跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/10 14:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:江昀融
研究生(外文):Yun-Jung Chiang
論文名稱:研究CBAP蛋白於維持造血細胞的恆定性與控制細胞趨化素依賴性的T細胞移動中所扮演的角色
論文名稱(外文):Study on the role of CBAP in maintenance of hematopoietic homeostasis and control of chemokine-dependent T lymphocyte trafficking
指導教授:嚴仲陽
指導教授(外文):Jeffrey Jong-Young Yen
學位類別:博士
校院名稱:國立陽明大學
系所名稱:微生物及免疫學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:101
中文關鍵詞:細胞趨化素移動造血細胞細胞自裁恆定性
外文關鍵詞:chemokinemigrationhematopoietic cellsapoptosishomeostasis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:404
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
造血細胞的數量規模在生物體的生命過程中是非常穩定的,即使在生物體產生免疫反應後其數量也必須被嚴密的調控,這樣的能力反應著生物體內精確的細胞增生、細胞自裁、細胞分化與細胞募集的能力。細胞內部有許多已知的分子參與上述的精密調控,但是其各分子的功能角色仍待釐清。顆粒性血球細胞/巨噬細胞聚落刺激因子/第三介白素/第五介白素受體共同乙型鏈結合蛋白(CBAP)是一個新穎的膜蛋白,已被證實可與沒有受體結合的顆粒性血球細胞/巨噬細胞聚落刺激因子/第三介白素/第五介白素共同乙型鏈結合而驅動細胞自裁死亡反應。在本研究中,我們發現CBAP基因剔除小鼠的造血細胞恆定性受到改變,例如T細胞、B細胞、單核白血球細胞、嗜鹼性細胞的數量改變。在缺乏細胞介白素的培養下,CBAP基因剔除的T細胞的死亡會比正常T細胞慢一點,這表示CBAP具有促進細胞死亡的功能。再者,當同時剔除CBAP與Bim基因時,則會影響部分造血細胞的恆定而在數量上有輕微的加成作用,這顯示CBAP與Bim在調控造血細胞死亡的恆定上是平行的角色。除了參與細胞死亡調控,剔除CBAP基因的T細胞回巢到淋巴結的能力明顯下降,這與此細胞對於細胞趨化激素CXCL12與CCL21依賴性的細胞移動與粘附的能力變弱有一致性的關係。在CBAP基因默化的人類Jurkat T細胞株中,此細胞的CXCL12-依賴性細胞移動與integrin α4β1- 或 αLβ2-依賴性粘附能力也都下降,而這些缺失的功能可在大量表現小鼠CBAP蛋白後重新回復其能力。在進一步研究中發現,CBAP可以持續的與integrin β1和ZAP70結合在一起,這個重要的結合有助於促進在細胞趨化素刺激引起的起始結合蛋白群talin-Vav1與integrin β1的結合,並且有利於後續的ZAP70依賴性talin-Vav1蛋白群的分離及Vav1的磷酸化。在這樣的integrin 訊息蛋白群當中,CBAP蛋白的作用像是一個適配器來引導並增進integrin 與Rac1的活化。最後,我們的研究發現缺乏CBAP的小鼠其呈現較弱的接觸性超敏反應,剔除CBAP基因的T細胞導致接受者小鼠較趨緩的移植物抗宿主病,以及發現在CBAP基因默化的T細胞株會緩和其導致的小鼠血癌模式之病理發展。這些證據都足以進一步強化CBAP對於調控免疫反應與一些T細胞相關的疾病中所扮演的重要角色。
The size of hematopoietic cell pool is remarkably stable throughout life and tightly regulated after immune responses, reflecting precise control of cellular proliferation, apoptosis, differentiation and recruitment. A variety of proteins are known to be involved in these processes, but the understanding about the roles of these components is still not well characterized. GM-CSF/IL-3/IL-5 receptor common beta-chain-associated protein (CBAP) is a newly annotated transmembrane protein, which associates with un-linganded common beta chain (βc) of GM-CSF/IL-3/IL-5 receptor to trigger apoptosis. In our current study, we found that some of hematopoietic populations in CBAP-deficient mice display minor abnormalities, such as monocytes, basophiles, T and B lymphocytes. The loss of CBAP delayed apoptosis of T lymphocytes induced by stress of death-by-neglect, suggesting a proapoptotic role of CBAP in T cells. Moreover, combined loss of proapoptotic genes Bim and CBAP caused a modestly summated effect in some of hematopoietic cell populations, suggesting a parallel cooperation of CBAP and Bim in controlling hematopoietic cell homeostasis. Besides regulation of cell death, CBAP-deficient T lymphocytes manifested defective homing to lymph nodes, which correlated with attenuated chemotaxis toward CC chemokine ligand-21 (CCL21) and CXC chemokine ligand-12 (CXCL12), and these chemokines-induced T-cell adhesions. Knockdown of CBAP expression in human Jurkat T cells resulted in attenuated CXCL12-induced cell migration and adhesion to integrin α4β1- or αLβ2-specific ligand coated surface, which could be efficiently rescued by expression of murine CBAP proteins. Further analysis revealed that CBAP constitutively associated with both integrin β1 and ZAP70 and that CBAP is required for chemokine-induced initial binding of the talin-Vav1 complex to integrin β1 and to facilitate subsequent ZAP70-mediated dissociation of the talin-Vav1 complex and Vav1 phosphorylation. Within such an integrin signaling complex, CBAP likely functions as an adaptor and ultimately leads to activation of both integrin α4β1 and Rac1. Last, we demonstrated that loss of CBAP manifested diminished ear swelling and T-cell infiltration in a contact hypersensitivity model and blunt pathological progression of graft-versus-host disease (GVHD) and leukemogenesis, further strengthening the important role of CBAP in modulating immune responses and development of T-cell-mediated diseases.
Abstract (Chinese)……………..………………………….……………………………… i
Abstract (English)..…………………………………………..……………………………ii
Table of contents……………………………………………..………………………….. iv
List of figures…………………………….…………………..…………………………...vi
Chapter I: General introduction …………………..…………………….………………... 1
Introduction ………………………………….………………………..…………..... 2
Figures …...………………………………….……………………….……….…......13
Chapter II: Materials and methods ……………………………………………………….15
Chapter III: Investigating on the pro-apoptotic function of CBAP in hematopoietic cell homeostasis …………………………………………………………………….………. 24
Introduction ………………………………….………………………..…………... 25
Results …...………………………………….……………………….……….…... 26
Discussion ………………………………….…………………………..……….... 31
Figures ……………………………………………………………………………. 33
Chapter IV: CBAP functions in controlling chemokine-induced ZAP70-mediated T cell adhesion and migration ……………………………………………………………...… 45
Introduction ………………………………………………..……………….……... 46
Results …...……………………………………………………………...………... 47
Discussion ……………………………………….……………….……….…….... 55
Figures …………………………………………………….……........................... 58
Chapter V: Revealing the physiological and pathological functions of CBAP by using animal models…………………………………………………………………..……… 71
Introduction ……………………………………………….……….……………... 72
Results …...……………………………………………..……………………….... 74
Discussion ………………………………………………………..…………….... 77
Figures ……………………………………………………………………........... 79
Chapter VI: References………………………………..…………………..…………… 83
Chapter VII: Appendix……………………………………..……………………………99


List of figures
Figure 1.1 Amino acid sequence alignment of CBAP from different mammals. ……….. 13
Figure 1.2 The output of human CBAP transmembrane regions from TOPCONS webserver. ……………………………………………………………………………………………..14

Figure 3.1 Analysis of complete blood counts in CBAP–/– mice. ………………………..33
Figure 3.2 Phenotypic analysis of lymphoid organs from CBAP+/+ and CBAP-/- mice....34
Figure 3.3 Representative FACS analysis of hematopoietic cells from CBAP knockout mice......................................................................................................................................35
Figure 3.4 Quantitative analysis of hematopoietic populations in CBAP-/- mice as determined by flow cytometry………………………………………………………….…36
Figure 3.5 T lymphocyte subpopulations in lymph node of CBAP- deficient mouse…….38
Figure 3.6 In vivo BrdU incorporation in thymocytes and bone marrow cells……...…….39
Figure 3.7 Comparable TCR-induced T cell proliferation between CBAP+/+ and CBAP-/- T cells……………………………………………………………………………………...40
Figure 3.8 in vitro death-by-neglect assay and IL-7 whthdral-induced cell death……...…41
Figure 3.9 In vivo survival assay of CBAP-deficient T cells……………………………...42
Figure 3.10 Phenotype analysis of Bim/CBAP double-knockout mice …………………...43

Figure 4.1 CBAP is required for CXCL12-induced migration and adhesion and activation of integrins in Jurkat T cells……………………………………………………………….58
Figure 4.2 CBAP–/– primary T cells display reduced chemokine-dependent cell migration and adhesion in vitro………………………………………………………………………60
Figure 4.3 In vivo T-cell homing to LNs and in vitro S1p-induced chemotaxis……….….62
Figure 4.4 CBAP is important for chemokine-dependent activation of Vav1 and Rac1 in T cells………………………………………………………………………………………..63
Figure 4.5 CBAP pre-associates with integrin β1 and ZAP70 and facilitates chemokine-induced ZAP70-mediated dissociation of the Vav1-talin complex……………………….65
Figure 4.6 Complex formation among CBAP, ZAP70 and integrin β1…………………..66
Figure 4.7 Mapping of interaction domains on CBAP with Vav1 and ZAP70…………...67
Figure 4.8 CBAP–/– activated T cells display reduced chemotaxis toward each of several chemokines………………………………………………………………………………..68
Figure 4.9 CBAP is a modulator for formation of FLNa/Rac1 complex………………....69
Figure 4.10 Formation of CBAP homodimer……………………………………………..70

Figure 5.1 Reduced inflammatory response of CBAP-deficient mice in a contact hypersensitivity model…………………………………………………………………….79
Figure 5.2 Survival and GVHD scores of animals receiving T cell-depleted (TCD) BM cells, CBAP+/+ or CBAP-/- T cells……………………………………………………….80
Figure 5.3 CBAP is important for the development of leukemogenesis…………………..81
Figure 5.4 Methylcellulose colony-forming assay of leukemia cell lines…………………82

1. Bouillet, P., and L. A. O'Reilly. 2009. CD95, BIM and T cell homeostasis. Nat Rev Immunol 9: 514-519.
2. Maniati, E., P. Potter, N. J. Rogers, and B. J. Morley. 2008. Control of apoptosis in autoimmunity. The Journal of pathology 214: 190-198.
3. Salvesen, G. S., and V. M. Dixit. 1999. Caspase activation: the induced-proximity model. Proceedings of the National Academy of Sciences of the United States of America 96: 10964-10967.
4. Opferman, J. T., A. Letai, C. Beard, M. D. Sorcinelli, C. C. Ong, and S. J. Korsmeyer. 2003. Development and maintenance of B and T lymphocytes requires antiapoptotic MCL-1. Nature 426: 671-676.
5. Veis, D. J., C. M. Sorenson, J. R. Shutter, and S. J. Korsmeyer. 1993. Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell 75: 229-240.
6. Motoyama, N., F. Wang, K. A. Roth, H. Sawa, K. Nakayama, I. Negishi, S. Senju, Q. Zhang, S. Fujii, and et al. 1995. Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science 267: 1506-1510.
7. Ma, A., J. C. Pena, B. Chang, E. Margosian, L. Davidson, F. W. Alt, and C. B. Thompson. 1995. Bclx regulates the survival of double-positive thymocytes. Proceedings of the National Academy of Sciences of the United States of America 92: 4763-4767.
8. Hamasaki, A., F. Sendo, K. Nakayama, N. Ishida, I. Negishi, and S. Hatakeyama. 1998. Accelerated neutrophil apoptosis in mice lacking A1-a, a subtype of the bcl-2-related A1 gene. J Exp Med 188: 1985-1992.
9. Xiang, Z., A. A. Ahmed, C. Moller, K. Nakayama, S. Hatakeyama, and G. Nilsson. 2001. Essential role of the prosurvival bcl-2 homologue A1 in mast cell survival after allergic activation. J Exp Med 194: 1561-1569.
10. Ross, A. J., K. G. Waymire, J. E. Moss, A. F. Parlow, M. K. Skinner, L. D. Russell, and G. R. MacGregor. 1998. Testicular degeneration in Bclw-deficient mice. Nat Genet 18: 251-256.
11. Lindsten, T., A. J. Ross, A. King, W. X. Zong, J. C. Rathmell, H. A. Shiels, E. Ulrich, K. G. Waymire, P. Mahar, K. Frauwirth, Y. Chen, M. Wei, V. M. Eng, D. M. Adelman, M. C. Simon, A. Ma, J. A. Golden, G. Evan, S. J. Korsmeyer, G. R. MacGregor, and C. B. Thompson. 2000. The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol Cell 6: 1389-1399.
12. Knudson, C. M., K. S. Tung, W. G. Tourtellotte, G. A. Brown, and S. J. Korsmeyer. 1995. Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science 270: 96-99.
13. Rathmell, J. C., T. Lindsten, W. X. Zong, R. M. Cinalli, and C. B. Thompson. 2002. Deficiency in Bak and Bax perturbs thymic selection and lymphoid homeostasis. Nat Immunol 3: 932-939.
14. Cheng, E. H., M. C. Wei, S. Weiler, R. A. Flavell, T. W. Mak, T. Lindsten, and S. J. Korsmeyer. 2001. BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol Cell 8: 705-711.
15. Villunger, A., E. M. Michalak, L. Coultas, F. Mullauer, G. Bock, M. J. Ausserlechner, J. M. Adams, and A. Strasser. 2003. p53- and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa. Science 302: 1036-1038.
16. Yin, X. M., K. Wang, A. Gross, Y. Zhao, S. Zinkel, B. Klocke, K. A. Roth, and S. J. Korsmeyer. 1999. Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature 400: 886-891.
17. Bouillet, P., D. Metcalf, D. C. Huang, D. M. Tarlinton, T. W. Kay, F. Kontgen, J. M. Adams, and A. Strasser. 1999. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science 286: 1735-1738.
18. Puthalakath, H., L. A. O'Reilly, P. Gunn, L. Lee, P. N. Kelly, N. D. Huntington, P. D. Hughes, E. M. Michalak, J. McKimm-Breschkin, N. Motoyama, T. Gotoh, S. Akira, P. Bouillet, and A. Strasser. 2007. ER stress triggers apoptosis by activating BH3-only protein Bim. Cell 129: 1337-1349.
19. Ranger, A. M., J. Zha, H. Harada, S. R. Datta, N. N. Danial, A. P. Gilmore, J. L. Kutok, M. M. Le Beau, M. E. Greenberg, and S. J. Korsmeyer. 2003. Bad-deficient mice develop diffuse large B cell lymphoma. Proceedings of the National Academy of Sciences of the United States of America 100: 9324-9329.
20. Coultas, L., P. Bouillet, E. G. Stanley, T. C. Brodnicki, J. M. Adams, and A. Strasser. 2004. Proapoptotic BH3-only Bcl-2 family member Bik/Blk/Nbk is expressed in hemopoietic and endothelial cells but is redundant for their programmed death. Mol Cell Biol 24: 1570-1581.
21. Coultas, L., S. Terzano, T. Thomas, A. Voss, K. Reid, E. G. Stanley, C. L. Scott, P. Bouillet, P. Bartlett, J. Ham, J. M. Adams, and A. Strasser. 2007. Hrk/DP5 contributes to the apoptosis of select neuronal populations but is dispensable for haematopoietic cell apoptosis. J Cell Sci 120: 2044-2052.
22. Marrack, P., and J. Kappler. 2004. Control of T cell viability. Annual review of immunology 22: 765-787.
23. Rochman, Y., and W. J. Leonard. 2008. The role of thymic stromal lymphopoietin in CD8+ T cell homeostasis. J Immunol 181: 7699-7705.
24. Rathmell, J. C., E. A. Farkash, W. Gao, and C. B. Thompson. 2001. IL-7 enhances the survival and maintains the size of naive T cells. J Immunol 167: 6869-6876.
25. Vivien, L., C. Benoist, and D. Mathis. 2001. T lymphocytes need IL-7 but not IL-4 or IL-6 to survive in vivo. International immunology 13: 763-768.
26. Schluns, K. S., W. C. Kieper, S. C. Jameson, and L. Lefrancois. 2000. Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo. Nat Immunol 1: 426-432.
27. Hassan, J., and D. J. Reen. 1998. IL-7 promotes the survival and maturation but not differentiation of human post-thymic CD4+ T cells. Eur J Immunol 28: 3057-3065.
28. Kondrack, R. M., J. Harbertson, J. T. Tan, M. E. McBreen, C. D. Surh, and L. M. Bradley. 2003. Interleukin 7 regulates the survival and generation of memory CD4 cells. J Exp Med 198: 1797-1806.
29. Tan, J. T., E. Dudl, E. LeRoy, R. Murray, J. Sprent, K. I. Weinberg, and C. D. Surh. 2001. IL-7 is critical for homeostatic proliferation and survival of naive T cells. Proceedings of the National Academy of Sciences of the United States of America 98: 8732-8737.
30. Rochman, Y., R. Spolski, and W. J. Leonard. 2009. New insights into the regulation of T cells by gamma(c) family cytokines. Nat Rev Immunol 9: 480-490.
31. Jiang, Q., W. Q. Li, F. B. Aiello, R. Mazzucchelli, B. Asefa, A. R. Khaled, and S. K. Durum. 2005. Cell biology of IL-7, a key lymphotrophin. Cytokine &; growth factor reviews 16: 513-533.
32. Wojciechowski, S., P. Tripathi, T. Bourdeau, L. Acero, H. L. Grimes, J. D. Katz, F. D. Finkelman, and D. A. Hildeman. 2007. Bim/Bcl-2 balance is critical for maintaining naive and memory T cell homeostasis. J Exp Med 204: 1665-1675.
33. Gowans, J. L., and E. J. Knight. 1964. The Route of Re-Circulation of Lymphocytes in the Rat. Proc. R. Soc. Lond. B. Biol. Sci. 159: 257-282.
34. Marchesi, V. T., and J. L. Gowans. 1964. The Migration of Lymphocytes through the Endothelium of Venules in Lymph Nodes: An Electron Microscope Study. Proc R Soc Lond B Biol Sci 159: 283-290.
35. von Andrian, U. H., and C. R. Mackay. 2000. T-cell function and migration. Two sides of the same coin. N Engl J Med 343: 1020-1034.
36. Warnock, R. A., S. Askari, E. C. Butcher, and U. H. von Andrian. 1998. Molecular mechanisms of lymphocyte homing to peripheral lymph nodes. J Exp Med 187: 205-216.
37. Hamann, A., D. Jablonski-Westrich, A. Duijvestijn, E. C. Butcher, H. Baisch, R. Harder, and H. G. Thiele. 1988. Evidence for an accessory role of LFA-1 in lymphocyte-high endothelium interaction during homing. J Immunol 140: 693-699.
38. von Andrian, U. H., and C. M'Rini. 1998. In situ analysis of lymphocyte migration to lymph nodes. Cell Adhes Commun 6: 85-96.
39. Spangrude, G. J., B. A. Braaten, and R. A. Daynes. 1984. Molecular mechanisms of lymphocyte extravasation. I. Studies of two selective inhibitors of lymphocyte recirculation. J Immunol 132: 354-362.
40. Bargatze, R. F., and E. C. Butcher. 1993. Rapid G protein-regulated activation event involved in lymphocyte binding to high endothelial venules. J Exp Med 178: 367-372.
41. Campbell, J. J., J. Hedrick, A. Zlotnik, M. A. Siani, D. A. Thompson, and E. C. Butcher. 1998. Chemokines and the arrest of lymphocytes rolling under flow conditions. Science 279: 381-384.
42. Cyster, J. G. 1999. Chemokines and cell migration in secondary lymphoid organs. Science 286: 2098-2102.
43. Miyasaka, M., and T. Tanaka. 2004. Lymphocyte trafficking across high endothelial venules: dogmas and enigmas. Nat Rev Immunol 4: 360-370.
44. Campbell, J. J., E. P. Bowman, K. Murphy, K. R. Youngman, M. A. Siani, D. A. Thompson, L. Wu, A. Zlotnik, and E. C. Butcher. 1998. 6-C-kine (SLC), a lymphocyte adhesion-triggering chemokine expressed by high endothelium, is an agonist for the MIP-3beta receptor CCR7. The Journal of cell biology 141: 1053-1059.
45. Yoshida, R., M. Nagira, M. Kitaura, N. Imagawa, T. Imai, and O. Yoshie. 1998. Secondary lymphoid-tissue chemokine is a functional ligand for the CC chemokine receptor CCR7. The Journal of biological chemistry 273: 7118-7122.
46. Nakano, H., S. Mori, H. Yonekawa, H. Nariuchi, A. Matsuzawa, and T. Kakiuchi. 1998. A novel mutant gene involved in T-lymphocyte-specific homing into peripheral lymphoid organs on mouse chromosome 4. Blood 91: 2886-2895.
47. Forster, R., A. Schubel, D. Breitfeld, E. Kremmer, I. Renner-Muller, E. Wolf, and M. Lipp. 1999. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99: 23-33.
48. Grabovsky, V., S. Feigelson, C. Chen, D. A. Bleijs, A. Peled, G. Cinamon, F. Baleux, F. Arenzana-Seisdedos, T. Lapidot, Y. van Kooyk, R. R. Lobb, and R. Alon. 2000. Subsecond induction of alpha4 integrin clustering by immobilized chemokines stimulates leukocyte tethering and rolling on endothelial vascular cell adhesion molecule 1 under flow conditions. J Exp Med 192: 495-506.
49. Okada, T., V. N. Ngo, E. H. Ekland, R. Forster, M. Lipp, D. R. Littman, and J. G. Cyster. 2002. Chemokine requirements for B cell entry to lymph nodes and Peyer's patches. J Exp Med 196: 65-75.
50. Bai, Z., H. Hayasaka, M. Kobayashi, W. Li, Z. Guo, M. H. Jang, A. Kondo, B. I. Choi, Y. Iwakura, and M. Miyasaka. 2009. CXC chemokine ligand 12 promotes CCR7-dependent naive T cell trafficking to lymph nodes and Peyer's patches. J Immunol 182: 1287-1295.
51. Russell, S. 2008. How polarity shapes the destiny of T cells. J Cell Sci 121: 131-136.
52. Iden, S., and J. G. Collard. 2008. Crosstalk between small GTPases and polarity proteins in cell polarization. Nat Rev Mol Cell Biol 9: 846-859.
53. Thelen, M., and J. V. Stein. 2008. How chemokines invite leukocytes to dance. Nat Immunol 9: 953-959.
54. Lee, J. H., T. Katakai, T. Hara, H. Gonda, M. Sugai, and A. Shimizu. 2004. Roles of p-ERM and Rho-ROCK signaling in lymphocyte polarity and uropod formation. The Journal of cell biology 167: 327-337.
55. Iden, S., and J. G. Collard. 2008. Crosstalk between small GTPases and polarity proteins in cell polarization. Nat. Rev. Mol. Cell Biol. 9: 846-859.
56. Fukui, Y., O. Hashimoto, T. Sanui, T. Oono, H. Koga, M. Abe, A. Inayoshi, M. Noda, M. Oike, T. Shirai, and T. Sasazuki. 2001. Haematopoietic cell-specific CDM family protein DOCK2 is essential for lymphocyte migration. Nature 412: 826-831.
57. Nombela-Arrieta, C., T. R. Mempel, S. F. Soriano, I. Mazo, M. P. Wymann, E. Hirsch, A. C. Martinez, Y. Fukui, U. H. von Andrian, and J. V. Stein. 2007. A central role for DOCK2 during interstitial lymphocyte motility and sphingosine-1-phosphate-mediated egress. J Exp Med 204: 497-510.
58. Nombela-Arrieta, C., R. A. Lacalle, M. C. Montoya, Y. Kunisaki, D. Megias, M. Marques, A. C. Carrera, S. Manes, Y. Fukui, A. C. Martinez, and J. V. Stein. 2004. Differential requirements for DOCK2 and phosphoinositide-3-kinase gamma during T and B lymphocyte homing. Immunity 21: 429-441.
59. Das, B., X. Shu, G. J. Day, J. Han, U. M. Krishna, J. R. Falck, and D. Broek. 2000. Control of intramolecular interactions between the pleckstrin homology and Dbl homology domains of Vav and Sos1 regulates Rac binding. The Journal of biological chemistry 275: 15074-15081.
60. Han, J., K. Luby-Phelps, B. Das, X. Shu, Y. Xia, R. D. Mosteller, U. M. Krishna, J. R. Falck, M. A. White, and D. Broek. 1998. Role of substrates and products of PI 3-kinase in regulating activation of Rac-related guanosine triphosphatases by Vav. Science 279: 558-560.
61. Garcia-Bernal, D., N. Wright, E. Sotillo-Mallo, C. Nombela-Arrieta, J. V. Stein, X. R. Bustelo, and J. Teixido. 2005. Vav1 and Rac control chemokine-promoted T lymphocyte adhesion mediated by the integrin alpha4beta1. Mol. Biol. Cell 16: 3223-3235.
62. Sekine, Y., O. Ikeda, S. Tsuji, C. Yamamoto, R. Muromoto, A. Nanbo, K. Oritani, A. Yoshimura, and T. Matsuda. 2009. Signal-transducing adaptor protein-2 regulates stromal cell-derived factor-1 alpha-induced chemotaxis in T cells. J. Immunol. 183: 7966-7974.
63. Faroudi, M., M. Hons, A. Zachacz, C. Dumont, R. Lyck, J. V. Stein, and V. L. Tybulewicz. 2010. Critical roles for Rac GTPases in T-cell migration to and within lymph nodes. Blood 116: 5536-5547.
64. Reif, K., and J. Cyster. 2002. The CDM protein DOCK2 in lymphocyte migration. Trends Cell Biol. 12: 368-373.
65. D'Souza-Schorey, C., B. Boettner, and L. Van Aelst. 1998. Rac regulates integrin-mediated spreading and increased adhesion of T lymphocytes. Molecular and cellular biology 18: 3936-3946.
66. Ticchioni, M., C. Charvet, N. Noraz, L. Lamy, M. Steinberg, A. Bernard, and M. Deckert. 2002. Signaling through ZAP-70 is required for CXCL12-mediated T-cell transendothelial migration. Blood 99: 3111-3118.
67. Neer, E. J. 1995. Heterotrimeric G proteins: organizers of transmembrane signals. Cell 80: 249-257.
68. Arai, H., C. L. Tsou, and I. F. Charo. 1997. Chemotaxis in a lymphocyte cell line transfected with C-C chemokine receptor 2B: evidence that directed migration is mediated by betagamma dimers released by activation of Galphai-coupled receptors. Proceedings of the National Academy of Sciences of the United States of America 94: 14495-14499.
69. Shi, G., S. Partida-Sanchez, R. S. Misra, M. Tighe, M. T. Borchers, J. J. Lee, M. I. Simon, and F. E. Lund. 2007. Identification of an alternative G{alpha}q-dependent chemokine receptor signal transduction pathway in dendritic cells and granulocytes. J Exp Med 204: 2705-2718.
70. Kinashi, T. 2005. Intracellular signalling controlling integrin activation in lymphocytes. Nat Rev Immunol 5: 546-559.
71. Sebzda, E., M. Bracke, T. Tugal, N. Hogg, and D. A. Cantrell. 2002. Rap1A positively regulates T cells via integrin activation rather than inhibiting lymphocyte signaling. Nat Immunol 3: 251-258.
72. Li, Z., H. Jiang, W. Xie, Z. Zhang, A. V. Smrcka, and D. Wu. 2000. Roles of PLC-beta2 and -beta3 and PI3Kgamma in chemoattractant-mediated signal transduction. Science 287: 1046-1049.
73. Thelen, M. 2001. Dancing to the tune of chemokines. Nat Immunol 2: 129-134.
74. Hogg, N., I. Patzak, and F. Willenbrock. 2011. The insider's guide to leukocyte integrin signalling and function. Nat. Rev. Immunol. 11: 416-426.
75. Moser, M., K. R. Legate, R. Zent, and R. Fassler. 2009. The tail of integrins, talin, and kindlins. Science 324: 895-899.
76. Calderwood, D. A. 2004. Integrin activation. J. Cell Sci. 117: 657-666.
77. Garcia-Bernal, D., M. Parmo-Cabanas, A. Dios-Esponera, R. Samaniego, P. d. l. O. D. Hernan, and J. Teixido. 2009. Chemokine-induced Zap70 kinase-mediated dissociation of the Vav1-talin complex activates alpha4beta1 integrin for T cell adhesion. Immunity 31: 953-964.
78. Campbell, I. D., and M. H. Ginsberg. 2004. The talin-tail interaction places integrin activation on FERM ground. Trends Biochem. Sci. 29: 429-435.
79. Nayal, A., D. J. Webb, and A. F. Horwitz. 2004. Talin: an emerging focal point of adhesion dynamics. Curr. Opin. Cell Biol. 16: 94-98.
80. Wegener, K. L., A. W. Partridge, J. Han, A. R. Pickford, R. C. Liddington, M. H. Ginsberg, and I. D. Campbell. 2007. Structural basis of integrin activation by talin. Cell 128: 171-182.
81. Petrich, B. G., P. Marchese, Z. M. Ruggeri, S. Spiess, R. A. Weichert, F. Ye, R. Tiedt, R. C. Skoda, S. J. Monkley, D. R. Critchley, and M. H. Ginsberg. 2007. Talin is required for integrin-mediated platelet function in hemostasis and thrombosis. J Exp Med 204: 3103-3111.
82. Nieswandt, B., M. Moser, I. Pleines, D. Varga-Szabo, S. Monkley, D. Critchley, and R. Fassler. 2007. Loss of talin1 in platelets abrogates integrin activation, platelet aggregation, and thrombus formation in vitro and in vivo. J Exp Med 204: 3113-3118.
83. Calderwood, D. A., R. Zent, R. Grant, D. J. Rees, R. O. Hynes, and M. H. Ginsberg. 1999. The Talin head domain binds to integrin beta subunit cytoplasmic tails and regulates integrin activation. The Journal of biological chemistry 274: 28071-28074.
84. Carman, C. V., and T. A. Springer. 2003. Integrin avidity regulation: are changes in affinity and conformation underemphasized? Current opinion in cell biology 15: 547-556.
85. Bolomini-Vittori, M., A. Montresor, C. Giagulli, D. Staunton, B. Rossi, M. Martinello, G. Constantin, and C. Laudanna. 2009. Regulation of conformer-specific activation of the integrin LFA-1 by a chemokine-triggered Rho signaling module. Nat. Immunol. 10: 185-194.
86. Martel, V., C. Racaud-Sultan, S. Dupe, C. Marie, F. Paulhe, A. Galmiche, M. R. Block, and C. Albiges-Rizo. 2001. Conformation, localization, and integrin binding of talin depend on its interaction with phosphoinositides. J. Biol. Chem. 276: 21217-21227.
87. Crespo, P., K. E. Schuebel, A. A. Ostrom, J. S. Gutkind, and X. R. Bustelo. 1997. Phosphotyrosine-dependent activation of Rac-1 GDP/GTP exchange by the vav proto-oncogene product. Nature 385: 169-172.
88. Lin, Y. P., Y. J. Cheng, J. Y. Huang, H. C. Lin, and B. C. Yang. 2010. Zap70 controls the interaction of talin with integrin to regulate the chemotactic directionality of T-cell migration. Mol. Immunol. 47: 2022-2029.
89. Lee, S. F., H. M. Huang, J. R. Chao, S. Lin, H. F. Yang-Yen, and J. J. Yen. 1999. Cytokine receptor common beta chain as a potential activator of cytokine withdrawal-induced apoptosis. Mol Cell Biol 19: 7399-7409.
90. Murakami, M., M. Narazaki, M. Hibi, H. Yawata, K. Yasukawa, M. Hamaguchi, T. Taga, and T. Kishimoto. 1991. Critical cytoplasmic region of the interleukin 6 signal transducer gp130 is conserved in the cytokine receptor family. Proceedings of the National Academy of Sciences of the United States of America 88: 11349-11353.
91. Drachman, J. G., Y. Miyakawa, J. N. Luthi, D. D. Dahlen, A. Raney, A. E. Geddis, and K. Kaushansky. 2002. Studies with chimeric Mpl/JAK2 receptors indicate that both JAK2 and the membrane-proximal domain of Mpl are required for cellular proliferation. The Journal of biological chemistry 277: 23544-23553.
92. Kao, C. J., Y. J. Chiang, P. H. Chen, K. R. Lin, P. I. Hwang, H. F. Yang-Yen, and J. J. Yen. 2008. CBAP interacts with the un-liganded common beta-subunit of the GM-CSF/IL-3/IL-5 receptor and induces apoptosis via mitochondrial dysfunction. Oncogene 27: 1397-1403.
93. Bernsel, A., H. Viklund, A. Hennerdal, and A. Elofsson. 2009. TOPCONS: consensus prediction of membrane protein topology. Nucleic Acids Res 37: W465-468.
94. Defilippi, P., A. Rosso, P. Dentelli, C. Calvi, G. Garbarino, G. Tarone, L. Pegoraro, and M. F. Brizzi. 2005. {beta}1 Integrin and IL-3R coordinately regulate STAT5 activation and anchorage-dependent proliferation. The Journal of cell biology 168: 1099-1108.
95. Uberti, B., P. Dentelli, A. Rosso, P. Defilippi, and M. F. Brizzi. 2010. Inhibition of beta1 integrin and IL-3Rbeta common subunit interaction hinders tumour angiogenesis. Oncogene 29: 6581-6590.
96. Yang, C. Y., N. H. Lin, J. M. Lee, C. Y. Huang, H. J. Min, J. J. Yen, N. S. Liao, and H. F. Yang-Yen. 2009. Promoter knock-in mutations reveal a role of Mcl-1 in thymocyte-positive selection and tissue or cell lineage-specific regulation of Mcl-1 expression. J. Immunol. 182: 2959-2968.
97. Stofega, M., C. DerMardirossian, and G. M. Bokoch. 2006. Affinity-based assay of Rho guanosine triphosphatase activation. Methods Mol. Biol. 332: 269-279.
98. Wysocki, C. A., S. B. Burkett, A. Panoskaltsis-Mortari, S. L. Kirby, A. D. Luster, K. McKinnon, B. R. Blazar, and J. S. Serody. 2004. Differential roles for CCR5 expression on donor T cells during graft-versus-host disease based on pretransplant conditioning. J Immunol 173: 845-854.
99. van Den Brink, M. R., E. Moore, K. J. Horndasch, J. M. Crawford, J. Hoffman, G. F. Murphy, and S. J. Burakoff. 2000. Fas-deficient lpr mice are more susceptible to graft-versus-host disease. J Immunol 164: 469-480.
100. Tsukamoto, H., G. E. Huston, J. Dibble, D. K. Duso, and S. L. Swain. 2010. Bim dictates naive CD4 T cell lifespan and the development of age-associated functional defects. J Immunol 185: 4535-4544.
101. Takada, K., and S. C. Jameson. 2009. Naive T cell homeostasis: from awareness of space to a sense of place. Nat Rev Immunol 9: 823-832.
102. Labrecque, N., L. S. Whitfield, R. Obst, C. Waltzinger, C. Benoist, and D. Mathis. 2001. How much TCR does a T cell need? Immunity 15: 71-82.
103. Polic, B., D. Kunkel, A. Scheffold, and K. Rajewsky. 2001. How alpha beta T cells deal with induced TCR alpha ablation. Proceedings of the National Academy of Sciences of the United States of America 98: 8744-8749.
104. Seddon, B., and R. Zamoyska. 2002. TCR signals mediated by Src family kinases are essential for the survival of naive T cells. J Immunol 169: 2997-3005.
105. Surh, C. D., and J. Sprent. 2008. Homeostasis of naive and memory T cells. Immunity 29: 848-862.
106. Garbi, N., G. J. Hammerling, H. C. Probst, and M. van den Broek. 2010. Tonic T cell signalling and T cell tolerance as opposite effects of self-recognition on dendritic cells. Curr Opin Immunol 22: 601-608.
107. Patrussi, L., and C. T. Baldari. 2008. Intracellular mediators of CXCR4-dependent signaling in T cells. Immunol. Lett. 115: 75-82.
108. Vicente-Manzanares, M., A. Cruz-Adalia, N. B. Martin-Cofreces, J. R. Cabrero, M. Dosil, B. Alvarado-Sanchez, X. R. Bustelo, and F. Sanchez-Madrid. 2005. Control of lymphocyte shape and the chemotactic response by the GTP exchange factor Vav. Blood 105: 3026-3034.
109. Tybulewicz, V. L. 2005. Vav-family proteins in T-cell signalling. Curr. Opin. Immunol. 17: 267-274.
110. Deckert, M., S. Tartare-Deckert, C. Couture, T. Mustelin, and A. Altman. 1996. Functional and physical interactions of Syk family kinases with the Vav proto-oncogene product. Immunity 5: 591-604.
111. Mege, D., V. Di Bartolo, V. Germain, L. Tuosto, F. Michel, and O. Acuto. 1996. Mutation of tyrosines 492/493 in the kinase domain of ZAP-70 affects multiple T-cell receptor signaling pathways. The Journal of biological chemistry 271: 32644-32652.
112. Lopez-Lago, M., H. Lee, C. Cruz, N. Movilla, and X. R. Bustelo. 2000. Tyrosine phosphorylation mediates both activation and downmodulation of the biological activity of Vav. Molecular and cellular biology 20: 1678-1691.
113. Tybulewicz, V. L., and R. B. Henderson. 2009. Rho family GTPases and their regulators in lymphocytes. Nat. Rev. Immunol. 9: 630-644.
114. Okada, T., V. N. Ngo, E. H. Ekland, R. Forster, M. Lipp, D. R. Littman, and J. G. Cyster. 2002. Chemokine requirements for B cell entry to lymph nodes and Peyer's patches. J. Exp. Med. 196: 65-75.
115. Phillips, R., and A. Ager. 2002. Activation of pertussis toxin-sensitive CXCL12 (SDF-1) receptors mediates transendothelial migration of T lymphocytes across lymph node high endothelial cells. Eur. J. Immunol. 32: 837-847.
116. Woodside, D. G., A. Obergfell, A. Talapatra, D. A. Calderwood, S. J. Shattil, and M. H. Ginsberg. 2002. The N-terminal SH2 domains of Syk and ZAP-70 mediate phosphotyrosine-independent binding to integrin beta cytoplasmic domains. J. Biol. Chem. 277: 39401-39408.
117. Jin, J., F. D. Smith, C. Stark, C. D. Wells, J. P. Fawcett, S. Kulkarni, P. Metalnikov, P. O'Donnell, P. Taylor, L. Taylor, A. Zougman, J. R. Woodgett, L. K. Langeberg, J. D. Scott, and T. Pawson. 2004. Proteomic, functional, and domain-based analysis of in vivo 14-3-3 binding proteins involved in cytoskeletal regulation and cellular organization. Curr. Biol. 14: 1436-1450.
118. Kiema, T., Y. Lad, P. Jiang, C. L. Oxley, M. Baldassarre, K. L. Wegener, I. D. Campbell, J. Ylanne, and D. A. Calderwood. 2006. The molecular basis of filamin binding to integrins and competition with talin. Mol. Cell 21: 337-347.
119. Takala, H., E. Nurminen, S. M. Nurmi, M. Aatonen, T. Strandin, M. Takatalo, T. Kiema, C. G. Gahmberg, J. Ylanne, and S. C. Fagerholm. 2008. Beta2 integrin phosphorylation on Thr758 acts as a molecular switch to regulate 14-3-3 and filamin binding. Blood 112: 1853-1862.
120. Nakamura, F., T. P. Stossel, and J. H. Hartwig. 2011. The filamins: organizers of cell structure and function. Cell adhesion &; migration 5: 160-169.
121. Sharma, C. P., R. M. Ezzell, and M. A. Arnaout. 1995. Direct interaction of filamin (ABP-280) with the beta 2-integrin subunit CD18. J Immunol 154: 3461-3470.
122. Del Valle-Perez, B., V. G. Martinez, C. Lacasa-Salavert, A. Figueras, S. S. Shapiro, T. Takafuta, O. Casanovas, G. Capella, F. Ventura, and F. Vinals. 2010. Filamin B plays a key role in vascular endothelial growth factor-induced endothelial cell motility through its interaction with Rac-1 and Vav-2. The Journal of biological chemistry 285: 10748-10760.
123. Jimenez-Baranda, S., C. Gomez-Mouton, A. Rojas, L. Martinez-Prats, E. Mira, R. Ana Lacalle, A. Valencia, D. S. Dimitrov, A. Viola, R. Delgado, A. C. Martinez, and S. Manes. 2007. Filamin-A regulates actin-dependent clustering of HIV receptors. Nature cell biology 9: 838-846.
124. Minsaas, L., J. Planaguma, M. Madziva, B. F. Krakstad, M. Masia-Balague, A. A. Katz, and A. M. Aragay. 2010. Filamin a binds to CCR2B and regulates its internalization. PLoS One 5: e12212.
125. Lapidot, T., and I. Petit. 2002. Current understanding of stem cell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Experimental hematology 30: 973-981.
126. Muller, A., B. Homey, H. Soto, N. Ge, D. Catron, M. E. Buchanan, T. McClanahan, E. Murphy, W. Yuan, S. N. Wagner, J. L. Barrera, A. Mohar, E. Verastegui, and A. Zlotnik. 2001. Involvement of chemokine receptors in breast cancer metastasis. Nature 410: 50-56.
127. Lane, S. W., D. T. Scadden, and D. G. Gilliland. 2009. The leukemic stem cell niche: current concepts and therapeutic opportunities. Blood 114: 1150-1157.
128. Tavor, S., I. Petit, S. Porozov, A. Avigdor, A. Dar, L. Leider-Trejo, N. Shemtov, V. Deutsch, E. Naparstek, A. Nagler, and T. Lapidot. 2004. CXCR4 regulates migration and development of human acute myelogenous leukemia stem cells in transplanted NOD/SCID mice. Cancer research 64: 2817-2824.
129. Nervi, B., P. Ramirez, M. P. Rettig, G. L. Uy, M. S. Holt, J. K. Ritchey, J. L. Prior, D. Piwnica-Worms, G. Bridger, T. J. Ley, and J. F. DiPersio. 2009. Chemosensitization of acute myeloid leukemia (AML) following mobilization by the CXCR4 antagonist AMD3100. Blood 113: 6206-6214.
130. Crazzolara, R., A. Kreczy, G. Mann, A. Heitger, G. Eibl, F. M. Fink, R. Mohle, and B. Meister. 2001. High expression of the chemokine receptor CXCR4 predicts extramedullary organ infiltration in childhood acute lymphoblastic leukaemia. British journal of haematology 115: 545-553.
131. Przepiorka, D., P. Anderlini, R. Saliba, K. Cleary, R. Mehra, I. Khouri, Y. O. Huh, S. Giralt, I. Braunschweig, K. van Besien, and R. Champlin. 2001. Chronic graft-versus-host disease after allogeneic blood stem cell transplantation. Blood 98: 1695-1700.
132. Beilhack, A., S. Schulz, J. Baker, G. F. Beilhack, C. B. Wieland, E. I. Herman, E. M. Baker, Y. A. Cao, C. H. Contag, and R. S. Negrin. 2005. In vivo analyses of early events in acute graft-versus-host disease reveal sequential infiltration of T-cell subsets. Blood 106: 1113-1122.
133. Wysocki, C. A., A. Panoskaltsis-Mortari, B. R. Blazar, and J. S. Serody. 2005. Leukocyte migration and graft-versus-host disease. Blood 105: 4191-4199.
134. Faaij, C. M., A. C. Lankester, E. Spierings, M. Hoogeboom, E. P. Bowman, M. Bierings, T. Revesz, R. M. Egeler, M. J. van Tol, and N. E. Annels. 2006. A possible role for CCL27/CTACK-CCR10 interaction in recruiting CD4 T cells to skin in human graft-versus-host disease. British journal of haematology 133: 538-549.
135. Piper, K. P., C. Horlock, S. J. Curnow, J. Arrazi, S. Nicholls, P. Mahendra, C. Craddock, and P. A. Moss. 2007. CXCL10-CXCR3 interactions play an important role in the pathogenesis of acute graft-versus-host disease in the skin following allogeneic stem-cell transplantation. Blood 110: 3827-3832.
136. Croudace, J. E., C. F. Inman, B. E. Abbotts, S. Nagra, J. Nunnick, P. Mahendra, C. Craddock, R. Malladi, and P. A. Moss. 2012. Chemokine-mediated tissue recruitment of CXCR3+ CD4+ T cells plays a major role in the pathogenesis of chronic GVHD. Blood 120: 4246-4255.
137. Bour, H., E. Peyron, M. Gaucherand, J. L. Garrigue, C. Desvignes, D. Kaiserlian, J. P. Revillard, and J. F. Nicolas. 1995. Major histocompatibility complex class I-restricted CD8+ T cells and class II-restricted CD4+ T cells, respectively, mediate and regulate contact sensitivity to dinitrofluorobenzene. Eur J Immunol 25: 3006-3010.
138. Grabbe, S., and T. Schwarz. 1998. Immunoregulatory mechanisms involved in elicitation of allergic contact hypersensitivity. Immunol Today 19: 37-44.
139. Paradis, T. J., S. H. Cole, R. T. Nelson, and R. P. Gladue. 2008. Essential role of CCR6 in directing activated T cells to the skin during contact hypersensitivity. J Invest Dermatol 128: 628-633.
140. Beilhack, A., S. Schulz, J. Baker, G. F. Beilhack, R. Nishimura, E. M. Baker, G. Landan, E. I. Herman, E. C. Butcher, C. H. Contag, and R. S. Negrin. 2008. Prevention of acute graft-versus-host disease by blocking T-cell entry to secondary lymphoid organs. Blood 111: 2919-2928.
141. Fatkenheuer, G., M. Nelson, A. Lazzarin, I. Konourina, A. I. Hoepelman, H. Lampiris, B. Hirschel, P. Tebas, F. Raffi, B. Trottier, N. Bellos, M. Saag, D. A. Cooper, M. Westby, M. Tawadrous, J. F. Sullivan, C. Ridgway, M. W. Dunne, S. Felstead, H. Mayer, and E. van der Ryst. 2008. Subgroup analyses of maraviroc in previously treated R5 HIV-1 infection. The New England journal of medicine 359: 1442-1455.
142. Gulick, R. M., J. Lalezari, J. Goodrich, N. Clumeck, E. DeJesus, A. Horban, J. Nadler, B. Clotet, A. Karlsson, M. Wohlfeiler, J. B. Montana, M. McHale, J. Sullivan, C. Ridgway, S. Felstead, M. W. Dunne, E. van der Ryst, and H. Mayer. 2008. Maraviroc for previously treated patients with R5 HIV-1 infection. The New England journal of medicine 359: 1429-1441.
143. Reshef, R., S. M. Luger, E. O. Hexner, A. W. Loren, N. V. Frey, S. D. Nasta, S. C. Goldstein, E. A. Stadtmauer, J. Smith, S. Bailey, R. Mick, D. F. Heitjan, S. G. Emerson, J. A. Hoxie, R. H. Vonderheide, and D. L. Porter. 2012. Blockade of lymphocyte chemotaxis in visceral graft-versus-host disease. The New England journal of medicine 367: 135-145.
144. Lefrancois, M., M. R. Lefebvre, G. Saint-Onge, P. E. Boulais, S. Lamothe, R. Leduc, P. Lavigne, N. Heveker, and E. Escher. 2011. Agonists for the Chemokine Receptor CXCR4. ACS medicinal chemistry letters 2: 597-602.
145. Zhan, W., Z. Liang, A. Zhu, S. Kurtkaya, H. Shim, J. P. Snyder, and D. C. Liotta. 2007. Discovery of small molecule CXCR4 antagonists. Journal of medicinal chemistry 50: 5655-5664.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top