跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2024/12/06 06:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:雪必兒
研究生(外文):SHABBIR SYED ABDUL
論文名稱:利用創新的視覺化方式呈現人類疾病與疾病之關聯性
論文名稱(外文):A Novel Approach to Visualize and Represent Meaningful Information about the Disease-Wide Associations in Human
指導教授:劉德明, 李友專
指導教授(外文):Der-Ming Loiu, Yu-Chuan Li
學位類別:博士
校院名稱:國立陽明大學
系所名稱:生物醫學資訊研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:89
中文關鍵詞:健康照護資料庫疾病關聯視覺化醫療網路4P 醫學
外文關鍵詞:Healthcare databaseDisease-wide associationVisualizationNetwork medicine4P medicine
相關次數:
  • 被引用被引用:0
  • 點閱點閱:476
  • 評分評分:
  • 下載下載:81
  • 收藏至我的研究室書目清單書目收藏:1
隨著健康資訊系統的日新月異和決策者及衛生部門持續的鼓勵採用電子健康記錄,醫療服務已經累積大量的病人健康資料。藉由所謂的4 V(速度,數量,種類和正確性)步驟,使得健康資料庫正在不斷擴充。這些龐大的資料是由數十億列和數百行筆資料組成。醫學資訊的專家正積極研究以數學的方法和技術去探索,將龐大的資料庫加值應用,達到足夠且有效的健康照護。本研究藉由分析龐大的健康照護資料庫,研發出一種新型的顯現方法,來檢視台灣人口和所有疾病的視覺化疾病關聯地圖。
台灣中央健康保險局在2000 年到2002 年申報統計中,總人口約有2100 萬人,其中就醫人次共有7 億 8100 萬人次。本論文在研究中所應用的研究步驟,包含觀察這些疾病的數據分析和視覺化的表現。而知識發掘跟資料探勘的技術(Knowledge Discovery and Data Mining, KDD),被應用在找出這些觀察到的疾病之關聯強度。所以本論文創建一個基於網絡的視覺化疾病關聯(DDA)互動式地圖。 (請連結:http://disease-map.net)
本研究在基礎研究與臨床應用上搭起橋樑,運用KDD,使疾病關聯和其對應數據視覺化展現,進而創造一個互動式的疾病全基因關聯地圖。此外,這項研究將解釋疾病關聯地圖如何以生物網絡的原則進行實證醫學的驗證。這項研究開啟了一個新的陣列,從不同的領域,如基因組學,蛋白質組學,分子生物學和生物醫學資訊學去探究相關疾病的發病機制,從而精確的達到個人化 (Personalization)、參與 (Participation)、預測 (Prediction)與預防 (Prevention)的4p 醫
學,增加醫療研究人員的研究機會。
With the advancement in the Health Information Systems and a constant encouragement from the policy-makers and health authorities for adoption of the electronic health records, had has dramatically increased the patient level health data accumulated by the health providers. Health databases are constantly getting increased by 4 V’s (Velocity, Volume, Variety and Veracity). The number of rows (objects) crossing the order of N=109 (billions) and the number of columns (attributes to the objects) are growing to the order of 102 (hundreds). Informaticians are eager to explore methodologies and techniques that can make ‘meaningful’ use of huge database in order to achieve an efficient health care. This study analyzes huge datasets in order to develop a novel visualization method to view the holistic picture of all the diseases and their associations observed in the Taiwanese population.
Three years (2000-2002) claimed data from Bureau of National Health Insurance (BNHI) with about 781 million visits by approximately 21 million populations was used. The basic steps involved in this study were to analyze, represent and visualize the diseases observed among population. The
techniques of Knowledge Discovery and Data Mining (KDD) were applied to analyze data by measuring the strength of the associations among diseases observed in the population. A database was created to represent all the observed disease-disease associations (DDA). And a web-based interactive
map was created to visualize DDA database. (visit: http://disease-map.net)This study uses “bedside to bench” a reverse translational approach by applying KDD and a novel
visualization techniques on DDA database, thus resulting in a creation of an interactive disease-wide association map. In addition, this study will interpret the map by using biological network principles and recommends a few practical implications. This study opens a new array of opportunities for researchers from diverse fields like genetics, proteomics, molecular biology and biomedical informatics interested in exploring the underlying disease pathogenesis leading to precise prediction, prevention, participative and personalized (4P) medicine.
Acknowledgments i
摘要 ii
Abstract iii
Contents iv
List of Figures vi
List of Tables viii
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation 3
1.3 Aims of the study and Research questions 3
1.4 Organization of the dissertation 4
Chapter 2 Literature Review 6
2.1 Knowledge discovery in database 6
2.2 Visualization 8
2.3 Network medicine from a biomedical informatics perspective 9
Chapter 3 Method 14
3.1 Problem Definition: 14
3.2 Step 1. Creating DDA database and Validating 15
3.3 Step 2. Data Visualization and Representation 23
3.4 Step 3. Applications of the Disease maps 25
Chapter 4 Results 30
4.1 How to use the map 30
Chapter 5 Discussion 37
5.1 Bureau of National Health Insurance (BNHI) 37
5.2 Odds Ratio as a measure for strength of associations 38
5.3 Disease-Disease associations (DDA) database 39
5.4 Validation of the DDA database 39
5.5 The zero problem 40
5.6 Network Medicine 41
5.7 Degree Distribution 41
5.8 Small World Phenomenon 42
5.9 Modules 44
5.10 Motifs and Centrality 47
5.11 Idiopathic diseases 47
5.12 Network medicine leads toward 4P medicine 47
Chapter 6 Conclusion 52
References 53
Appendix 57
S Syed-Abdul, L Fernandez-Luque et al. Misleading Health-Related Information Promoted Through Video-Based Social Media: Anorexia on YouTube . Journal of medical Internet research 15 (2), e30. 2013 …………………………………………………………………………………………………….59
Shabbir, SA et al. Facebook use leads to Health-care reform in Taiwan. The Lancet, Volume 377, Issue 9783, 18 June 2011-24 June 2011, Pages 2083-2084 …………………………………………………72
S Syed-Abdul, J Scholl, P Lee, WS Jian, DM Liou, YC Li., Study on the potential for delay tolerant networks by health workers in low resource settings. Computer methods and programs in biomedicine 107 (3), 557-564………………………………………………………………………………………. 74
Shabbir, S.A., et al., Comparison of documentation time between an electronic and a paper-based record system by optometrists at an eye hospital in south India: A time-motion study. Computer Methods and Programs in Biomedicine. 2010;100: 283-288. ……………………………………….....83

1. Usama M. Fayyad, Gregory Piatetsky-Shapiro PS: From Data Mining to Knowledge Discovery in Databases. AI Magazine 1996, 17(3):37-54.
2. Andre Kushniruk, Elizabeth Borycki, Mu-Hsing Kuo: Advances in Electronic Health Records in Denmark:From National Strategy to Effective Healthcare System Implementation. Acta Inform Med 2010, 18(2):94-99.
3. Reinhardt UE: Humbled in Taiwan. BMJ 2008, 336(7635):72.
4. Butte AJ: Translational bioinformatics: coming of age. J Am Med Inform Assoc 2008, 15(6):709-714.
5. Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabási AL: The human disease network. Proc Natl Acad Sci U S A 2007, 104(21):8685-8690.
6. Baker M: Genomics: The search for association. Nature 2010, 467(7319):1135-1138.
7. Hirschhorn JN, Daly MJ: Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 2005, 6(2):95-108.
8. Vidal M, Cusick ME, Barabási AL: Interactome networks and human disease. Cell 2011, 144(6):986-998.
9. Lingappa UF, Wu X, Macieik A, Yu SF, Atuegbu A, Corpuz M, Francis J, Nichols C, Calayag A, Shi H et al: Host-rabies virus protein-protein interactions as druggable antiviral targets. Proc Natl Acad Sci U S A 2013.
10. Lee Y, Li H, Li J, Rebman E, Achour I, Regan KE, Gamazon ER, Chen JL, Yang XH, Cox NJ et al: Network models of genome-wide association studies uncover the topological centrality of protein interactions in complex diseases. J Am Med Inform Assoc 2013.
11. Gonzalez MW, Kann MG: Chapter 4: protein interactions and disease. PLoS Comput Biol 2012, 8(12):e1002819.
12. Vidal M, Chan DW, Gerstein M, Mann M, Omenn GS, Tagle D, Sechi S, Participants W: The human proteome - a scientific opportunity for transforming diagnostics, therapeutics, and healthcare. Clin Proteomics 2012, 9(1):6.
13. Li L, Shiga M, Ching WK, Mamitsuka H: Annotating gene functions with integrative spectral clustering on microarray expressions and sequences. Genome Inform 2010, 22:95-120.
14. Ray SS, Bandyopadhyay S, Pal SK: Gene ordering in partitive clustering using microarray expressions. J Biosci 2007, 32(5):1019-1025.
15. Zhi D, Chen R: Statistical guidance for experimental design and data analysis of mutation detection in rare monogenic mendelian diseases by exome sequencing. PLoS One 2012, 7(2):e31358.
16. Li MX, Gui HS, Kwan JS, Bao SY, Sham PC: A comprehensive framework for prioritizing variants in exome sequencing studies of Mendelian diseases. Nucleic Acids Res 2012, 40(7):e53.
17. Jin W, Qin P, Lou H, Jin L, Xu S: A systematic characterization of genes underlying both complex and Mendelian diseases. Hum Mol Genet 2012, 21(7):1611-1624.
18. Dunlop MG, Dobbins SE, Farrington SM, Jones AM, Palles C, Whiffin N, Tenesa A, Spain S, Broderick P, Ooi LY et al: Common variation near CDKN1A, POLD3 and SHROOM2 influences colorectal cancer risk. Nat Genet 2012, 44(7):770-776.
19. Kim MS, Lee J, Oh T, Moon Y, Chang E, Seo KS, Hoehn BD, An S, Lee JH: Genome-wide identification of OTP gene as a novel methylation marker of breast cancer. Oncol Rep 2012, 27(5):1681-1688.
20. Yeo GS, Heisler LK: Unraveling the brain regulation of appetite: lessons from genetics. Nat Neurosci 2012, 15(10):1343-1349.
21. Sturiale CL, Puca A, Sebastiani P, Gatto I, Albanese A, Di Rocco C, Maira G, Pola R: Single nucleotide polymorphisms associated with sporadic brain arteriovenous malformations: where do we stand? Brain 2013, 136(Pt 2):665-681.
22. Malmeström C, Gillett A, Jernås M, Khademi M, Axelsson M, Kockum I, Mattsson N, Zetterberg H, Blennow K, Alfredsson L et al: Serum levels of LIGHT in MS. Mult Scler 2012.
23. Li Y, Huang J, Amos CI: Genetic association analysis of complex diseases incorporating intermediate phenotype information. PLoS One 2012, 7(10):e46612.
24. Barabási AL: Network medicine--from obesity to the "diseasome". N Engl J Med 2007, 357(4):404-407.
25. Institute of Medicine, Committee on Patient Safety and Health Information Technology: Health IT and Patient Safety: Building Safer Systems for Better Care. . In. Washington DC: National Academy of Science; 2012.
26. Hidalgo CA, Blumm N, Barabasi AL, Christakis NA: A dynamic network approach for the study of human phenotypes. PLoS computational biology 2009, 5(4):e1000353.
27. HuDiNe [http://barabasilab.neu.edu/projects/hudine/]
28. Hripcsak G, Albers DJ: Next-generation phenotyping of electronic health records. J Am Med Inform Assoc 2013, 20(1):117-121.
29. Jensen PB, Jensen LJ, Brunak S: Mining electronic health records: towards better research applications and clinical care. Nat Rev Genet 2012, 13(6):395-405.
30. DeGruy KB: Healthcare applications of knowledge discovery in databases. J Healthc Inf Manag 2000, 14(2):59-69.
31. Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth: From Data Mining to Knowledge Discovery in Databases. AI Magazine 1996, 17(3):37-54.
32. Hawkins H.H, Hankins R.W, E. J: A Computerized Physician Order Entry System for the Promotion of Ordering Compliance and Appropriate Test Utilization. Journal of Healthcare Information Management 1999, 13(3):63-72.
33. Lewis SN, Nsoesie E, Weeks C, Qiao D, Zhang L: Prediction of disease and phenotype associations from genome-wide association studies. PLoS One 2011, 6(11):e27175.
34. Rzhetsky A, Wajngurt D, Park N, Zheng T: Probing genetic overlap among complex human phenotypes. Proc Natl Acad Sci U S A 2007, 104(28):11694-11699.
35. Hood L, Friend SH: Predictive, personalized, preventive, participatory (P4) cancer medicine. Nat Rev Clin Oncol 2011, 8(3):184-187.
36. Zhu X, Gerstein M, Snyder M: Getting connected: analysis and principles of biological networks. Genes Dev 2007, 21(9):1010-1024.
37. M. C: Preliminary announcement for the Third World Conference on Medical Informatics. . In: Medinfo; Toronto, Canada. 1977.
38. JH. vB: The structure of medical informatics. Med Inform 1984(Jul-Dec; 3-4):175-180.
39. Blois M, Shortliffe E: The computer meets medicine: emergence of a discipline. In: Medical informatics: computer applications in health care V 20. Edited by Shortliffe E, Perreault L. Reading, MA:: Addison Wesley; 1990.
40. Eskind Biomedical Library: Vanderbilt University Department of Biomedical Informatics. About us. [Web document]. Nashville, TN: The Department, 2002. In.; http://www.mc.vanderbilt.edu/dbmi/people/.
41. Shortliffe E, Cimino JL: Biomedical informatics: computer applications in health care and biomedicine.: Springer; 2006.
42. Kulikowski CA, Shortliffe EH, Currie LM, Elkin PL, Hunter LE, Johnson TR, Kalet IJ, Lenert LA, Musen MA, Ozbolt JG et al: AMIA Board white paper: definition of biomedical informatics and specification of core competencies for graduate education in the discipline. J Am Med Inform Assoc 2012, 19(6):931-938.
43. Sanz L, Sistiaga JA, Lara AJ, Cuende E, García-Alcántara F, Rivera T: The prevalence of dysphonia, its association with immunomediated diseases and correlation with biochemical markers. J Voice 2012, 26(2):148-153.
44. A. Agresti: Categorical Data Analysis: John Wiley &; Sons; 2002.
45. Willie Sai Ho Chan: Taiwan’s healthcare report 2010 The EPMA Journal Published online 2 Dec 2010.
46. Chen CC, Chen K, Hsu CY, Li YC: Developing guideline-based decision support systems using protégé and jess. Comput Methods Programs Biomed 2011, 102(3):288-294.
47. Turnbull C, Perdeaux ER, Pernet D, Naranjo A, Renwick A, Seal S, Munoz-Xicola RM, Hanks S, Slade I, Zachariou A et al: A genome-wide association study identifies susceptibility loci for Wilms tumor. Nat Genet 2012, 44(6):681-684.
48. Barabasi AL, Albert R: Emergence of scaling in random networks. Science 1999, 286(5439):509-512.
49. Lai SW, Liao KF, Lai HC, Chou CY, Cheng KC, Lai YM: The prevalence of gallbladder stones is higher among patients with chronic kidney disease in Taiwan. Medicine (Baltimore) 2009, 88(1):46-51.
50. McAdams-Demarco MA, Maynard JW, Coresh J, Baer AN: Anemia and the onset of gout in a population-based cohort of adults: Atherosclerosis Risk in Communities study. Arthritis Res Ther 2012, 14(4):R193.
51. Altaf Qadir. Khattak, Lucky M: Prostate Specific Antigen: Persistent Source of Anxiety. Journal of Postgraduate Medical Institute 2011, 25(2).
52. Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabási AL: Hierarchical organization of modularity in metabolic networks. Science 2002, 297(5586):1551-1555.
53. Hood L, Heath JR, Phelps ME, Lin B: Systems biology and new technologies enable predictive and preventative medicine. Science 2004, 306(5696):640-643.
54. Shapiro SD: The future of medicine is very personal. Am J Respir Crit Care Med 2012, 185(9):903-904.



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top