跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2024/12/05 18:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃奕璇
研究生(外文):I-Hsuan Huang
論文名稱:探討GEF-H1如何經由調節黏著斑的訊息調控
論文名稱(外文):GEF-H1-mediated focal adhesion signaling regulates dexamethasone-induced mesenchymal stem cells osteogenic differentiation
指導教授:郭津岑張智芬
指導教授(外文):Jean-Cheng KuoZee-Fen Chang
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:生化暨分子生物研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:56
中文關鍵詞:GEF-H1醣皮質類固醇黏著斑骨分化間葉幹細胞
外文關鍵詞:GEF-H1Dexmathasonefocal adhesionosteogenic differentiationmesenchymal stem cell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:231
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
間葉幹細胞(MSCs)為多效性祖源細胞能分化成多種細胞,例如硬骨母細胞、軟骨母細胞、橫紋肌母細胞、脂肪細胞和神經母細胞等。黏著斑(focal adhesion,FA)為細胞底部與胞外基質連接的結構,也具有傳遞訊息和形成胞外基質的能力。之前的研究顯示間葉幹細胞分化的調控與黏著斑轉為成熟型態有關。雖然已知人工合成的醣皮質類固醇(Dexamethasone,Dex)能誘導間葉幹細胞進行骨分化,但醣皮質類固醇如何調控黏著斑的相關機制我們仍不是很清楚。我們發現醣皮質類固醇能促進GEF-H1移動至黏著使黏著斑穩定和有利於骨分化的進行。為了探討GEF-H1如何經由調節黏著斑的組成來調控肌動蛋白骨架的結構和訊息的傳遞,我們分別取從對照組和GEF-H1 -silencing組分離出來的黏著斑進行蛋白質體分析並探討兩者的黏著斑組成由何差異。我們在間葉幹細胞的黏著斑中辨識出346個蛋白,其中有63%(219)的蛋白會因為GEF-H1的表現而在黏著斑中有顯著得變動。根據蛋白質體分析的結果,我們將重點放在NMIIB並探討NMIIB在GEF-H1在經由調控細胞骨架來驅使間葉幹細胞進行骨分化中扮演什麼角色。
Mesenchymal stem cells (MSCs) are multipotent progenitor cells with abilities to differentiate into multiple cell lineages, such as osteoblasts, chondroblasts, myocytes, adipocytes and neurocytes. The regulation of MSC commitment has been linked to the maturation states of a complex plasma-membrane associated macromolecular organelle, focal adhesion (FA), that connect cells to, as well as transduce signals to and from, the surrounding extracellular matrix (ECM). Although a synergistic steroid, dexamethasone (Dex) can induce MSCs osteogenic differentiation, the underlying mechanism of FA modulation by Dex remains unknown. Here, we found that Dex promotes the recruitment of guanine nucleotide exchange factors H1 (GEF-H1) into FAs that mediates FAs formation, stress fibers orientation, and MSCs osteogenesis. To further determine the mechanism of GEF-H1 in regulating FA formation, the organization of actin cytoskeleton, and specifying MSCs osteogenic commitment, we hypothesize that FA recruitment of GEF-H1, in response to Dex treatment, transduces signals through globally modulating FA composition. To achiev this hypothesis, we performed a proteomics approach to isolate native FAs, identify their protein composition, and compare specific protein abundance in FAs from Dex-treated MSCs with and without GEF-H1 expression. We reproducibly identified 346 FA-associated proteins from Dex-treated MSCs, of which 63% (219) had significant changes in FA abundance in response to GEF-H1 expression. We focused on the non-muscle myosin II heavy chain B (NM IIB), documenting its role in GEF-H1-mediated cytoskeletal organization to drive MSCs osteogenic differentiatio
Contents

Signature Page i
Thesis Approval Form ii
Acknowledgments iii
Chinese Abstract iv
English Abstract v
Chapter 1 Introduction 1
Mensenchymal stem cells differentiation 1
Mesenchymal stem cells osteogenic differentiation 3
Cytoskeletal mechanics in mesenchymal stem cells osteogenic differentiation
5
Guanine nucleotide exchange factor (GEF-H1) 6
Chapter 2 Material and Methods 8
Material 8
Methods 10
Chapter 3 Result 15
Microtubule stabilization influences Dex-stimulated stress fibers formation and FA maturation. 15
GEF-H1 mediates Dex-mediated cytoskeletal architecture. 16
Dexamethasone treatment increases the recruitment of GEF-H1 into FAs 17
GEF-H1 plays crucial in organizing functional FAs. 18
GEF-H1 is required for FA recruitment of NMIIB. 20
GEF-H1 recruits NMIIB to FAs via its DH domain.. 21
NM IIB regulates Dex-induced stress fiber orientation. 22
GEF-H1 plays crucial in Dex-driven MSCs osteogenesis. 23
NMIIB at FA is essential for Dex-driven MSCs osteogenesis. 24
Chapter 4 Discussion 25
GEF-H1 modulates stress fiber alignment through microtubule dynamics. 25
GEF-H1 regulates actin organization not through RhoA activation. 26
GEF-H1 modulate FA composition to alter FA signaling. 26
The interaction between NMIIB and GEF-H1 is essential for stress fiber orientation. 28
GEF-H1 drives osteogenic differentiation through NMIIB staying at FA to regulate stress fiber alignment 28
Conclusion 29
References 30
Figures and Legends 40
Table 1 56

REFERENCE
[1] Marolt D, Knezevic M, Novakovic GV. Bone tissue engineering with human stem cells. Stem cell research &; therapy 2010;1:10.
[2] Barry FP, Murphy JM. Mesenchymal stem cells: clinical applications and biological characterization. The international journal of biochemistry &; cell biology 2004;36:568-84.
[3] Zhang Y, Khan D, Delling J, Tobiasch E. Mechanisms underlying the osteo- and adipo-differentiation of human mesenchymal stem cells. TheScientificWorldJournal 2012;2012:793823.
[4] Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nature reviews Immunology 2008;8:726-36.
[5] Jaalouk DE, Lammerding J. Mechanotransduction gone awry. Nature reviews Molecular cell biology 2009;10:63-73.
[6] Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell 2006;126:677-89.
[7] Sen B, Guilluy C, Xie Z, Case N, Styner M, Thomas J, et al. Mechanically induced focal adhesion assembly amplifies anti-adipogenic pathways in mesenchymal stem cells. Stem cells 2011;29:1829-36.
[8] Xu B, Song G, Ju Y, Li X, Song Y, Watanabe S. RhoA/ROCK, cytoskeletal dynamics, and focal adhesion kinase are required for mechanical stretch-induced tenogenic differentiation of human mesenchymal stem cells. Journal of cellular physiology 2012;227:2722-9.
[9] Govindan R, Kumar R. Mesenchymal stem cell (MSC) differentiation by mechanical stress: applications in the field of musculoskeletal tissue engineering. International Journal of Research and Reviews in Pharmacy and Applied Sciences 2010;2(4):760-6.
[10] Kelly DJ, Jacobs CR. The role of mechanical signals in regulating chondrogenesis and osteogenesis of mesenchymal stem cells. Birth defects research Part C, Embryo today : reviews 2010;90:75-85.
[11] Kapur S, Baylink DJ, Lau KH. Fluid flow shear stress stimulates human osteoblast proliferation and differentiation through multiple interacting and competing signal transduction pathways. Bone 2003;32:241-51.
[12] Walsh S, Jordan GR, Jefferiss C, Stewart K, Beresford JN. High concentrations of dexamethasone suppress the proliferation but not the differentiation or further maturation of human osteoblast precursors in vitro: relevance to glucocorticoid-induced osteoporosis. Rheumatology 2001;40:74-83.
[13] Khan HA, Amitava AK. Topical diclofenac versus dexamethasone after strabismus surgery: a double-blind randomized clinical trial of anti-inflammatory effect and ocular hypertensive response. Indian journal of ophthalmology 2007;55:271-5.
[14] Miyachi Y. Pathophysiology and diagnosis of Cushing's syndrome. Biomedicine &; pharmacotherapy = Biomedecine &; pharmacotherapie 2000;54 Suppl 1:113s-7s.
[15] de Crombrugghe B, Lefebvre V, Nakashima K. Regulatory mechanisms in the pathways of cartilage and bone formation. Current opinion in cell biology 2001;13:721-7.
[16] Guang LG, Boskey AL, Zhu W. Age-related CXC chemokine receptor-4-deficiency impairs osteogenic differentiation potency of mouse bone marrow mesenchymal stromal stem cells. The international journal of biochemistry &; cell biology 2013;45:1813-20.
[18] Arinzeh TL, Peter SJ, Archambault MP, van den Bos C, Gordon S, Kraus K, et al. Allogeneic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect. The Journal of bone and joint surgery American volume 2003;85-A:1927-35.
[19]Ponticiello MS, Schinagl RM, Kadiyala S, Barry FP. Gelatin-based resorbable sponge as a carrier matrix for human mesenchymal stem cells in cartilage regeneration therapy. Journal of biomedical materials research 2000;52:246-55. [19] Mariani E, Facchini A. Clinical applications and biosafety of human adult mesenchymal stem cells. Current pharmaceutical design 2012;18:1821-45.
[20] Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007;449:557-63.
[21] Djouad F, Plence P, Bony C, Tropel P, Apparailly F, Sany J, et al. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 2003;102:3837-44
[22] Huether, SE, McCance KL. Understanding Pathophysiology. Second edition 2000.
[23] Sikavitsas VI, Temenoff JS, Mikos AG. Biomaterials and bone mechanotransduction. Biomaterials 2001;22:2581-93.
[24] Endocrinology and metabolism clinics of north America –metabolic bone disease 1989; Part I(18): no.4.
[25] Aubin JE, Lian JB, Stein GS. Bone formation: maturation and functional activities of osteoblast lineage cells. In: Murray JF, ed. Primer on the metabolic bone diseases and disorders of mineral metabolism. The American society for bone and mineral research 2006.
[26] Miller SC, Bowman BM, Smith JM, Jee WS. Characterization of endosteal bone-lining cells from fatty marrow bone sites in adult beagles. The Anatomical record 1980;198:163-73.
[27] Harvey L, Arnold B, Chris AK, Monty K, Matthew PS, Anthony B, Hidde P, Paul M. Molecular Cell Biology. 6th ed. 2007:748-9.
[28] de Crombrugghe B, Lefebvre V, Nakashima K. Regulatory mechanisms in the pathways of cartilage and bone formation. Current opinion in cell biology 2001;13:721-7.
[29] Marie PJ. Transcription factors controlling osteoblastogenesis. Archives of biochemistry and biophysics 2008;473:98-105.
[30] Lian JB, Stein GS. Runx2/Cbfa1: a multifunctional regulator of bone formation. Current pharmaceutical design 2003;9:2677-85.
[31] Komori T. Regulation of osteoblast differentiation by transcription factors. Journal of cellular biochemistry 2006;99:1233-9.
[32] Liu W, Toyosawa S, Furuichi T, Kanatani N, Yoshida C, Liu Y, et al. Overexpression of Cbfa1 in osteoblasts inhibits osteoblast maturation and causes osteopenia with multiple fractures. The Journal of cell biology 2001;155:157-66.
[33] Bellido T, Ali AA, Plotkin LI, Fu Q, Gubrij I, Roberson PK, et al. Proteasomal degradation of Runx2 shortens parathyroid hormone-induced anti-apoptotic signaling in osteoblasts. A putative explanation for why intermittent administration is needed for bone anabolism. The Journal of biological chemistry 2003;278:50259-72.
[34] Ahdjoudj S, Lasmoles F, Holy X, Zerath E, Marie PJ. Transforming growth factor beta2 inhibits adipocyte differentiation induced by skeletal unloading in rat bone marrow stroma. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research 2002;17:668-77.
[35] Franceschi RT, Xiao G, Jiang D, Gopalakrishnan R, Yang S, Reith E. Multiple signaling pathways converge on the Cbfa1/Runx2 transcription factor to regulate osteoblast differentiation. Connective tissue research 2003;44 Suppl 1:109-16.
[36] Ryoo HM, Lee MH, Kim YJ. Critical molecular switches involved in BMP-2-induced osteogenic differentiation of mesenchymal cells. Gene 2006;366:51-7.
[37] Katagiri T, Yamaguchi A, Komaki M, Abe E, Takahashi N, Ikeda T, et al. Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. The Journal of cell biology 1994;127:1755-66.
[38]Born AK, Rottmar M, Lischer S, Pleskova M, Bruinink A, Maniura-Weber K. Correlating cell architecture with osteogenesis: first steps towards live single cell monitoring. European cells &; materials 2009;18:49-60, 1-2; discussion
[39] Rodriguez JP, Gonzalez M, Rios S, Cambiazo V. Cytoskeletal organization of human mesenchymal stem cells (MSC) changes during their osteogenic differentiation. Journal of cellular biochemistry 2004;93:721-31.
[40] Shih YR, Tseng KF, Lai HY, Lin CH, Lee OK. Matrix stiffness regulation of integrin-mediated mechanotransduction during osteogenic differentiation of human mesenchymal stem cells. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research 2011;26:730-8.
[41] Beranek JT. Vascular derivation of granulomatous cells in different types of leprosy. International journal of dermatology 1992;31:165-6. [42] Schwarz US, Erdmann T, Bischofs IB. Focal adhesions as mechanosensors: the two-spring model. Bio Systems 2006;83:225-32.
[42] Ballestrem C, Hinz B, Imhof BA, Wehrle-Haller B. Marching at the front and dragging behind: differential alphaVbeta3-integrin turnover regulates focal adhesion behavior. The Journal of cell biology 2001;155:1319-32.
[43] Guo F, Debidda M, Yang L, Williams DA, Zheng Y. Genetic deletion of Rac1 GTPase reveals its critical role in actin stress fiber formation and focal adhesion complex assembly. The Journal of biological chemistry 2006;281:18652-9.
[44] Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, et al. Cell migration: integrating signals from front to back. Science 2003;302:1704-9.
[45] Salasznyk RM, Klees RF, Williams WA, Boskey A, Plopper GE. Focal adhesion kinase signaling pathways regulate the osteogenic differentiation of human mesenchymal stem cells. Experimental cell research 2007;313:22-37.
[46] Ren Y, Li R, Zheng Y, Busch H. Cloning and characterization of GEF-H1, a microtubule-associated guanine nucleotide exchange factor for Rac and Rho GTPases. The Journal of biological chemistry 1998;273:34954-60.
[47] Birkenfeld J, Nalbant P, Yoon SH, Bokoch GM. Cellular functions of GEF-H1, a microtubule-regulated Rho-GEF: is altered GEF-H1 activity a crucial determinant of disease pathogenesis? Trends in cell biology 2008;18:210-9.
[48] Chang YC, Nalbant P, Birkenfeld J, Chang ZF, Bokoch GM. GEF-H1 couples nocodazole-induced microtubule disassembly to cell contractility via RhoA. Molecular biology of the cell 2008;19:2147-53.
[49] Nalbant P, Chang YC, Birkenfeld J, Chang ZF, Bokoch GM. Guanine nucleotide exchange factor-H1 regulates cell migration via localized activation of RhoA at the leading edge. Molecular biology of the cell 2009;20:4070-82.
[50] Heck JN, Ponik SM, Garcia-Mendoza MG, Pehlke CA, Inman DR, Eliceiri KW, et al. Microtubules regulate GEF-H1 in response to extracellular matrix stiffness. Molecular biology of the cell 2012;23:2583-92.
[51] Tsai CC, Chen CL, Liu HC, Lee YT, Wang HW, Hou LT, et al. Overexpression of hTERT increases stem-like properties and decreases spontaneous differentiation in human mesenchymal stem cell lines. Journal of biomedical science 2010;17:64.
[52] Yu YL, Chou RH, Chen LT, Shyu WC, Hsieh SC, Wu CS, et al. EZH2 regulates neuronal differentiation of mesenchymal stem cells through PIP5K1C-dependent calcium signaling. The Journal of biological chemistry 2011;286:9657-67.
[53] Kilian KA, Bugarija B, Lahn BT, Mrksich M. Geometric cues for directing the differentiation of mesenchymal stem cells. Proceedings of the National Academy of Sciences of the United States of America 2010;107:4872-7.
[54] McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Developmental cell 2004;6:483-95.
[55]Tanaka F, Kerwin L, Kubitz D, Lerner RA, Barbas CF, 3rd. Visualizing antibody-catalyzed retro-aldol-retro-Michael reactions. Bioorganic &; medicinal chemistry letters 2001;11:2983-6.
[56] Conconi MT, Tommasini M, Muratori E, Parnigotto PP. Essential amino acids increase the growth and alkaline phosphatase activity in osteoblasts cultured in vitro. Farmaco 2001;56:755-61.
[57] Karlon WJ, Hsu PP, Li S, Chien S, McCulloch AD, Omens JH. Measurement of orientation and distribution of cellular alignment and cytoskeletal organization. Annals of biomedical engineering 1999;27:712-20.
[58] Stehbens S, Wittmann T. Targeting and transport: how microtubules control focal adhesion dynamics. The Journal of cell biology 2012;198:481-9.
[59] Kuo JC, Han X, Hsiao CT, Yates JR, 3rd, Waterman CM. Analysis of the myosin-II-responsive focal adhesion proteome reveals a role for beta-Pix in negative regulation of focal adhesion maturation. Nature cell biology 2011;13:383-93.
[60] Sheffield PJ, Oliver CJ, Kremer BE, Sheng S, Shao Z, Macara IG. Borg/septin interactions and the assembly of mammalian septin heterodimers, trimers, and filaments. The Journal of biological chemistry 2003;278:3483-8.
[61] Knaus UG, Bokoch GM. The p21Rac/Cdc42-activated kinases (PAKs). The international journal of biochemistry &; cell biology 1998;30:857-62.
[62] Yang N, Higuchi O, Ohashi K, Nagata K, Wada A, Kangawa K, et al. Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature 1998;393:809-12.
[63] Vicente-Manzanares M, Ma X, Adelstein RS, Horwitz AR. Non-muscle myosin II takes centre stage in cell adhesion and migration. Nature reviews Molecular cell biology 2009;10:778-90.
[64] Lee CS, Choi CK, Shin EY, Schwartz MA, Kim EG. Myosin II directly binds and inhibits Dbl family guanine nucleotide exchange factors: a possible link to Rho family GTPases. The Journal of cell biology 2010;190:663-74.
[65] Birukova AA, Fu P, Xing J, Yakubov B, Cokic I, Birukov KG. Mechanotransduction by GEF-H1 as a novel mechanism of ventilator-induced vascular endothelial permeability. American journal of physiology Lung cellular and molecular physiology 2010;298:L837-48.
[66] Enomoto T. Microtubule disruption induces the formation of actin stress fibers and focal adhesions in cultured cells: possible involvement of the rho signal cascade. Cell structure and function 1996;21:317-26.
[67] Herman B, Langevin MA, Albertini DF. The effects of taxol on the organization of the cytoskeleton in cultured ovarian granulosa cells. European journal of cell biology 1983;31:34-45.
[68] Danowski BA. Fibroblast contractility and actin organization are stimulated by microtubule inhibitors. Journal of cell science 1989;93 ( Pt 2):255-66.
[69] Fukuhara S, Chikumi H, Gutkind JS. Leukemia-associated Rho guanine nucleotide exchange factor (LARG) links heterotrimeric G proteins of the G(12) family to Rho. FEBS letters 2000;485:183-8.
[70] Guilluy C, Swaminathan V, Garcia-Mata R, O'Brien ET, Superfine R, Burridge K. The Rho GEFs LARG and GEF-H1 regulate the mechanical response to force on integrins. Nature cell biology 2011;13:722-7.
[71] Thompson WR, Rubin CT, Rubin J. Mechanical regulation of signaling pathways in bone. Gene 2012;503:179-93.
[72] Muralidharan-Chari V, Clancy J, Plou C, Romao M, Chavrier P, Raposo G, et al. ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Current biology : CB 2009;19:1875-85.
[73] Munzel T, Feil R, Mulsch A, Lohmann SM, Hofmann F, Walter U. Physiology and pathophysiology of vascular signaling controlled by guanosine 3',5'-cyclic monophosphate-dependent protein kinase [corrected]. Circulation 2003;108:2172-83.
[74] McLean GW, Carragher NO, Avizienyte E, Evans J, Brunton VG, Frame MC. The role of focal-adhesion kinase in cancer - a new therapeutic opportunity. Nature reviews Cancer 2005;5:505-15.
[75] Liu Z, Van Rossen E, Timmermans JP, Geerts A, van Grunsven LA, Reynaert H. Distinct roles for non-muscle myosin II isoforms in mouse hepatic stellate cells. Journal of hepatology 2011;54:132-41.
[76] Even-Ram S, Doyle AD, Conti MA, Matsumoto K, Adelstein RS, Yamada KM. Myosin IIA regulates cell motility and actomyosin-microtubule crosstalk. Nature cell biology 2007;9:299-309.
[77] Solinet S, Akpovi CD, Garcia CJ, Barry A, Vitale ML. Myosin IIB deficiency in embryonic fibroblasts affects regulators and core members of the par polarity complex. Histochemistry and cell biology 2011;136:245-66.
[78] Samavedi S, Guelcher SA, Goldstein AS, Whittington AR. Response of bone marrow stromal cells to graded co-electrospun scaffolds and its implications for engineering the ligament-bone interface. Biomaterials 2012;33:7727-35.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊