|
REFERENCE [1] Marolt D, Knezevic M, Novakovic GV. Bone tissue engineering with human stem cells. Stem cell research &; therapy 2010;1:10. [2] Barry FP, Murphy JM. Mesenchymal stem cells: clinical applications and biological characterization. The international journal of biochemistry &; cell biology 2004;36:568-84. [3] Zhang Y, Khan D, Delling J, Tobiasch E. Mechanisms underlying the osteo- and adipo-differentiation of human mesenchymal stem cells. TheScientificWorldJournal 2012;2012:793823. [4] Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nature reviews Immunology 2008;8:726-36. [5] Jaalouk DE, Lammerding J. Mechanotransduction gone awry. Nature reviews Molecular cell biology 2009;10:63-73. [6] Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell 2006;126:677-89. [7] Sen B, Guilluy C, Xie Z, Case N, Styner M, Thomas J, et al. Mechanically induced focal adhesion assembly amplifies anti-adipogenic pathways in mesenchymal stem cells. Stem cells 2011;29:1829-36. [8] Xu B, Song G, Ju Y, Li X, Song Y, Watanabe S. RhoA/ROCK, cytoskeletal dynamics, and focal adhesion kinase are required for mechanical stretch-induced tenogenic differentiation of human mesenchymal stem cells. Journal of cellular physiology 2012;227:2722-9. [9] Govindan R, Kumar R. Mesenchymal stem cell (MSC) differentiation by mechanical stress: applications in the field of musculoskeletal tissue engineering. International Journal of Research and Reviews in Pharmacy and Applied Sciences 2010;2(4):760-6. [10] Kelly DJ, Jacobs CR. The role of mechanical signals in regulating chondrogenesis and osteogenesis of mesenchymal stem cells. Birth defects research Part C, Embryo today : reviews 2010;90:75-85. [11] Kapur S, Baylink DJ, Lau KH. Fluid flow shear stress stimulates human osteoblast proliferation and differentiation through multiple interacting and competing signal transduction pathways. Bone 2003;32:241-51. [12] Walsh S, Jordan GR, Jefferiss C, Stewart K, Beresford JN. High concentrations of dexamethasone suppress the proliferation but not the differentiation or further maturation of human osteoblast precursors in vitro: relevance to glucocorticoid-induced osteoporosis. Rheumatology 2001;40:74-83. [13] Khan HA, Amitava AK. Topical diclofenac versus dexamethasone after strabismus surgery: a double-blind randomized clinical trial of anti-inflammatory effect and ocular hypertensive response. Indian journal of ophthalmology 2007;55:271-5. [14] Miyachi Y. Pathophysiology and diagnosis of Cushing's syndrome. Biomedicine &; pharmacotherapy = Biomedecine &; pharmacotherapie 2000;54 Suppl 1:113s-7s. [15] de Crombrugghe B, Lefebvre V, Nakashima K. Regulatory mechanisms in the pathways of cartilage and bone formation. Current opinion in cell biology 2001;13:721-7. [16] Guang LG, Boskey AL, Zhu W. Age-related CXC chemokine receptor-4-deficiency impairs osteogenic differentiation potency of mouse bone marrow mesenchymal stromal stem cells. The international journal of biochemistry &; cell biology 2013;45:1813-20. [18] Arinzeh TL, Peter SJ, Archambault MP, van den Bos C, Gordon S, Kraus K, et al. Allogeneic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect. The Journal of bone and joint surgery American volume 2003;85-A:1927-35. [19]Ponticiello MS, Schinagl RM, Kadiyala S, Barry FP. Gelatin-based resorbable sponge as a carrier matrix for human mesenchymal stem cells in cartilage regeneration therapy. Journal of biomedical materials research 2000;52:246-55. [19] Mariani E, Facchini A. Clinical applications and biosafety of human adult mesenchymal stem cells. Current pharmaceutical design 2012;18:1821-45. [20] Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007;449:557-63. [21] Djouad F, Plence P, Bony C, Tropel P, Apparailly F, Sany J, et al. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 2003;102:3837-44 [22] Huether, SE, McCance KL. Understanding Pathophysiology. Second edition 2000. [23] Sikavitsas VI, Temenoff JS, Mikos AG. Biomaterials and bone mechanotransduction. Biomaterials 2001;22:2581-93. [24] Endocrinology and metabolism clinics of north America –metabolic bone disease 1989; Part I(18): no.4. [25] Aubin JE, Lian JB, Stein GS. Bone formation: maturation and functional activities of osteoblast lineage cells. In: Murray JF, ed. Primer on the metabolic bone diseases and disorders of mineral metabolism. The American society for bone and mineral research 2006. [26] Miller SC, Bowman BM, Smith JM, Jee WS. Characterization of endosteal bone-lining cells from fatty marrow bone sites in adult beagles. The Anatomical record 1980;198:163-73. [27] Harvey L, Arnold B, Chris AK, Monty K, Matthew PS, Anthony B, Hidde P, Paul M. Molecular Cell Biology. 6th ed. 2007:748-9. [28] de Crombrugghe B, Lefebvre V, Nakashima K. Regulatory mechanisms in the pathways of cartilage and bone formation. Current opinion in cell biology 2001;13:721-7. [29] Marie PJ. Transcription factors controlling osteoblastogenesis. Archives of biochemistry and biophysics 2008;473:98-105. [30] Lian JB, Stein GS. Runx2/Cbfa1: a multifunctional regulator of bone formation. Current pharmaceutical design 2003;9:2677-85. [31] Komori T. Regulation of osteoblast differentiation by transcription factors. Journal of cellular biochemistry 2006;99:1233-9. [32] Liu W, Toyosawa S, Furuichi T, Kanatani N, Yoshida C, Liu Y, et al. Overexpression of Cbfa1 in osteoblasts inhibits osteoblast maturation and causes osteopenia with multiple fractures. The Journal of cell biology 2001;155:157-66. [33] Bellido T, Ali AA, Plotkin LI, Fu Q, Gubrij I, Roberson PK, et al. Proteasomal degradation of Runx2 shortens parathyroid hormone-induced anti-apoptotic signaling in osteoblasts. A putative explanation for why intermittent administration is needed for bone anabolism. The Journal of biological chemistry 2003;278:50259-72. [34] Ahdjoudj S, Lasmoles F, Holy X, Zerath E, Marie PJ. Transforming growth factor beta2 inhibits adipocyte differentiation induced by skeletal unloading in rat bone marrow stroma. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research 2002;17:668-77. [35] Franceschi RT, Xiao G, Jiang D, Gopalakrishnan R, Yang S, Reith E. Multiple signaling pathways converge on the Cbfa1/Runx2 transcription factor to regulate osteoblast differentiation. Connective tissue research 2003;44 Suppl 1:109-16. [36] Ryoo HM, Lee MH, Kim YJ. Critical molecular switches involved in BMP-2-induced osteogenic differentiation of mesenchymal cells. Gene 2006;366:51-7. [37] Katagiri T, Yamaguchi A, Komaki M, Abe E, Takahashi N, Ikeda T, et al. Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. The Journal of cell biology 1994;127:1755-66. [38]Born AK, Rottmar M, Lischer S, Pleskova M, Bruinink A, Maniura-Weber K. Correlating cell architecture with osteogenesis: first steps towards live single cell monitoring. European cells &; materials 2009;18:49-60, 1-2; discussion [39] Rodriguez JP, Gonzalez M, Rios S, Cambiazo V. Cytoskeletal organization of human mesenchymal stem cells (MSC) changes during their osteogenic differentiation. Journal of cellular biochemistry 2004;93:721-31. [40] Shih YR, Tseng KF, Lai HY, Lin CH, Lee OK. Matrix stiffness regulation of integrin-mediated mechanotransduction during osteogenic differentiation of human mesenchymal stem cells. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research 2011;26:730-8. [41] Beranek JT. Vascular derivation of granulomatous cells in different types of leprosy. International journal of dermatology 1992;31:165-6. [42] Schwarz US, Erdmann T, Bischofs IB. Focal adhesions as mechanosensors: the two-spring model. Bio Systems 2006;83:225-32. [42] Ballestrem C, Hinz B, Imhof BA, Wehrle-Haller B. Marching at the front and dragging behind: differential alphaVbeta3-integrin turnover regulates focal adhesion behavior. The Journal of cell biology 2001;155:1319-32. [43] Guo F, Debidda M, Yang L, Williams DA, Zheng Y. Genetic deletion of Rac1 GTPase reveals its critical role in actin stress fiber formation and focal adhesion complex assembly. The Journal of biological chemistry 2006;281:18652-9. [44] Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, et al. Cell migration: integrating signals from front to back. Science 2003;302:1704-9. [45] Salasznyk RM, Klees RF, Williams WA, Boskey A, Plopper GE. Focal adhesion kinase signaling pathways regulate the osteogenic differentiation of human mesenchymal stem cells. Experimental cell research 2007;313:22-37. [46] Ren Y, Li R, Zheng Y, Busch H. Cloning and characterization of GEF-H1, a microtubule-associated guanine nucleotide exchange factor for Rac and Rho GTPases. The Journal of biological chemistry 1998;273:34954-60. [47] Birkenfeld J, Nalbant P, Yoon SH, Bokoch GM. Cellular functions of GEF-H1, a microtubule-regulated Rho-GEF: is altered GEF-H1 activity a crucial determinant of disease pathogenesis? Trends in cell biology 2008;18:210-9. [48] Chang YC, Nalbant P, Birkenfeld J, Chang ZF, Bokoch GM. GEF-H1 couples nocodazole-induced microtubule disassembly to cell contractility via RhoA. Molecular biology of the cell 2008;19:2147-53. [49] Nalbant P, Chang YC, Birkenfeld J, Chang ZF, Bokoch GM. Guanine nucleotide exchange factor-H1 regulates cell migration via localized activation of RhoA at the leading edge. Molecular biology of the cell 2009;20:4070-82. [50] Heck JN, Ponik SM, Garcia-Mendoza MG, Pehlke CA, Inman DR, Eliceiri KW, et al. Microtubules regulate GEF-H1 in response to extracellular matrix stiffness. Molecular biology of the cell 2012;23:2583-92. [51] Tsai CC, Chen CL, Liu HC, Lee YT, Wang HW, Hou LT, et al. Overexpression of hTERT increases stem-like properties and decreases spontaneous differentiation in human mesenchymal stem cell lines. Journal of biomedical science 2010;17:64. [52] Yu YL, Chou RH, Chen LT, Shyu WC, Hsieh SC, Wu CS, et al. EZH2 regulates neuronal differentiation of mesenchymal stem cells through PIP5K1C-dependent calcium signaling. The Journal of biological chemistry 2011;286:9657-67. [53] Kilian KA, Bugarija B, Lahn BT, Mrksich M. Geometric cues for directing the differentiation of mesenchymal stem cells. Proceedings of the National Academy of Sciences of the United States of America 2010;107:4872-7. [54] McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Developmental cell 2004;6:483-95. [55]Tanaka F, Kerwin L, Kubitz D, Lerner RA, Barbas CF, 3rd. Visualizing antibody-catalyzed retro-aldol-retro-Michael reactions. Bioorganic &; medicinal chemistry letters 2001;11:2983-6. [56] Conconi MT, Tommasini M, Muratori E, Parnigotto PP. Essential amino acids increase the growth and alkaline phosphatase activity in osteoblasts cultured in vitro. Farmaco 2001;56:755-61. [57] Karlon WJ, Hsu PP, Li S, Chien S, McCulloch AD, Omens JH. Measurement of orientation and distribution of cellular alignment and cytoskeletal organization. Annals of biomedical engineering 1999;27:712-20. [58] Stehbens S, Wittmann T. Targeting and transport: how microtubules control focal adhesion dynamics. The Journal of cell biology 2012;198:481-9. [59] Kuo JC, Han X, Hsiao CT, Yates JR, 3rd, Waterman CM. Analysis of the myosin-II-responsive focal adhesion proteome reveals a role for beta-Pix in negative regulation of focal adhesion maturation. Nature cell biology 2011;13:383-93. [60] Sheffield PJ, Oliver CJ, Kremer BE, Sheng S, Shao Z, Macara IG. Borg/septin interactions and the assembly of mammalian septin heterodimers, trimers, and filaments. The Journal of biological chemistry 2003;278:3483-8. [61] Knaus UG, Bokoch GM. The p21Rac/Cdc42-activated kinases (PAKs). The international journal of biochemistry &; cell biology 1998;30:857-62. [62] Yang N, Higuchi O, Ohashi K, Nagata K, Wada A, Kangawa K, et al. Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature 1998;393:809-12. [63] Vicente-Manzanares M, Ma X, Adelstein RS, Horwitz AR. Non-muscle myosin II takes centre stage in cell adhesion and migration. Nature reviews Molecular cell biology 2009;10:778-90. [64] Lee CS, Choi CK, Shin EY, Schwartz MA, Kim EG. Myosin II directly binds and inhibits Dbl family guanine nucleotide exchange factors: a possible link to Rho family GTPases. The Journal of cell biology 2010;190:663-74. [65] Birukova AA, Fu P, Xing J, Yakubov B, Cokic I, Birukov KG. Mechanotransduction by GEF-H1 as a novel mechanism of ventilator-induced vascular endothelial permeability. American journal of physiology Lung cellular and molecular physiology 2010;298:L837-48. [66] Enomoto T. Microtubule disruption induces the formation of actin stress fibers and focal adhesions in cultured cells: possible involvement of the rho signal cascade. Cell structure and function 1996;21:317-26. [67] Herman B, Langevin MA, Albertini DF. The effects of taxol on the organization of the cytoskeleton in cultured ovarian granulosa cells. European journal of cell biology 1983;31:34-45. [68] Danowski BA. Fibroblast contractility and actin organization are stimulated by microtubule inhibitors. Journal of cell science 1989;93 ( Pt 2):255-66. [69] Fukuhara S, Chikumi H, Gutkind JS. Leukemia-associated Rho guanine nucleotide exchange factor (LARG) links heterotrimeric G proteins of the G(12) family to Rho. FEBS letters 2000;485:183-8. [70] Guilluy C, Swaminathan V, Garcia-Mata R, O'Brien ET, Superfine R, Burridge K. The Rho GEFs LARG and GEF-H1 regulate the mechanical response to force on integrins. Nature cell biology 2011;13:722-7. [71] Thompson WR, Rubin CT, Rubin J. Mechanical regulation of signaling pathways in bone. Gene 2012;503:179-93. [72] Muralidharan-Chari V, Clancy J, Plou C, Romao M, Chavrier P, Raposo G, et al. ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Current biology : CB 2009;19:1875-85. [73] Munzel T, Feil R, Mulsch A, Lohmann SM, Hofmann F, Walter U. Physiology and pathophysiology of vascular signaling controlled by guanosine 3',5'-cyclic monophosphate-dependent protein kinase [corrected]. Circulation 2003;108:2172-83. [74] McLean GW, Carragher NO, Avizienyte E, Evans J, Brunton VG, Frame MC. The role of focal-adhesion kinase in cancer - a new therapeutic opportunity. Nature reviews Cancer 2005;5:505-15. [75] Liu Z, Van Rossen E, Timmermans JP, Geerts A, van Grunsven LA, Reynaert H. Distinct roles for non-muscle myosin II isoforms in mouse hepatic stellate cells. Journal of hepatology 2011;54:132-41. [76] Even-Ram S, Doyle AD, Conti MA, Matsumoto K, Adelstein RS, Yamada KM. Myosin IIA regulates cell motility and actomyosin-microtubule crosstalk. Nature cell biology 2007;9:299-309. [77] Solinet S, Akpovi CD, Garcia CJ, Barry A, Vitale ML. Myosin IIB deficiency in embryonic fibroblasts affects regulators and core members of the par polarity complex. Histochemistry and cell biology 2011;136:245-66. [78] Samavedi S, Guelcher SA, Goldstein AS, Whittington AR. Response of bone marrow stromal cells to graded co-electrospun scaffolds and its implications for engineering the ligament-bone interface. Biomaterials 2012;33:7727-35.
|