafting and Bone Graft Substitutes, 2: 615-623.
Boenig, H. V. 1982. Plasma science and technology. pp. 16-35. USA: Cornell University Press.
Block M. S. 1997. Implants in density. pp. 45-62. W. B. Saunders Company.
Cabanas M.V., Rodriguez-Lorenzo L.M., and Vallet-Reg M. 2002. Setting behavior and in vitro bioactivity of hydroxypatite/calcium sulfate cements. Chem Mater, 14: 3550-3555.
Cao W. and Hench L. L., 1996. Bioactive Materials. Ceramics International, 22(6): 493-507.
Clifford A. 2001. The influence of calcium to phosphate ratio on the nucleation and crystallization of apatite glass-ceramics. Journal of Materials Science: Materials in Medicine, 12: 461-469.
Coetzee A. S., 1980. Regeneration of bone in the presence of calcium sulfate. Arch Otolaryngol, 106: 405-410.
Costantino P. D., Friedman C. D., 1994. Synthetic bone graft substitutes. Otolaryng Clin N Am, 27: 1037-1074.
Doadrio J.C., Arcos D., Cabanas M.V., and Vallet-Reg. M. 2004. Calcium sulphate-based cements containing cephalexin. Biomaterials, 25: 2629-2635.
Dreessmann H. 1892. Über Knochenplombierung. Beitr Klin Chir, 9: 804-810.
Eisenbarth E., Meyle J., Nachtigal W., & Breme J. 1996. Influence of the surface structure of titanium materials on the adhesion of fibroblast. Biomaterials, 17: 1399-1403.
Elizabeth P. F., Steven A. G., Thomas W. B., and Scott A. H. 1998. Biomechanical and Histological evaluation of a calcium phosphate cement. J. Bone and Joint surgery, 80(8): 1112-1124.
Feng H. L., Chun J. L., Ko S. C., Jui S. S., and Chun P. L. 2001. Petal-like apatite formed on the surface of tricalcium phosphate ceramic after soaking in distilled water. Biomaterials, 22: 2981-2992.
Fernandez E., Gil F. J., Ginebra M. P., Driessens F. C. M., and Planell J. A. 1999. Calcium Phosphate Bone Cements for Clinical Applications. J. Mater. Sci. Mater. Med., 10: 169-176.
Fujibayashi S., 2003. Repair of segmental long bone defect in rabbit femur using bioactive titanium cylindrical mesh cage. Biomaterials, 24: 3445-3451.
Georgiou. G., and Knowles J. C., 2001. Glass reinforced droxyapatite for hard tissue surgery-Part 1: mechanical properties. Biomaterilas, 22: 2811-2815.
Gisep 2002. A., Research on ceramic bone substitutes: current status. Injury, 33: 88-92.
Gitelis S., Haggard W., and Piasecki P., 2001. Use of a Calcium Sulfate-Based Bone Graft Substitute for Benign Bone Lesions. Orthopedics, 24 (2): 162-166.
Gomez-Vega J. M., Saiz E., Tomsia A. P., Marshall G. W., and Marshall S. J. 2000. Bioactive glass coatings with hydroxyapatite and Bioglass particles on Ti-based implants. 1. Processing. Biomaterials, 21: 105-111.
Hanker J.S., Tucker M.R., Terry B. C. 1986. Composite plaster/hydroxylapatite implants for jaw bone restoration. Materials Research Society, 55: 77-96.
Hench L. L., and E. C., Ethridge 1982. Biomaterials: an interfacial approach. Academic Press Inc.
Hideyuki Nakano , Takeshi Ohno, and Shoji Yamanaka 1994. Nuclear Magnetic Resonance Spectroscopic Study on the Grafting Ethylene Oxide onto the Interlayer Surface of “Zirconium Phosphate”. Chem. Lett., 23(1): 9-12.
Huang N., Yang P., and Cheng X. 1998. Blood compatibility of amorphous oxide films synthesized by ion beam enhanced deposition. Biomaterials, 19: 771.
Huang N., Yang P., Leng Y. X., Chen J. Y., Sun H., Wang J., Wang, G. J., Ding, P.D., Xi T.F., Leng Y., 2003. HemocoMPatibility of titanium oxide films, Biomaterials, 24(13): 2177-2187.
Hulbert S. F., Bokros J. C., Hench L. L., Wilson J. W. and Heimke G., 1987. Ceramics in clinical applications, past, present and future, Ceramics in Clinical Applications: 3-27.
Janes F. S., 1999.Ceramics materials for biomedical applications, Bioceramics: 59: 37-81.
Jarchi M., 1981. Calcium phosphate ceramics as hard tissue, Clin. Orthop. Rel. Res., 157: 259-279.
Katthagen B. D., 1987. Bone regeneration with bone substitutes, J. Mater. Sci. in medicine, 6: 377-384. Springer-Verlag.
Khalid A.Ruhaimi, 2000. Effect of adding Resorbable calcium sulfate to grafting materials on early bone regeneration in osseous defects in rabbits, The International Journal of Oral &Maxillofacial implants, 15: 859-864.
Kikuchi M, Itoh S, Ichinose S, Shinomiya K, Tanaka J., 2001. Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo, Biomaterials, 22: 1705-1711.
Kwon S. H., 2002. Calcium phosphate bioceramics with various porosities and dissolution rates, J. Am. Ceram. Soc., 85 (12): 3129-3131.
Lemaitre J, Mirtchi A, Munting E., 1987. Calcium phosphate cements for medical uses: state of the art and perspectives of development, Sil Ind Ceram Sci Technol, 141-146.
Lin F. H. , Yao C. H., Huang C. W., Liu H. C., Sun J. S. and C. Y., 1996. Diverse Mechanisms of Osteoblast Spreading on hydroxyapatite and Titanium, Wang, Mater. Chem. Phys., 46: 36-42.
Liu Q., Wijn J. R.and C. A., van Blitterswijk, 1997. Nono-apatite/polymer composites:mechanical and physicochemical characteristics, Biomaterials, 18: 1263-1270.
Liu Q., de Wijn J. R., and van Blitterswijk C. A., 1998.Composite biomaterials with chemical bonding between hydroxyapatite filler particles and PEG/PBT copolymer matrix, J. Biomed. Mater. Res., 40: 490-497.
Liu Q., de Wijn J. R., and van Blitterswijk C. A., 1998. Composite biomaterials with chemical bonding between hydroxyapatite filler particles and PEG/PBT copolymer matrix, J. Biomed. Mater. Res., 40: 358-364.
Liu Q., de Wijn J. R., and van Blitterswijk C. A., 1998. Composite biomaterials with chemical bonding between hydroxyapatite filler particles and PEG/PBT copolymer matrix, J. Biomed. Mater. Res., 40: 257-263.
Luthen F., Lange R., Becker P., Rychly J., Beck U., and B. Nebe J. G., 2005. The influence of surface roughness of titanium on 1- and 3-integrin adhesion and the organization fibronectin in human osteoblastic cells, Biomaterials, 26: 2423-2440.
Mckee J. C., Balley B. J., Texas G., 1984. Calcium Sulfate as a Mandibular Implant. Osteolaryngology- Head and Neck Surgery, 92: 277-286.
Meagher E. P., Lager G. A., 1979. Biomedical application of ceramic materials. The Canadian Mineralogist, 17: 77-98.
Meyer U., Büchter A., Wiesmann H.P., Joos U.and Jones D.B., 2005. Basic Reactions of Osteoblasts on Structured Material Surfaces. European Cells and Materials,9:39-49. ISSN 1473-2262
Mirtch A. A., Lemaitre J., 1993. Bone repair of defects filled with a phosphocalcic hydraulic cement: an in vivo study, J. Mater. Sci. in medicine, 4: 337-344.
Nishiguchi S, Nakamura T, Kobayashi M, Kim HM, Miyaji F, Kokubo T, 1999. The effect of heat treament on bone-bonding ability of alkali-treated titanium, Biomaterials, 20: 491-500.
Oliva A., Salerno A., Locardi B., Riccio V., Ragione F. Lagneau D., Iardino P. and Zappia,V., 1998. Modificavion of Titanium by IonImplantation of Calcium. Biomaterials, 91: 1019-1025.
Park J. B., 1979. Biomaterials, An Introduction, New York: Plenum Press, 150-189.
Park J. B., 1985. Biomaterials science and Engineering, Plenum Press, New York and London, 345-495.
Park J. B., 1990. Biomaterials Science and Engineering, Plenum Press, New York and London, 254-567.
Pasquier G., 1996. Injectable percutaneous bone biomaterials: an experimental study in a rabbit model Journal of materials science, materials in medicine, 7: 683-690.
Pecora G., De Leonardis D., Ibrahim N., Bovi M., Cornelini R., 2001. The use of calcium sulphate in the surgical treatment of a through and trough peroradicular lesion, Int Endod J, 34: 184-188.
Peltier L., 1959. The use of plaster of Paris to fill large defects in bone. Am J Surg 97: 311-315.
Peltier L. F., Lillo R., 1956. The substitution pf plaster of Paris rods for portions of the diaphysis of the radius in dogs, Surg Forum, 6: 556-558.
Peltier L. F., Orn D., 1958. The effect of the addition of Plaster of Paris to autogenous and homogeneous bone grafts in dogs, Surg Forum, 8: 571-574.
Peltier L. F., 1961. The uses of Plaster of Paris to fill defects in bone, Clin Ortho, 21: 1-29.
Ponsonnet L., Reybier K., Jaffrezia N., Comte V., Lissac C. M., and Martelet C., 2003. Relationship between surface properties roughness, wettability of Titanium and titanium alloys and cell behavior. Materials Science and Engineering, 23: 551-560.
Price N., Bendall S. P., Frondoza C., Jinnah R. H., and David S. H., 1997. John Wiley and Sons Inc, 37: 394-400.
Radin S. R., Ducheyne P., 1993. The Effect of Calcium Phosphate Ceramic Composition and Structure on in Vitro Behavior. Precipitation J. Biomed. Mater. Res., 27: 35-45.
Radin S. R., Ducheyne P., 1994. Effect of bioactive ceramic composition and structure on in vitro behavior. Porous versus dense ceramics, J Biomed. Mater. Res., 28: 1303-1309.
Rateitschak K. H., Rateitschak H. F., 1995. Wolf Color Atlas of Dental Medicline, Thieme Medical Publishers, 11-24.
Rawlings C. E. III., Robert H. W., Jacob S. H., PH.D.,NichilasG.Georgiade,D.D.S.and John arrelson,M.D.1988.”Evaluation in cat of a new material for cranioplasty: a composite of plaster of Paris and hydroxylapatite,” J Neurosurg ,69: 269-275.
Rodan G. A., 1998. Control of bone formation and resorption: Biological and clinical perspective, J Cell Biocnem Suppls, 30: 55-61.
Ryu Hyun-Seung, Hong Kug Sun, Lee Jung-Kun, 2004. Magnesia-doped HA/”-TCP ceramics and evaluation of their biocoMPatibility, ”Biomater., 25: 393-401.
Saito N, Takaoka T., 2003. New synthetic biodegradable polymers as BMP carriers for bone tissue engineering, Biomaterials, 24: 2287-2293.
Sato S, Koshino T, Saito T., 1998. Osteogenic response of rabbit tibia to hydroxyapatite particle-Plaster of Paris mixture, Biomaterials, 19: 1895-1900.
Say, W. C., 1990. Hot corrosion of a-SiC ceramics by V2O6 melt, Jourual of materials science, 25: 1614-1617.
Say, W. C. Yeh C. C., Chen C. H., 2007. Surface Morphologies on the addition of TiO2 to calcium phosphate bio-glass, Biomedical Engineering, 19:(6): 389-394.
Shackelford J. F., 1999. Bioceramics-An Historical Perspective, Materials science forum, 293: 1-4.
Shaffer C, App G., 1971. The use of plaster of Paris in treating infrabony periodontal defects in humans, J Periodontol, 42: 685-690.
Sugiyama K.T., 1987. Structure and crystal chemistry of a dense polymorph of tricalcium phosphate Ca3(PO)4: a host to accommodate large lithophile elements in the earth’s mantle, Phys. Chem. Minerals, 15: 125-130.
Sung B. C.,Miyaji F., Kokubo T., Nakamura T., 1997. Induction of bioactivity of a non-bioactivite glass-ceramic by a chemical treatment Biomaterials, 18:1479-1485.
Toshihior K, Sawada M, Nogami M, Abe Y, 1999. Bioactive ceramics prepared by sintering and crystallization of calcium phosphate invert glasses. Biomaterials, 20: 1415-1420.
Vincenzini P., 1991. Ceramics in substitutive and reconstructive surgery, Elsevier Science Publishers BV,244-254.
Wang J. L., 2003. The Assay of Bone Reaction after Implantation of Calcium Sulfate and A Composite of Calcium Sulfate and Calcium Phosphate, Institute of Biomedical Engineering. Journal of Medical and Biological Engineering, 23: 205-212.
Welch J. H., Gutt W., 1961. High-temperature studies of the system calcium oxide-phosphorous pentoxide. J. Chem. Soc., 4442-4444.
Yakovlev V. V., Scarel G., Aita C. R., Mochizuki S., Biomedical Applications, 2000. Appl. Phys. Lett., 76: 1107-1136.
Yasuharu Yamazaki, Shinichiro Oida, Yasushi Akimoto and Shigetoshi Shioda, 1988. Response of the mouse femoral muscle to an implant of a composite of bone morphogenetic protein and plaster of Paris. Clinical Orthopaedics and related research, 234: 240-249.
Yen S. K., 2000. Titanium Serum and Urine Levels in Rabbit with a Titanium Implant. Mater. Chem. Phys., 63: 256-262.
Zhang F., Huang N., Yang P., Zeng X., Mao Y., Zheng Z., Zhou Z., 1996. Blood coMPatibility of titanium oxide prepared by ion-beam-enhanced deposition. Surface and Coatings Technology, 84:(1-3) 476-479.
Zhang Y., Santos J. D., 2000. Crystallization and microstructure analysis of calcium phosphate-based glass ceramics for biomedical applications. J. non-crystalline solids, 272: 14-21.
Zinger O., Anselme K., Denzer A., Habersetzer P., Wieland M., Jeanfils J., Hardouin P., and Landolt D., 2004. Time-independent morphology and adhesion of osteoblastic cells titanium model surfaces featuring scale-resolved topography. Biomaterials, 25: 2695-2711.
賴佑承和潘宏維。1983。「生物體用的陶瓷人工骨骼及其周邊」,工業技術研究院工業材料研究所。No MR058。
王焯林。2001。骨組織對硫酸鈣及硫酸鈣加磷酸鈣之吸收性和骨再生性比較分析研究。國立成功大學醫學工程研究所碩士論文。第112-120頁。台南市。
李承榆。2003。植物細胞生物轉換技術之應用。化工資訊與商情月刊4:8-10。新竹市。
俞耀庭、林峰輝和白育綸。2004。第五章骨組織工程材料。生物醫用材料。第139-150頁。新文京開發出版股份有限公司。臺灣。
俞聖洲。2010。生醫硫酸鈣材料含量百分比在SBF之降解率。國立台北科技大學材料及資源工程系碩士論文。第123-132頁。台北市。
洪敏雄、林峰輝和王盈錦。1994。陶瓷技術手冊(下)。第78-99頁。中華民國產業科技發展協進會。台北市。
黃瓊芳、蔡政宏、歐耿良、詹宗瑾和李勝揚。2005。鈦經電漿處理後鈦植體表面形成奈米結構二氧化鈦層之微結構與性質。中華牙醫學雜誌。1(3):185-192。臺灣。
許嘉麟。2005。硫酸鈣之動力學硬化機制研究。國立台北科技大學材料及資源工程系碩士論文。第135-147頁。台北市。
葉晉志。2002。鈦添加在磷酸鈣玻璃之生物相容性研究,國立台北科技大學材料及資源工程系碩士論文。第98-115頁。台北市。
楊榮森。1997。骨質疏鬆症病因、診斷、治療(合著)。第65-80頁。合記圖書出版社。台北市。
廖俊仁。2000。生醫骨科陶瓷材料之發展與應用。化工資訊月刊。生技醫藥專題3月,第6-13頁。臺灣。
蔡明慈。2002。不同刺激時間單脈衝電磁場對造骨細胞與骨髓細胞共同培養形成之類蝕骨細胞凋亡的影響。中原大學醫學工程研究所碩士論文。第69-92頁。桃園縣。
劉典謨。1994。生醫玻璃/玻璃陶瓷材料。材料與社會。75:10-14。臺灣。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top