跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.89) 您好!臺灣時間:2025/01/25 04:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱泰裕
研究生(外文):Tai-Yu Chiu
論文名稱:利用螢光共振能量轉移策略建構鉛離子生物感測器
論文名稱(外文):Developing Pb2+ Biosensor by Using the Strategy of Fluorescence Resonance Energy Transfer (FRET)
指導教授:楊德明楊德明引用關係
指導教授(外文):De-Ming Yang
學位類別:博士
校院名稱:國立陽明大學
系所名稱:生醫光電研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:中文
論文頁數:58
中文關鍵詞:綠色螢光蛋白螢光共振能量轉移生物感應器抗鉛操縱子金屬離子結合結構
外文關鍵詞:green fluorescence protein (GFP)fluorescence resonance energy transfer (FRET)biosensorlead resistance operonmetal binding domainsC. metallidurans CH34
相關次數:
  • 被引用被引用:1
  • 點閱點閱:453
  • 評分評分:
  • 下載下載:37
  • 收藏至我的研究室書目清單書目收藏:0
重金屬鉛是一個有毒物質,會對人體造成嚴重的傷害。 研究Pb2+的細胞毒理現象,必須要有適合的Pb2+指示劑,才能觀察到細胞中Pb2+的堆積。 本實驗利用螢光共振能量轉移(FRET)的策略建構出Pb2+生物感測器,對Pb2+的專一性高而且不受Ca2+和其它二價金屬離子的影響,可用於研究Pb2+進入細胞的機制。 使用螢光蛋白ECFP(△C11)和cp173Venus做為FRET的螢光配對,以及利用C. metallidurans CH34中的Pb2+結合蛋白PbrA、PbrD和PbrR當做Pb2+結合結構,建構出不同系列的Pb2+生物感測器。 其中以PbrR第4個到第6個a螺旋結構的蛋白片段所建構的Pb2+生物感測器Met-lead1.59和Pb2+結合產生FRET的反應最佳。 Met-lead1.59的螢光比值動態範圍是3.29~5.84,解離常數 Kd1和Kd2分別為68.87 ± 48.35 nM和22.08 ± 5.18 uM。 在短時間(240秒)和長時間(三小時)的鉛處理下,Met-lead 1.59可以偵測到Pb2+進入和累積在人類胚胎腎臟細胞中。 即使環境只有0.5 uM的Pb2+,Met-lead1.59仍然可以偵測到細胞內的Pb2+。 Met-lead1.59是一個蛋白質生物感測器,未來可以接上不同的訊號胜肽,讓Met-lead1.59標定在重要的胞器像是內質網和粒線體中,以了解Pb2+是否會進入以及累積在胞器內,並且造成胞器功能的傷害。 Met-lead1.59確實是一個有力的工具,可幫助研究者進一步了解Pb2+如何進入細胞內並且造成細胞的毒性。
Lead (Pb) is a toxic substance that would cause serious damage to the human body. Cytotoxicity assays of Pb2+ must have a suitable Pb2+ indicator to monitor intracellular Pb2+ accumulation. The present study aimed to construct a Pb2+ biosensor by using fluorescence resonance energy transfer (FRET) strategy. It is highly specific for Pb2+ and does not interfere with Ca2+ or other divalent metal ions. Pb2+ biosensor can be used to study the mechanism of intracellular Pb2+ entry. We used the fluorescent protein ECFP(△C11) and cp173Venus as FRET pairs, and Pb2+-binding protein PbrA, PbrD and PbrA of C. metallidurans CH34 as Pb2+-binding domain to construct a series of Pb2+ biosensors. Met-lead1.59 constructed by using the 4th to 6th a-helix of PbrR, which has better FRET signal when senses with Pb2+. The dynamic range of emission ratio of Met-lead1.59 is 3.29 to 5.84, and dissociation constant Kd1 and Kd2 of Met-lead1.59 are 68.87 ± 48.35 nM and 22.08 ± 5.18 uM. The intracellular Pb2+ entry and accumulation in human embryonic kidney cells was successfully monitored using Met-lead1.59 under both short- and long-term Pb2+ treatments. Under low concentration of Pb2+ treatment (0.5 uM), Met-lead1.59 can still detect intracellular Pb2+ accumulation. Met-lead1.59 is a protein-based biosensor. In order to understand whether Pb2+ will enter or accumulate in organelles such as endoplasmic reticulum (ER) and mitochondria then cause abnormal function, Met-lead1.59 can be fused with signal peptides and target to organelles in the future. Met-lead1.59 is a powerful tool, can help researchers to study more about the mechanism of Pb2 + entry that cause cytotoxicity.
中英文縮寫對照表………………………………………………………………………………………………I
中文摘要…………………………………………..…………………………………………………………………II
Abstract….………………….………………………………………………………………………….……………III
目錄………………………………………………………………………………………………………………………IV
圖目錄………………………………………………………………………………………………….………………VI
表目錄………………………………………………………………………………………………….………….…VII
第一章 、 背景介紹………………………………………………………………….………………………1
一、 重金屬鉛…………………………………………………………………..…………………………1
二、 離子指示劑…………………………………………………………………………….……………2
三、 螢光共振能量轉移………………………………………………………………………………3
四、 綠色螢光蛋白………………………………………………………………………………………3
五、 螢光共振能量轉移方式的生物感測器……………….………………………………4
六、 鉛離子結合蛋白……………………………………………………………….…………………5
(1) PbrA………………………………………………………………………………………..…………6
(2) PbrD……………………………………………………………..……………………………………7
(3) PbrR………………………………………………………..…………………………………………7
第二章 、 實驗目的和策略………………………………………………………………………………9
第三章 、 實驗材料和方法……………………………………………………………………………10
一、 化學試劑………………………………………………………………………..…………………10
二、 Pb2+生物感測器的建構……………………….……………………………………………10
三、 蛋白質表現和純化……………………………………….……………………………………11
四、 螢光光譜分析Pb2+反應、離子滴定和離子選擇性……………….……………12
五、 細胞培養及細胞轉染…………………………………………………..……………………12
六、 雙螢光影像擷取系統及細胞內鉛反應實驗…………………..…………………13
七、 統計方法……………………………………………………………………………………………14
第四章 、 實驗結果………………………………………………………….………………………………15
一、 以PbrA建構的Pb2+生物感測器………..………………………………………………15
二、 以PbrD建構的Pb2+生物感測器………………..………………………………………16
三、 以PbrR建構的Pb2+生物感測器…………………………..……………………………16
四、 離子滴定和離子選擇性的測試…………………………………………………………18
五、 細胞內Met-lead1.59對Pb2+的反應…………………………………..………………19
六、 Met-lead1.59偵測Pb2+進入到細胞內………………………………….……………20
第五章 、 討論…………………………………………………………………………..………………………22
一、 以Pb2+結合蛋白建構Pb2+生物感測器………………………………………………22
二、 Met-Lead1.59的Pb2+解離常數……………………………….…………………………23
三、 Met-Lead1.59對Zn2+的選擇性……………………………………….…………………23
四、 Cu2+對Met-Lead1.59的影響……………………………………..………………………24
五、 雙聚體對FRET的影響……………………………………………………..………………25
六、 結論……………………………………………..……………………………………………………25
第六章 、 文獻參考……………………………………………………………………………….…………27
附錄……………………………………………………………………………………………………..…………..55
附件………………………………………………………………………………………………………..…………….58

圖一、利用PbrA建構Pb2+生物感測器……………………………………..……………………………38
圖二、Pb2+生物感測器YCPbrA對Pb2+的反應….…………………………………………………39
圖三、利用PbrD建構Pb2+生物感測器……………………………………..……………………………40
圖四、Pb2+生物感測器YCPbrD對Pb2+的反應…………………………………..………………..41
圖五、利用PbrR建構Pb2+生物感測器……………………………………..……………………………42
圖六、Pb2+生物感測器YCPbrR (由第三到第六個螺旋結構組成)對Pb2+的反
應…………..…………………………………..………………………………………………….……………43
圖七、Pb2+生物感測器YCPbrR (由第四到第六個螺旋結構組成)對Pb2+的反
應…………..…………………………………..………………………………………………….……………44
圖八、Pb2+生物感測器的Pb2+滴定測試…………………………………..……………………………45
圖九、Pb2+生物感測器的二價金屬離子選擇性測試………………..……………………………46
圖十、測試Met-lead1.59對不同濃度的二價金屬離子的反應………………………………47
圖十一、細胞內Met-lead1.59對Pb2+的反應………………………………………….………………48
圖十二、細胞內Pb2+生物感測器對Pb2+的反應……………………………………………..………49
圖十三、細胞內Met-lead1.59對Pb2+和Zn2+的反應………………………………………………50
圖十四、Met-lead1.59偵測Pb2+透過鈣池調控鈣離子通道進入細胞內………..………51
圖十五、長時間處理Pb2+,Met-lead1.59偵測細胞內的Pb2+含量………………….………52

表一、生物感測器對Pb2+的反應……………………………………………...……………………………53
表二、Pb2+生物感測器的反應動態範圍和解離常數………………..……………………………54

1. Agency for Toxic Substances and Disease Registry (ATSDR) (2007) Toxicological Profile for Lead. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.
2. Rogan WJ, Dietrich KN, Ware JH, Dockery DW, Salganik M, et al. (2001) The effect of chelation therapy with succimer on neuropsychological development in children exposed to lead. N Engl J Med 344: 1421-1426.
3. Chiodo LM, Jacobson SW, Jacobson JL (2004) Neurodevelopmental effects of postnatal lead exposure at very low levels. Neurotoxicol Teratol 26: 359-371.
4. Simons TJ (1993) Lead-calcium interactions in cellular lead toxicity. Neurotoxicology 14: 77-85.
5. Goldstein GW (1993) Evidence that lead acts as a calcium substitute in second messenger metabolism. Neurotoxicology 14: 97-101.
6. Bouton CM, Frelin LP, Forde CE, Arnold Godwin H, Pevsner J (2001) Synaptotagmin I is a molecular target for lead. J Neurochem 76: 1724-1735.
7. Hanas JS, Rodgers JS, Bantle JA, Cheng YG (1999) Lead inhibition of DNA-binding mechanism of Cys(2)His(2) zinc finger proteins. Mol Pharmacol 56: 982-988.
8. Warren MJ, Cooper JB, Wood SP, Shoolingin-Jordan PM (1998) Lead poisoning, haem synthesis and 5-aminolaevulinic acid dehydratase. Trends Biochem Sci 23: 217-221.
9. Kerper LE, Hinkle PM (1997) Cellular uptake of lead is activated by depletion of intracellular calcium stores. J Biol Chem 272: 8346-8352.
10. Chang YF, Teng HC, Cheng SY, Wang CT, Chiou SH, et al. (2008) Orai1-STIM1 formed store-operated Ca2+ channels (SOCs) as the molecular components needed for Pb2+ entry in living cells. Toxicol Appl Pharmacol 227: 430-439.
11. Chiu TY, Teng HC, Huang PC, Kao FJ, Yang DM (2009) Dominant role of Orai1 with STIM1 on the cytosolic entry and cytotoxicity of lead ions. Toxicol Sci 110: 353-362.
12. Bannon DI, Abounader R, Lees PS, Bressler JP (2003) Effect of DMT1 knockdown on iron, cadmium, and lead uptake in Caco-2 cells. Am J Physiol Cell Physiol 284: C44-50.
13. Kapoor SC, van Rossum GD, O'Neill KJ, Mercorella I (1985) Uptake of inorganic lead in vitro by isolated mitochondria and tissue slices of rat renal cortex. Biochem Pharmacol 34: 1439-1448.
14. Hitzfeld B, Taylor DM (1989) Characteristics of lead adaptation in a rat kidney cell line. I. Uptake and subcellular and subnuclear distribution of lead. Mol Toxicol 2: 151-162.
15. Qian Y, Zheng Y, Ramos KS, Tiffany-Castiglioni E (2005) GRP78 compartmentalized redistribution in Pb-treated glia: role of GRP78 in lead-induced oxidative stress. Neurotoxicology 26: 267-275.
16. Haugland RP (2005) The Handbook : A Guide to Fluorescent Probes and Labeling Technologies. In: Spence MTZ, editor: Invitrogen Corp. pp. 913-923.
17. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260: 3440-3450.
18. Tomsig JL, Suszkiw JB (1990) Pb2(+)-induced secretion from bovine chromaffin cells: fura-2 as a probe for Pb2+. Am J Physiol 259: C762-768.
19. He Q, Miller EW, Wong AP, Chang CJ (2006) A selective fluorescent sensor for detecting lead in living cells. J Am Chem Soc 128: 9316-9317.
20. Alvarado-Flores J, Rico-Martinez R, Ventura-Juarez J, Silva-Briano M, Rubio-Franchini I (2012) Bioconcentration and localization of lead in the freshwater rotifer Brachionus calyciflorus Pallas 1677 (Rotifera: Monogononta). Aquat Toxicol 109: 127-132.
21. Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, et al. (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388: 882-887.
22. Nagai T, Yamada S, Tominaga T, Ichikawa M, Miyawaki A (2004) Expanded dynamic range of fluorescent indicators for Ca2+ by circularly permuted yellow fluorescent proteins. Proc Natl Acad Sci U S A 101: 10554-10559.
23. Dittmer PJ, Miranda JG, Gorski JA, Palmer AE (2009) Genetically encoded sensors to elucidate spatial distribution of cellular zinc. J Biol Chem 284: 16289-16297.
24. Vinkenborg JL, Nicolson TJ, Bellomo EA, Koay MS, Rutter GA, et al. (2009) Genetically encoded FRET sensors to monitor intracellular Zn2+ homeostasis. Nat Methods 6: 737-740.
25. Wegner SV, Arslan H, Sunbul M, Yin J, He C (2010) Dynamic copper(I) imaging in mammalian cells with a genetically encoded fluorescent copper(I) sensor. J Am Chem Soc 132: 2567-2569.
26. Nagai T, Sawano A, Park ES, Miyawaki A (2001) Circularly permuted green fluorescent proteins engineered to sense Ca2+. Proc Natl Acad Sci U S A 98: 3197-3202.
27. Palmer AE, Jin C, Reed JC, Tsien RY (2004) Bcl-2-mediated alterations in endoplasmic reticulum Ca2+ analyzed with an improved genetically encoded fluorescent sensor. Proc Natl Acad Sci U S A 101: 17404-17409.
28. Förster T (1948) Intermolecular energy migration and fluorescence. Annalen der Physik (Leipzig) 2: 55-75.
29. Vogel SS, Thaler C, Koushik SV (2006) Fanciful FRET. Sci STKE 2006: re2.
30. Schmid JA, Birbach A, Hofer-Warbinek R, Pengg M, Burner U, et al. (2000) Dynamics of NF kappa B and Ikappa Balpha studied with green fluorescent protein (GFP) fusion proteins. Investigation of GFP-p65 binding to DNa by fluorescence resonance energy transfer. J Biol Chem 275: 17035-17042.
31. Lorenz M (2009) Visualizing protein-RNA interactions inside cells by fluorescence resonance energy transfer. RNA 15: 97-103.
32. Mahajan NP, Linder K, Berry G, Gordon GW, Heim R, et al. (1998) Bcl-2 and Bax interactions in mitochondria probed with green fluorescent protein and fluorescence resonance energy transfer. Nat Biotechnol 16: 547-552.
33. Lorenz M, Hillisch A, Payet D, Buttinelli M, Travers A, et al. (1999) DNA bending induced by high mobility group proteins studied by fluorescence resonance energy transfer. Biochemistry 38: 12150-12158.
34. Abelson J, Blanco M, Ditzler MA, Fuller F, Aravamudhan P, et al. (2010) Conformational dynamics of single pre-mRNA molecules during in vitro splicing. Nat Struct Mol Biol 17: 504-512.
35. Xie Y, Ottolia M, John SA, Chen JN, Philipson KD (2008) Conformational changes of a Ca2+-binding domain of the Na+/Ca2+ exchanger monitored by FRET in transgenic zebrafish heart. Am J Physiol Cell Physiol 295: C388-393.
36. Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 59: 223-239.
37. Morise H, Shimomura O, Johnson FH, Winant J (1974) Intermolecular energy transfer in the bioluminescent system of Aequorea. Biochemistry 13: 2656-2662.
38. Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111: 229-233.
39. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263: 802-805.
40. Cubitt AB, Heim R, Adams SR, Boyd AE, Gross LA, et al. (1995) Understanding, improving and using green fluorescent proteins. Trends Biochem Sci 20: 448-455.
41. Ormo M, Cubitt AB, Kallio K, Gross LA, Tsien RY, et al. (1996) Crystal structure of the Aequorea victoria green fluorescent protein. Science 273: 1392-1395.
42. Matz MV, Fradkov AF, Labas YA, Savitsky AP, Zaraisky AG, et al. (1999) Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol 17: 969-973.
43. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67: 509-544.
44. Griesbeck O, Baird GS, Campbell RE, Zacharias DA, Tsien RY (2001) Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J Biol Chem 276: 29188-29194.
45. Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K, et al. (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20: 87-90.
46. Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, et al. (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22: 1567-1572.
47. Sakai R, Repunte-Canonigo V, Raj CD, Knopfel T (2001) Design and characterization of a DNA-encoded, voltage-sensitive fluorescent protein. Eur J Neurosci 13: 2314-2318.
48. Xu X, Gerard AL, Huang BC, Anderson DC, Payan DG, et al. (1998) Detection of programmed cell death using fluorescence energy transfer. Nucleic Acids Res 26: 2034-2035.
49. Wang Y, Botvinick EL, Zhao Y, Berns MW, Usami S, et al. (2005) Visualizing the mechanical activation of Src. Nature 434: 1040-1045.
50. Fehr M, Lalonde S, Lager I, Wolff MW, Frommer WB (2003) In vivo imaging of the dynamics of glucose uptake in the cytosol of COS-7 cells by fluorescent nanosensors. J Biol Chem 278: 19127-19133.
51. Fehr M, Frommer WB, Lalonde S (2002) Visualization of maltose uptake in living yeast cells by fluorescent nanosensors. Proc Natl Acad Sci U S A 99: 9846-9851.
52. Imamura H, Nhat KP, Togawa H, Saito K, Iino R, et al. (2009) Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators. Proc Natl Acad Sci U S A 106: 15651-15656.
53. Zaccolo M, Pozzan T (2002) Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes. Science 295: 1711-1715.
54. Nikolaev VO, Gambaryan S, Lohse MJ (2006) Fluorescent sensors for rapid monitoring of intracellular cGMP. Nat Methods 3: 23-25.
55. Tanimura A, Nezu A, Morita T, Turner RJ, Tojyo Y (2004) Fluorescent biosensor for quantitative real-time measurements of inositol 1,4,5-trisphosphate in single living cells. J Biol Chem 279: 38095-38098.
56. Hires SA, Zhu Y, Tsien RY (2008) Optical measurement of synaptic glutamate spillover and reuptake by linker optimized glutamate-sensitive fluorescent reporters. Proc Natl Acad Sci U S A 105: 4411-4416.
57. Waldron KJ, Rutherford JC, Ford D, Robinson NJ (2009) Metalloproteins and metal sensing. Nature 460: 823-830.
58. Irving H, Williams RJP (1948) Order of Stability of Metal Complexes. Nature 162: 764-747.
59. Mergeay M, Houba C, Gerits J (1978) Extrachromosomal inheritance controlling resistance to cadmium, cobalt, copper and zinc ions: evidence from curing in a Pseudomonas [proceedings]. Arch Int Physiol Biochim 86: 440-442.
60. Mergeay M, Nies D, Schlegel HG, Gerits J, Charles P, et al. (1985) Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J Bacteriol 162: 328-334.
61. Monchy S, Benotmane MA, Janssen P, Vallaeys T, Taghavi S, et al. (2007) Plasmids pMOL28 and pMOL30 of Cupriavidus metallidurans are specialized in the maximal viable response to heavy metals. J Bacteriol 189: 7417-7425.
62. Borremans B, Hobman JL, Provoost A, Brown NL, van Der Lelie D (2001) Cloning and functional analysis of the pbr lead resistance determinant of Ralstonia metallidurans CH34. J Bacteriol 183: 5651-5658.
63. Arguello JM, Eren E, Gonzalez-Guerrero M (2007) The structure and function of heavy metal transport P1B-ATPases. BioMetals 20: 233-248.
64. Mitra B, Sharma R (2001) The cysteine-rich amino-terminal domain of ZntA, a Pb(II)/Zn(II)/Cd(II)-translocating ATPase from Escherichia coli, is not essential for its function. Biochemistry 40: 7694-7699.
65. Fan B, Rosen BP (2002) Biochemical characterization of CopA, the Escherichia coli Cu(I)-translocating P-type ATPase. J Biol Chem 277: 46987-46992.
66. Brown NL, Stoyanov JV, Kidd SP, Hobman JL (2003) The MerR family of transcriptional regulators. FEMS Microbiol Rev 27: 145-163.
67. Brown NL, Ford SJ, Pridmore RD, Fritzinger DC (1983) Nucleotide sequence of a gene from the Pseudomonas transposon Tn501 encoding mercuric reductase. Biochemistry 22: 4089-4095.
68. Barrineau P, Gilbert P, Jackson WJ, Jones CS, Summers AO, et al. (1984) The DNA sequence of the mercury resistance operon of the IncFII plasmid NR1. J Mol Appl Genet 2: 601-619.
69. Comess KM, Shewchuk LM, Ivanetich K, Walsh CT (1994) Construction of a synthetic gene for the metalloregulatory protein MerR and analysis of regionally mutated proteins for transcriptional regulation. Biochemistry 33: 4175-4186.
70. Helmann JD, Ballard BT, Walsh CT (1990) The MerR metalloregulatory protein binds mercuric ion as a tricoordinate, metal-bridged dimer. Science 247: 946-948.
71. Ansari AZ, Bradner JE, O'Halloran TV (1995) DNA-bend modulation in a repressor-to-activator switching mechanism. Nature 374: 371-375.
72. Taghavi S, Lesaulnier C, Monchy S, Wattiez R, Mergeay M, et al. (2009) Lead(II) resistance in Cupriavidus metallidurans CH34: interplay between plasmid and chromosomally-located functions. Antonie Van Leeuwenhoek 96: 171-182.
73. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389-3402.
74. Lassmann T, Sonnhammer EL (2005) Kalign--an accurate and fast multiple sequence alignment algorithm. BMC Bioinformatics 6: 298.
75. Rost B, Yachdav G, Liu J (2004) The PredictProtein server. Nucleic Acids Res 32: W321-326.
76. Singleton C, Banci L, Ciofi-Baffoni S, Tenori L, Kihlken MA, et al. (2008) Structure and Cu(I)-binding properties of the N-terminal soluble domains of Bacillus subtilis CopA. Biochem J 411: 571-579.
77. Banci L, Bertini I, Ciofi-Baffoni S, Finney LA, Outten CE, et al. (2002) A new zinc-protein coordination site in intracellular metal trafficking: solution structure of the Apo and Zn(II) forms of ZntA(46-118). J Mol Biol 323: 883-897.
78. Arnesano F, Banci L, Bertini I, Ciofi-Baffoni S, Molteni E, et al. (2002) Metallochaperones and metal-transporting ATPases: a comparative analysis of sequences and structures. Genome Res 12: 255-271.
79. Changela A, Chen K, Xue Y, Holschen J, Outten CE, et al. (2003) Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR. Science 301: 1383-1387.
80. Taki M, Wolford JL, O'Halloran TV (2004) Emission ratiometric imaging of intracellular zinc: design of a benzoxazole fluorescent sensor and its application in two-photon microscopy. J Am Chem Soc 126: 712-713.
81. Krezel A, Maret W (2006) Zinc-buffering capacity of a eukaryotic cell at physiological pZn. J Biol Inorg Chem 11: 1049-1062.
82. Legare ME, Barhoumi R, Hebert E, Bratton GR, Burghardt RC, et al. (1998) Analysis of Pb2+ entry into cultured astroglia. Toxicological Sciences 46: 90-100.
83. Corbisier P, van der Lelie D, Borremans B, Provoost A, de Lorenzo V, et al. (1999) Whole cell- and protein-based biosensors for the detection of bioavailable heavy metals in environmental samples. Analytica Chimica Acta 387: 235-244.
84. Chen P, Greenberg B, Taghavi S, Romano C, van der Lelie D, et al. (2005) An exceptionally selective lead(II)-regulatory protein from Ralstonia metallidurans: development of a fluorescent lead(II) probe. Angew Chem Int Ed Engl 44: 2715-2719.
85. Godwin HA (2001) The biological chemistry of lead. Curr Opin Chem Biol 5: 223-227.
86. van Loo B, Jonas S, Babtie AC, Benjdia A, Berteau O, et al. (2010) An efficient, multiply promiscuous hydrolase in the alkaline phosphatase superfamily. Proc Natl Acad Sci U S A 107: 2740-2745.
87. Zeng Q, Stalhandske C, Anderson MC, Scott RA, Summers AO (1998) The core metal-recognition domain of MerR. Biochemistry 37: 15885-15895.
88. Livrelli V, Lee IW, Summers AO (1993) In vivo DNA-protein interactions at the divergent mercury resistance (mer) promoters. I. Metalloregulatory protein MerR mutants. J Biol Chem 268: 2623-2631.
89. Lee IW, Livrelli V, Park SJ, Totis PA, Summers AO (1993) In vivo DNA-protein interactions at the divergent mercury resistance (mer) promoters. II. Repressor/activator (MerR)-RNA polymerase interaction with merOP mutants. J Biol Chem 268: 2632-2639.
90. Song L, Caguiat J, Li Z, Shokes J, Scott RA, et al. (2004) Engineered single-chain, antiparallel, coiled coil mimics the MerR metal binding site. J Bacteriol 186: 1861-1868.
91. Ralston DM, O'Halloran TV (1990) Ultrasensitivity and heavy-metal selectivity of the allosterically modulated MerR transcription complex. Proc Natl Acad Sci U S A 87: 3846-3850.
92. Jung K, Park J, Maeng PJ, Kim H (2005) Fluorescence quenching of green fluorescent protein during denaturation by guanidine. Bulletin of the Korean Chemical Society 26: 413-417.
93. Eli P, Chakrabartty A (2006) Variants of DsRed fluorescent protein: Development of a copper sensor. Protein Sci 15: 2442-2447.
94. Silva JJRFsd, Williams RJP (2001) The biological chemistry of the elements : the inorganic chemistry of life. Oxford ; New York: Oxford University Press. xvii, 575 p. p.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top