|
1. Agency for Toxic Substances and Disease Registry (ATSDR) (2007) Toxicological Profile for Lead. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service. 2. Rogan WJ, Dietrich KN, Ware JH, Dockery DW, Salganik M, et al. (2001) The effect of chelation therapy with succimer on neuropsychological development in children exposed to lead. N Engl J Med 344: 1421-1426. 3. Chiodo LM, Jacobson SW, Jacobson JL (2004) Neurodevelopmental effects of postnatal lead exposure at very low levels. Neurotoxicol Teratol 26: 359-371. 4. Simons TJ (1993) Lead-calcium interactions in cellular lead toxicity. Neurotoxicology 14: 77-85. 5. Goldstein GW (1993) Evidence that lead acts as a calcium substitute in second messenger metabolism. Neurotoxicology 14: 97-101. 6. Bouton CM, Frelin LP, Forde CE, Arnold Godwin H, Pevsner J (2001) Synaptotagmin I is a molecular target for lead. J Neurochem 76: 1724-1735. 7. Hanas JS, Rodgers JS, Bantle JA, Cheng YG (1999) Lead inhibition of DNA-binding mechanism of Cys(2)His(2) zinc finger proteins. Mol Pharmacol 56: 982-988. 8. Warren MJ, Cooper JB, Wood SP, Shoolingin-Jordan PM (1998) Lead poisoning, haem synthesis and 5-aminolaevulinic acid dehydratase. Trends Biochem Sci 23: 217-221. 9. Kerper LE, Hinkle PM (1997) Cellular uptake of lead is activated by depletion of intracellular calcium stores. J Biol Chem 272: 8346-8352. 10. Chang YF, Teng HC, Cheng SY, Wang CT, Chiou SH, et al. (2008) Orai1-STIM1 formed store-operated Ca2+ channels (SOCs) as the molecular components needed for Pb2+ entry in living cells. Toxicol Appl Pharmacol 227: 430-439. 11. Chiu TY, Teng HC, Huang PC, Kao FJ, Yang DM (2009) Dominant role of Orai1 with STIM1 on the cytosolic entry and cytotoxicity of lead ions. Toxicol Sci 110: 353-362. 12. Bannon DI, Abounader R, Lees PS, Bressler JP (2003) Effect of DMT1 knockdown on iron, cadmium, and lead uptake in Caco-2 cells. Am J Physiol Cell Physiol 284: C44-50. 13. Kapoor SC, van Rossum GD, O'Neill KJ, Mercorella I (1985) Uptake of inorganic lead in vitro by isolated mitochondria and tissue slices of rat renal cortex. Biochem Pharmacol 34: 1439-1448. 14. Hitzfeld B, Taylor DM (1989) Characteristics of lead adaptation in a rat kidney cell line. I. Uptake and subcellular and subnuclear distribution of lead. Mol Toxicol 2: 151-162. 15. Qian Y, Zheng Y, Ramos KS, Tiffany-Castiglioni E (2005) GRP78 compartmentalized redistribution in Pb-treated glia: role of GRP78 in lead-induced oxidative stress. Neurotoxicology 26: 267-275. 16. Haugland RP (2005) The Handbook : A Guide to Fluorescent Probes and Labeling Technologies. In: Spence MTZ, editor: Invitrogen Corp. pp. 913-923. 17. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260: 3440-3450. 18. Tomsig JL, Suszkiw JB (1990) Pb2(+)-induced secretion from bovine chromaffin cells: fura-2 as a probe for Pb2+. Am J Physiol 259: C762-768. 19. He Q, Miller EW, Wong AP, Chang CJ (2006) A selective fluorescent sensor for detecting lead in living cells. J Am Chem Soc 128: 9316-9317. 20. Alvarado-Flores J, Rico-Martinez R, Ventura-Juarez J, Silva-Briano M, Rubio-Franchini I (2012) Bioconcentration and localization of lead in the freshwater rotifer Brachionus calyciflorus Pallas 1677 (Rotifera: Monogononta). Aquat Toxicol 109: 127-132. 21. Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, et al. (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388: 882-887. 22. Nagai T, Yamada S, Tominaga T, Ichikawa M, Miyawaki A (2004) Expanded dynamic range of fluorescent indicators for Ca2+ by circularly permuted yellow fluorescent proteins. Proc Natl Acad Sci U S A 101: 10554-10559. 23. Dittmer PJ, Miranda JG, Gorski JA, Palmer AE (2009) Genetically encoded sensors to elucidate spatial distribution of cellular zinc. J Biol Chem 284: 16289-16297. 24. Vinkenborg JL, Nicolson TJ, Bellomo EA, Koay MS, Rutter GA, et al. (2009) Genetically encoded FRET sensors to monitor intracellular Zn2+ homeostasis. Nat Methods 6: 737-740. 25. Wegner SV, Arslan H, Sunbul M, Yin J, He C (2010) Dynamic copper(I) imaging in mammalian cells with a genetically encoded fluorescent copper(I) sensor. J Am Chem Soc 132: 2567-2569. 26. Nagai T, Sawano A, Park ES, Miyawaki A (2001) Circularly permuted green fluorescent proteins engineered to sense Ca2+. Proc Natl Acad Sci U S A 98: 3197-3202. 27. Palmer AE, Jin C, Reed JC, Tsien RY (2004) Bcl-2-mediated alterations in endoplasmic reticulum Ca2+ analyzed with an improved genetically encoded fluorescent sensor. Proc Natl Acad Sci U S A 101: 17404-17409. 28. Förster T (1948) Intermolecular energy migration and fluorescence. Annalen der Physik (Leipzig) 2: 55-75. 29. Vogel SS, Thaler C, Koushik SV (2006) Fanciful FRET. Sci STKE 2006: re2. 30. Schmid JA, Birbach A, Hofer-Warbinek R, Pengg M, Burner U, et al. (2000) Dynamics of NF kappa B and Ikappa Balpha studied with green fluorescent protein (GFP) fusion proteins. Investigation of GFP-p65 binding to DNa by fluorescence resonance energy transfer. J Biol Chem 275: 17035-17042. 31. Lorenz M (2009) Visualizing protein-RNA interactions inside cells by fluorescence resonance energy transfer. RNA 15: 97-103. 32. Mahajan NP, Linder K, Berry G, Gordon GW, Heim R, et al. (1998) Bcl-2 and Bax interactions in mitochondria probed with green fluorescent protein and fluorescence resonance energy transfer. Nat Biotechnol 16: 547-552. 33. Lorenz M, Hillisch A, Payet D, Buttinelli M, Travers A, et al. (1999) DNA bending induced by high mobility group proteins studied by fluorescence resonance energy transfer. Biochemistry 38: 12150-12158. 34. Abelson J, Blanco M, Ditzler MA, Fuller F, Aravamudhan P, et al. (2010) Conformational dynamics of single pre-mRNA molecules during in vitro splicing. Nat Struct Mol Biol 17: 504-512. 35. Xie Y, Ottolia M, John SA, Chen JN, Philipson KD (2008) Conformational changes of a Ca2+-binding domain of the Na+/Ca2+ exchanger monitored by FRET in transgenic zebrafish heart. Am J Physiol Cell Physiol 295: C388-393. 36. Shimomura O, Johnson FH, Saiga Y (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 59: 223-239. 37. Morise H, Shimomura O, Johnson FH, Winant J (1974) Intermolecular energy transfer in the bioluminescent system of Aequorea. Biochemistry 13: 2656-2662. 38. Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111: 229-233. 39. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263: 802-805. 40. Cubitt AB, Heim R, Adams SR, Boyd AE, Gross LA, et al. (1995) Understanding, improving and using green fluorescent proteins. Trends Biochem Sci 20: 448-455. 41. Ormo M, Cubitt AB, Kallio K, Gross LA, Tsien RY, et al. (1996) Crystal structure of the Aequorea victoria green fluorescent protein. Science 273: 1392-1395. 42. Matz MV, Fradkov AF, Labas YA, Savitsky AP, Zaraisky AG, et al. (1999) Fluorescent proteins from nonbioluminescent Anthozoa species. Nat Biotechnol 17: 969-973. 43. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67: 509-544. 44. Griesbeck O, Baird GS, Campbell RE, Zacharias DA, Tsien RY (2001) Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. J Biol Chem 276: 29188-29194. 45. Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K, et al. (2002) A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol 20: 87-90. 46. Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, et al. (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol 22: 1567-1572. 47. Sakai R, Repunte-Canonigo V, Raj CD, Knopfel T (2001) Design and characterization of a DNA-encoded, voltage-sensitive fluorescent protein. Eur J Neurosci 13: 2314-2318. 48. Xu X, Gerard AL, Huang BC, Anderson DC, Payan DG, et al. (1998) Detection of programmed cell death using fluorescence energy transfer. Nucleic Acids Res 26: 2034-2035. 49. Wang Y, Botvinick EL, Zhao Y, Berns MW, Usami S, et al. (2005) Visualizing the mechanical activation of Src. Nature 434: 1040-1045. 50. Fehr M, Lalonde S, Lager I, Wolff MW, Frommer WB (2003) In vivo imaging of the dynamics of glucose uptake in the cytosol of COS-7 cells by fluorescent nanosensors. J Biol Chem 278: 19127-19133. 51. Fehr M, Frommer WB, Lalonde S (2002) Visualization of maltose uptake in living yeast cells by fluorescent nanosensors. Proc Natl Acad Sci U S A 99: 9846-9851. 52. Imamura H, Nhat KP, Togawa H, Saito K, Iino R, et al. (2009) Visualization of ATP levels inside single living cells with fluorescence resonance energy transfer-based genetically encoded indicators. Proc Natl Acad Sci U S A 106: 15651-15656. 53. Zaccolo M, Pozzan T (2002) Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes. Science 295: 1711-1715. 54. Nikolaev VO, Gambaryan S, Lohse MJ (2006) Fluorescent sensors for rapid monitoring of intracellular cGMP. Nat Methods 3: 23-25. 55. Tanimura A, Nezu A, Morita T, Turner RJ, Tojyo Y (2004) Fluorescent biosensor for quantitative real-time measurements of inositol 1,4,5-trisphosphate in single living cells. J Biol Chem 279: 38095-38098. 56. Hires SA, Zhu Y, Tsien RY (2008) Optical measurement of synaptic glutamate spillover and reuptake by linker optimized glutamate-sensitive fluorescent reporters. Proc Natl Acad Sci U S A 105: 4411-4416. 57. Waldron KJ, Rutherford JC, Ford D, Robinson NJ (2009) Metalloproteins and metal sensing. Nature 460: 823-830. 58. Irving H, Williams RJP (1948) Order of Stability of Metal Complexes. Nature 162: 764-747. 59. Mergeay M, Houba C, Gerits J (1978) Extrachromosomal inheritance controlling resistance to cadmium, cobalt, copper and zinc ions: evidence from curing in a Pseudomonas [proceedings]. Arch Int Physiol Biochim 86: 440-442. 60. Mergeay M, Nies D, Schlegel HG, Gerits J, Charles P, et al. (1985) Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J Bacteriol 162: 328-334. 61. Monchy S, Benotmane MA, Janssen P, Vallaeys T, Taghavi S, et al. (2007) Plasmids pMOL28 and pMOL30 of Cupriavidus metallidurans are specialized in the maximal viable response to heavy metals. J Bacteriol 189: 7417-7425. 62. Borremans B, Hobman JL, Provoost A, Brown NL, van Der Lelie D (2001) Cloning and functional analysis of the pbr lead resistance determinant of Ralstonia metallidurans CH34. J Bacteriol 183: 5651-5658. 63. Arguello JM, Eren E, Gonzalez-Guerrero M (2007) The structure and function of heavy metal transport P1B-ATPases. BioMetals 20: 233-248. 64. Mitra B, Sharma R (2001) The cysteine-rich amino-terminal domain of ZntA, a Pb(II)/Zn(II)/Cd(II)-translocating ATPase from Escherichia coli, is not essential for its function. Biochemistry 40: 7694-7699. 65. Fan B, Rosen BP (2002) Biochemical characterization of CopA, the Escherichia coli Cu(I)-translocating P-type ATPase. J Biol Chem 277: 46987-46992. 66. Brown NL, Stoyanov JV, Kidd SP, Hobman JL (2003) The MerR family of transcriptional regulators. FEMS Microbiol Rev 27: 145-163. 67. Brown NL, Ford SJ, Pridmore RD, Fritzinger DC (1983) Nucleotide sequence of a gene from the Pseudomonas transposon Tn501 encoding mercuric reductase. Biochemistry 22: 4089-4095. 68. Barrineau P, Gilbert P, Jackson WJ, Jones CS, Summers AO, et al. (1984) The DNA sequence of the mercury resistance operon of the IncFII plasmid NR1. J Mol Appl Genet 2: 601-619. 69. Comess KM, Shewchuk LM, Ivanetich K, Walsh CT (1994) Construction of a synthetic gene for the metalloregulatory protein MerR and analysis of regionally mutated proteins for transcriptional regulation. Biochemistry 33: 4175-4186. 70. Helmann JD, Ballard BT, Walsh CT (1990) The MerR metalloregulatory protein binds mercuric ion as a tricoordinate, metal-bridged dimer. Science 247: 946-948. 71. Ansari AZ, Bradner JE, O'Halloran TV (1995) DNA-bend modulation in a repressor-to-activator switching mechanism. Nature 374: 371-375. 72. Taghavi S, Lesaulnier C, Monchy S, Wattiez R, Mergeay M, et al. (2009) Lead(II) resistance in Cupriavidus metallidurans CH34: interplay between plasmid and chromosomally-located functions. Antonie Van Leeuwenhoek 96: 171-182. 73. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389-3402. 74. Lassmann T, Sonnhammer EL (2005) Kalign--an accurate and fast multiple sequence alignment algorithm. BMC Bioinformatics 6: 298. 75. Rost B, Yachdav G, Liu J (2004) The PredictProtein server. Nucleic Acids Res 32: W321-326. 76. Singleton C, Banci L, Ciofi-Baffoni S, Tenori L, Kihlken MA, et al. (2008) Structure and Cu(I)-binding properties of the N-terminal soluble domains of Bacillus subtilis CopA. Biochem J 411: 571-579. 77. Banci L, Bertini I, Ciofi-Baffoni S, Finney LA, Outten CE, et al. (2002) A new zinc-protein coordination site in intracellular metal trafficking: solution structure of the Apo and Zn(II) forms of ZntA(46-118). J Mol Biol 323: 883-897. 78. Arnesano F, Banci L, Bertini I, Ciofi-Baffoni S, Molteni E, et al. (2002) Metallochaperones and metal-transporting ATPases: a comparative analysis of sequences and structures. Genome Res 12: 255-271. 79. Changela A, Chen K, Xue Y, Holschen J, Outten CE, et al. (2003) Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR. Science 301: 1383-1387. 80. Taki M, Wolford JL, O'Halloran TV (2004) Emission ratiometric imaging of intracellular zinc: design of a benzoxazole fluorescent sensor and its application in two-photon microscopy. J Am Chem Soc 126: 712-713. 81. Krezel A, Maret W (2006) Zinc-buffering capacity of a eukaryotic cell at physiological pZn. J Biol Inorg Chem 11: 1049-1062. 82. Legare ME, Barhoumi R, Hebert E, Bratton GR, Burghardt RC, et al. (1998) Analysis of Pb2+ entry into cultured astroglia. Toxicological Sciences 46: 90-100. 83. Corbisier P, van der Lelie D, Borremans B, Provoost A, de Lorenzo V, et al. (1999) Whole cell- and protein-based biosensors for the detection of bioavailable heavy metals in environmental samples. Analytica Chimica Acta 387: 235-244. 84. Chen P, Greenberg B, Taghavi S, Romano C, van der Lelie D, et al. (2005) An exceptionally selective lead(II)-regulatory protein from Ralstonia metallidurans: development of a fluorescent lead(II) probe. Angew Chem Int Ed Engl 44: 2715-2719. 85. Godwin HA (2001) The biological chemistry of lead. Curr Opin Chem Biol 5: 223-227. 86. van Loo B, Jonas S, Babtie AC, Benjdia A, Berteau O, et al. (2010) An efficient, multiply promiscuous hydrolase in the alkaline phosphatase superfamily. Proc Natl Acad Sci U S A 107: 2740-2745. 87. Zeng Q, Stalhandske C, Anderson MC, Scott RA, Summers AO (1998) The core metal-recognition domain of MerR. Biochemistry 37: 15885-15895. 88. Livrelli V, Lee IW, Summers AO (1993) In vivo DNA-protein interactions at the divergent mercury resistance (mer) promoters. I. Metalloregulatory protein MerR mutants. J Biol Chem 268: 2623-2631. 89. Lee IW, Livrelli V, Park SJ, Totis PA, Summers AO (1993) In vivo DNA-protein interactions at the divergent mercury resistance (mer) promoters. II. Repressor/activator (MerR)-RNA polymerase interaction with merOP mutants. J Biol Chem 268: 2632-2639. 90. Song L, Caguiat J, Li Z, Shokes J, Scott RA, et al. (2004) Engineered single-chain, antiparallel, coiled coil mimics the MerR metal binding site. J Bacteriol 186: 1861-1868. 91. Ralston DM, O'Halloran TV (1990) Ultrasensitivity and heavy-metal selectivity of the allosterically modulated MerR transcription complex. Proc Natl Acad Sci U S A 87: 3846-3850. 92. Jung K, Park J, Maeng PJ, Kim H (2005) Fluorescence quenching of green fluorescent protein during denaturation by guanidine. Bulletin of the Korean Chemical Society 26: 413-417. 93. Eli P, Chakrabartty A (2006) Variants of DsRed fluorescent protein: Development of a copper sensor. Protein Sci 15: 2442-2447. 94. Silva JJRFsd, Williams RJP (2001) The biological chemistry of the elements : the inorganic chemistry of life. Oxford ; New York: Oxford University Press. xvii, 575 p. p.
|