Aman M. I.etal 2001. Evaluation of ceramics composed of different hydroxyapatite to tricalcium phosphate ratios as carriers for rhBMP-2. Biomaterials, 22(12): 1643-1651.
Bell W.H.. 1960. Resorption characteristics of bone and plaster. Oral Surg, 39: 727.
Bettany J. T., Bettany, Peet N. M., Wolowacz R. G., Skerry T. M., and Grabowski P. S., 2000. Tetracyclines induce apoptosis in osteoclast. Bone, 27(1):75-80.
Block M. S., Kent J. N., and Guerra L. S., 1997. Implants in density. pp. 45-62. W. B. Saunders Company.
Bobby K. B. T., Vikas V. P., and David S. B., 1990. Calcium sulfate- and Calcium Phosphate-Based Bone Substitutes. Bone Grafting and Bone Graft Substitutes, 2: 615-623.
Boenig, H. V. 1982. Plasma science and technology. pp. 16-35. USA: Cornell University Press.
Block M. S. 1997. Implants in density. pp. 45-62. W. B. Saunders Company.
Cabanas M.V., Rodriguez-Lorenzo L.M., and Vallet-Reg M. 2002. Setting behavior and in vitro bioactivity of hydroxypatite/calcium sulfate cements. Chem Mater, 14: 3550-3555.
Cao W. and Hench L. L., 1996. Bioactive Materials. Ceramics International, 22(6): 493-507.
Clifford A. 2001. The influence of calcium to phosphate ratio on the nucleation and crystallization of apatite glass-ceramics. Journal of Materials Science: Materials in Medicine, 12: 461-469.
Coetzee A. S., 1980. Regeneration of bone in the presence of calcium sulfate. Arch Otolaryngol, 106: 405-410.
Costantino P. D., Friedman C. D., 1994. Synthetic bone graft substitutes. Otolaryng Clin N Am, 27: 1037-1074.
Doadrio J.C., Arcos D., Cabanas M.V., and Vallet-Reg. M. 2004. Calcium sulphate-based cements containing cephalexin. Biomaterials, 25: 2629-2635.
Dreessmann H. 1892. Über Knochenplombierung. Beitr Klin Chir, 9: 804-810.
Eisenbarth E., Meyle J., Nachtigal W., & Breme J. 1996. Influence of the surface structure of titanium materials on the adhesion of fibroblast. Biomaterials, 17: 1399-1403.
Elizabeth P. F., Steven A. G., Thomas W. B., and Scott A. H. 1998. Biomechanical and Histological evaluation of a calcium phosphate cement. J. Bone and Joint surgery, 80(8): 1112-1124.
Feng H. L., Chun J. L., Ko S. C., Jui S. S., and Chun P. L. 2001. Petal-like apatite formed on the surface of tricalcium phosphate ceramic after soaking in distilled water. Biomaterials, 22: 2981-2992.
Fernandez E., Gil F. J., Ginebra M. P., Driessens F. C. M., and Planell J. A. 1999. Calcium Phosphate Bone Cements for Clinical Applications. J. Mater. Sci. Mater. Med., 10: 169-176.
Fujibayashi S., 2003. Repair of segmental long bone defect in rabbit femur using bioactive titanium cylindrical mesh cage. Biomaterials, 24: 3445-3451.
Georgiou. G., and Knowles J. C., 2001. Glass reinforced droxyapatite for hard tissue surgery-Part 1: mechanical properties. Biomaterilas, 22: 2811-2815.
Gisep 2002. A., Research on ceramic bone substitutes: current status. Injury, 33: 88-92.
Gitelis S., Haggard W., and Piasecki P., 2001. Use of a Calcium Sulfate-Based Bone Graft Substitute for Benign Bone Lesions. Orthopedics, 24 (2): 162-166.
Gomez-Vega J. M., Saiz E., Tomsia A. P., Marshall G. W., and Marshall S. J. 2000. Bioactive glass coatings with hydroxyapatite and Bioglass particles on Ti-based implants. 1. Processing. Biomaterials, 21: 105-111.
Hanker J.S., Tucker M.R., Terry B. C. 1986. Composite plaster/hydroxylapatite implants for jaw bone restoration. Materials Research Society, 55: 77-96.
Hench L. L., and E. C., Ethridge 1982. Biomaterials: an interfacial approach. Academic Press Inc.
Hideyuki Nakano , Takeshi Ohno, and Shoji Yamanaka 1994. Nuclear Magnetic Resonance Spectroscopic Study on the Grafting Ethylene Oxide onto the Interlayer Surface of “Zirconium Phosphate”. Chem. Lett., 23(1): 9-12.
Huang N., Yang P., and Cheng X. 1998. Blood compatibility of amorphous oxide films synthesized by ion beam enhanced deposition. Biomaterials, 19: 771.
Huang N., Yang P., Leng Y. X., Chen J. Y., Sun H., Wang J., Wang, G. J., Ding, P.D., Xi T.F., Leng Y., 2003. HemocoMPatibility of titanium oxide films, Biomaterials, 24(13): 2177-2187.
Hulbert S. F., Bokros J. C., Hench L. L., Wilson J. W. and Heimke G., 1987. Ceramics in clinical applications, past, present and future, Ceramics in Clinical Applications: 3-27.
Janes F. S., 1999.Ceramics materials for biomedical applications, Bioceramics: 59: 37-81.
Jarchi M., 1981. Calcium phosphate ceramics as hard tissue, Clin. Orthop. Rel. Res., 157: 259-279.
Katthagen B. D., 1987. Bone regeneration with bone substitutes, J. Mater. Sci. in medicine, 6: 377-384. Springer-Verlag.
Khalid A.Ruhaimi, 2000. Effect of adding Resorbable calcium sulfate to grafting materials on early bone regeneration in osseous defects in rabbits, The International Journal of Oral &Maxillofacial implants, 15: 859-864.
Kikuchi M, Itoh S, Ichinose S, Shinomiya K, Tanaka J., 2001. Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo, Biomaterials, 22: 1705-1711.
Kwon S. H., 2002. Calcium phosphate bioceramics with various porosities and dissolution rates, J. Am. Ceram. Soc., 85 (12): 3129-3131.
Lemaitre J, Mirtchi A, Munting E., 1987. Calcium phosphate cements for medical uses: state of the art and perspectives of development, Sil Ind Ceram Sci Technol, 141-146.
Lin F. H. , Yao C. H., Huang C. W., Liu H. C., Sun J. S. and C. Y., 1996. Diverse Mechanisms of Osteoblast Spreading on hydroxyapatite and Titanium, Wang, Mater. Chem. Phys., 46: 36-42.
Liu Q., Wijn J. R.and C. A., van Blitterswijk, 1997. Nono-apatite/polymer composites:mechanical and physicochemical characteristics, Biomaterials, 18: 1263-1270.
Liu Q., de Wijn J. R., and van Blitterswijk C. A., 1998.Composite biomaterials with chemical bonding between hydroxyapatite filler particles and PEG/PBT copolymer matrix, J. Biomed. Mater. Res., 40: 490-497.
Liu Q., de Wijn J. R., and van Blitterswijk C. A., 1998. Composite biomaterials with chemical bonding between hydroxyapatite filler particles and PEG/PBT copolymer matrix, J. Biomed. Mater. Res., 40: 358-364.
Liu Q., de Wijn J. R., and van Blitterswijk C. A., 1998. Composite biomaterials with chemical bonding between hydroxyapatite filler particles and PEG/PBT copolymer matrix, J. Biomed. Mater. Res., 40: 257-263.
Luthen F., Lange R., Becker P., Rychly J., Beck U., and B. Nebe J. G., 2005. The influence of surface roughness of titanium on 1- and 3-integrin adhesion and the organization fibronectin in human osteoblastic cells, Biomaterials, 26: 2423-2440.
Mckee J. C., Balley B. J., Texas G., 1984. Calcium Sulfate as a Mandibular Implant. Osteolaryngology- Head and Neck Surgery, 92: 277-286.
Meagher E. P., Lager G. A., 1979. Biomedical application of ceramic materials. The Canadian Mineralogist, 17: 77-98.
Meyer U., Büchter A., Wiesmann H.P., Joos U.and Jones D.B., 2005. Basic Reactions of Osteoblasts on Structured Material Surfaces. European Cells and Materials,9:39-49. ISSN 1473-2262
Mirtch A. A., Lemaitre J., 1993. Bone repair of defects filled with a phosphocalcic hydraulic cement: an in vivo study, J. Mater. Sci. in medicine, 4: 337-344.
Nishiguchi S, Nakamura T, Kobayashi M, Kim HM, Miyaji F, Kokubo T, 1999. The effect of heat treament on bone-bonding ability of alkali-treated titanium, Biomaterials, 20: 491-500.
Oliva A., Salerno A., Locardi B., Riccio V., Ragione F. Lagneau D., Iardino P. and Zappia,V., 1998. Modificavion of Titanium by IonImplantation of Calcium. Biomaterials, 91: 1019-1025.
Park J. B., 1979. Biomaterials, An Introduction, New York: Plenum Press, 150-189.
Park J. B., 1985. Biomaterials science and Engineering, Plenum Press, New York and London, 345-495.
Park J. B., 1990. Biomaterials Science and Engineering, Plenum Press, New York and London, 254-567.
Pasquier G., 1996. Injectable percutaneous bone biomaterials: an experimental study in a rabbit model Journal of materials science, materials in medicine, 7: 683-690.
Pecora G., De Leonardis D., Ibrahim N., Bovi M., Cornelini R., 2001. The use of calcium sulphate in the surgical treatment of a through and trough peroradicular lesion, Int Endod J, 34: 184-188.
Peltier L., 1959. The use of plaster of Paris to fill large defects in bone. Am J Surg 97: 311-315.
Peltier L. F., Lillo R., 1956. The substitution pf plaster of Paris rods for portions of the diaphysis of the radius in dogs, Surg Forum, 6: 556-558.
Peltier L. F., Orn D., 1958. The effect of the addition of Plaster of Paris to autogenous and homogeneous bone grafts in dogs, Surg Forum, 8: 571-574.
Peltier L. F., 1961. The uses of Plaster of Paris to fill defects in bone, Clin Ortho, 21: 1-29.
Ponsonnet L., Reybier K., Jaffrezia N., Comte V., Lissac C. M., and Martelet C., 2003. Relationship between surface properties roughness, wettability of Titanium and titanium alloys and cell behavior. Materials Science and Engineering, 23: 551-560.
Price N., Bendall S. P., Frondoza C., Jinnah R. H., and David S. H., 1997. John Wiley and Sons Inc, 37: 394-400.
Radin S. R., Ducheyne P., 1993. The Effect of Calcium Phosphate Ceramic Composition and Structure on in Vitro Behavior. Precipitation J. Biomed. Mater. Res., 27: 35-45.
Radin S. R., Ducheyne P., 1994. Effect of bioactive ceramic composition and structure on in vitro behavior. Porous versus dense ceramics, J Biomed. Mater. Res., 28: 1303-1309.
Rateitschak K. H., Rateitschak H. F., 1995. Wolf Color Atlas of Dental Medicline, Thieme Medical Publishers, 11-24.
Rawlings C. E. III., Robert H. W., Jacob S. H., PH.D.,NichilasG.Georgiade,D.D.S.and John arrelson,M.D.1988.”Evaluation in cat of a new material for cranioplasty: a composite of plaster of Paris and hydroxylapatite,” J Neurosurg ,69: 269-275.
Rodan G. A., 1998. Control of bone formation and resorption: Biological and clinical perspective, J Cell Biocnem Suppls, 30: 55-61.
Ryu Hyun-Seung, Hong Kug Sun, Lee Jung-Kun, 2004. Magnesia-doped HA/”-TCP ceramics and evaluation of their biocoMPatibility, ”Biomater., 25: 393-401.
Saito N, Takaoka T., 2003. New synthetic biodegradable polymers as BMP carriers for bone tissue engineering, Biomaterials, 24: 2287-2293.
Sato S, Koshino T, Saito T., 1998. Osteogenic response of rabbit tibia to hydroxyapatite particle-Plaster of Paris mixture, Biomaterials, 19: 1895-1900.
Say, W. C., 1990. Hot corrosion of a-SiC ceramics by V2O6 melt, Jourual of materials science, 25: 1614-1617.
Say, W. C. Yeh C. C., Chen C. H., 2007. Surface Morphologies on the addition of TiO2 to calcium phosphate bio-glass, Biomedical Engineering, 19:(6): 389-394.
Shackelford J. F., 1999. Bioceramics-An Historical Perspective, Materials science forum, 293: 1-4.
Shaffer C, App G., 1971. The use of plaster of Paris in treating infrabony periodontal defects in humans, J Periodontol, 42: 685-690.
Sugiyama K.T., 1987. Structure and crystal chemistry of a dense polymorph of tricalcium phosphate Ca3(PO)4: a host to accommodate large lithophile elements in the earth’s mantle, Phys. Chem. Minerals, 15: 125-130.
Sung B. C.,Miyaji F., Kokubo T., Nakamura T., 1997. Induction of bioactivity of a non-bioactivite glass-ceramic by a chemical treatment Biomaterials, 18:1479-1485.
Toshihior K, Sawada M, Nogami M, Abe Y, 1999. Bioactive ceramics prepared by sintering and crystallization of calcium phosphate invert glasses. Biomaterials, 20: 1415-1420.
Vincenzini P., 1991. Ceramics in substitutive and reconstructive surgery, Elsevier Science Publishers BV,244-254.
Wang J. L., 2003. The Assay of Bone Reaction after Implantation of Calcium Sulfate and A Composite of Calcium Sulfate and Calcium Phosphate, Institute of Biomedical Engineering. Journal of Medical and Biological Engineering, 23: 205-212.
Welch J. H., Gutt W., 1961. High-temperature studies of the system calcium oxide-phosphorous pentoxide. J. Chem. Soc., 4442-4444.
Yakovlev V. V., Scarel G., Aita C. R., Mochizuki S., Biomedical Applications, 2000. Appl. Phys. Lett., 76: 1107-1136.
Yasuharu Yamazaki, Shinichiro Oida, Yasushi Akimoto and Shigetoshi Shioda, 1988. Response of the mouse femoral muscle to an implant of a composite of bone morphogenetic protein and plaster of Paris. Clinical Orthopaedics and related research, 234: 240-249.
Yen S. K., 2000. Titanium Serum and Urine Levels in Rabbit with a Titanium Implant. Mater. Chem. Phys., 63: 256-262.
Zhang F., Huang N., Yang P., Zeng X., Mao Y., Zheng Z., Zhou Z., 1996. Blood coMPatibility of titanium oxide prepared by ion-beam-enhanced deposition. Surface and Coatings Technology, 84:(1-3) 476-479.
Zhang Y., Santos J. D., 2000. Crystallization and microstructure analysis of calcium phosphate-based glass ceramics for biomedical applications. J. non-crystalline solids, 272: 14-21.
Zinger O., Anselme K., Denzer A., Habersetzer P., Wieland M., Jeanfils J., Hardouin P., and Landolt D., 2004. Time-independent morphology and adhesion of osteoblastic cells titanium model surfaces featuring scale-resolved topography. Biomaterials, 25: 2695-2711.
賴佑承和潘宏維。1983。「生物體用的陶瓷人工骨骼及其周邊」,工業技術研究院工業材料研究所。No MR058。
王焯林。2001。骨組織對硫酸鈣及硫酸鈣加磷酸鈣之吸收性和骨再生性比較分析研究。國立成功大學醫學工程研究所碩士論文。第112-120頁。台南市。李承榆。2003。植物細胞生物轉換技術之應用。化工資訊與商情月刊4:8-10。新竹市。俞耀庭、林峰輝和白育綸。2004。第五章骨組織工程材料。生物醫用材料。第139-150頁。新文京開發出版股份有限公司。臺灣。
俞聖洲。2010。生醫硫酸鈣材料含量百分比在SBF之降解率。國立台北科技大學材料及資源工程系碩士論文。第123-132頁。台北市。洪敏雄、林峰輝和王盈錦。1994。陶瓷技術手冊(下)。第78-99頁。中華民國產業科技發展協進會。台北市。
黃瓊芳、蔡政宏、歐耿良、詹宗瑾和李勝揚。2005。鈦經電漿處理後鈦植體表面形成奈米結構二氧化鈦層之微結構與性質。中華牙醫學雜誌。1(3):185-192。臺灣。許嘉麟。2005。硫酸鈣之動力學硬化機制研究。國立台北科技大學材料及資源工程系碩士論文。第135-147頁。台北市。葉晉志。2002。鈦添加在磷酸鈣玻璃之生物相容性研究,國立台北科技大學材料及資源工程系碩士論文。第98-115頁。台北市。楊榮森。1997。骨質疏鬆症病因、診斷、治療(合著)。第65-80頁。合記圖書出版社。台北市。
廖俊仁。2000。生醫骨科陶瓷材料之發展與應用。化工資訊月刊。生技醫藥專題3月,第6-13頁。臺灣。蔡明慈。2002。不同刺激時間單脈衝電磁場對造骨細胞與骨髓細胞共同培養形成之類蝕骨細胞凋亡的影響。中原大學醫學工程研究所碩士論文。第69-92頁。桃園縣。劉典謨。1994。生醫玻璃/玻璃陶瓷材料。材料與社會。75:10-14。臺灣。