跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/08 21:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊奕程
研究生(外文):Yi-Cheng Yang
論文名稱:探討卡波氏肉瘤相關性皰疹病毒活化過程中 SUMO paralogues於基因體上修飾狀態與後基因體調控
論文名稱(外文):Genome-wide profiling of epigenetic status of SUMO paralogues and its transcription regulation during KSHV reactivation
指導教授:張佩靖
指導教授(外文):Pei-Ching Chang
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:微生物及免疫學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:60
中文關鍵詞:後基因體卡波氏肉瘤相關性皰疹病毒後轉譯修飾
外文關鍵詞:epigeneticsKaposi’s sarcoma associated herpesvirusSUMOSUMOylation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:201
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
SUMO修飾 (SUMOylation) 是一種可逆的後轉譯修飾,在真核細胞內,這種修飾普遍參與細胞內各種生化反應,包含了調控後基因體 (epigenetics) 的基因轉錄。目前,SUMO修飾在後基因體調控上的細節與影響,尚未完全釐清。
卡波氏肉瘤相關性皰疹病毒 (KSHV) 與其他皰疹病毒一樣,演化出直接或間接方式利用SUMO修飾系統,調控宿主細胞或病毒基因表現,以利病毒本身的複製及生存。特別是KSHV除了間接利用宿主的SUMO修飾系統外,病毒本身基因體就會表現一個SUMO-2/3專一性的SUMO E3連接酶稱為K-bZIP。人類細胞中具有3種不同的SUMO paralogues,分別為SUMO-1,SUMO-2及SUMO-3。為瞭解皰疹病毒活化過程中,不同的SUMO paralogues在基因體上結合的差異,利用能誘發K-Rta產生的BCBL-1細胞株促使病毒活化,使用ChIP-seq進行SUMO-1及SUMO-2/3在基因體上結合位置的分析。發現病毒活化前SUMO-1及SUMO-2/3基因體上之結合呈現相似型態,集中在細胞的轉錄起始點附近,與病毒表現SUMO-2/3專一性SUMO E3連接酶一致,病毒活化後,只有SUMO-2/3在細胞基因體上結合量明顯增加,且主要集中表現量不被改變基因的啟動子 (promoter) 上。KSHV活化前後,啟動子受SUMO修飾的基因,進行基因本體 (Gene Ontology; GO) 分析,發現病毒活化後,SUMO-2/3修飾的基因,主要集中在與免疫與細胞生存相關的基因上,這顯示病毒可能透過增加特定基因啟動子附近調控蛋白或轉譯因子的SUMO-2/3修飾,在病毒活化過中,避免宿主細胞內抗病毒相關基因的活化。暗示著病毒活化的過程中,病毒利用SUMO-2/3修飾基因的啟動子,讓免疫相關的基因表現量不被改變。病毒活化後,病毒基因體上SUMO-2/3修飾也明顯地增加,這顯示可能與病毒本身表現SUMO-2/3專一性的E3連接酶 (K-bZIP) 有關,利用同源重組全病毒基因,產生K-bZIP的L75A (SIM突變) 及ΔK8突變 (缺失突變) 株,發現L75A突變株在產生病毒顆粒的能力變差,且突變株產生的病毒顆粒重新感染細胞的能力也較差。
Small ubiquitin-like modifiers (SUMO) are reversible post-translational modifications involved in virtually all cellular processes in eukaryotes including the epigenetic regulation of transcription. However, the functions of SUMOylation during mammalian epigenetic transcriptional regulation are largely uncharacterized. Herpesviruses, including Kaposi’s sarcoma associated herpesvirus (KSHV) , have evolved a range of mechanisms to directly or indirectly modulate SUMO machinery in order to regulate the expression of cellular and viral genomes, thus advancing their own replication agenda. Interestingly, KSHV encodes a SUMO ligase, K-bZIP, with specificity toward SUMO2/3. To delineate the differential chromatin binding patterns of SUMO paralogues during herpesvirus reactivation, we comprehensively mapped the genomic SUMO-1 and SUMO-2/3 binding sites during K-Rta induced KSHV reactivation of the BCBL-1 cell line using a ChIP-seq assay. In control, the SUMO-1 and SUMO-2/3 peaks have a similar distance distribution across the genome with highly enriched around transcription start sites (TSSs) and near the promoters of highly transcribed genes. Interestingly, we detect that SUMO-2/3, but not SUMO-1, binding was significantly increased in the promoter regions of transcriptionally active genes with unaltered expression during viral reactivation. Gene ontology analysis shows that these SUMO-2/3 targeted genes are primarily involved in cellular immune responses and cell survival. Our results suggest that the virus enhances SUMO-2/3 modification near promoters during reactivation in order to prevent anti-viral related gene activation. During viral reactivation, we also detect a significant increase of SUMO-2/3 binding across viral genome. This data suggest that KSHV SUMO-2/3 specific E3 ligase, K-bZIP, may involve in viral reactivation. To study this, we made recombinant KSHV with SIM domain (L75A) and deletion mutant. The result shows that SUMO E3 ligase activity is important for KSHV reactivation and infection.
目錄
中文摘要 i
英文摘要 ii

壹、緒論 1
一、卡波氏肉瘤相關性皰疹病毒 1
1. 卡波氏肉瘤相關性皰疹病毒 1
2. 卡波氏肉瘤相關性皰疹病毒生活史 2
3. 卡波氏肉瘤相關性皰疹病毒基因 2
二、SUMO (Small Ubiquitin-related Modifier) 4
1. SUMO paralogues 4
2. SUMO修飾的機制 5
3. SUMO非共價鍵結的交互作用 6
三、SUMOylation與病毒 6
四、非編碼型RNA 7


貳、實驗材料與方法 8
一、實驗材料 8
1. 細胞株 8
2. 培養基與培養液 8
3. 質體 9
4. 溶液 10
5. 抗體 11
6. 其他 12
二、實驗方法 12
1. 細胞培養 12
2. 染色質免疫沉澱法及次世代定序 12
3. 即時聚合酶連鎖反應 13
4. 聚合酶連鎖反應 13
5. 反轉錄聚合酶連鎖反應 14
6. 核糖核酸次世代定序 14
7. 轉型作用 14
8. 質體製備 14
9. 抽取病毒DNA 15
10. 細胞轉染作用 15
11. SDS-聚丙烯醯胺凝膠電泳 15
12. 西方墨點法 15
13. 免疫沉澱法 16
14. ChIP-Seq data分析 16
15. RNA-Seq data分析 16

參、實驗結果 17
一、病毒活化過程中基因體上SUMO paralogue修飾的型態與變化 17
1. 病毒活化過程中,全基因體上SUMO的修飾變化 17
2. 病毒活化過程中,SUMO paralogues分佈型態 19
二、探討SUMO-1及SUMO-2/3在轉錄因子結合位置上修飾 19
三、病毒活化過程中,SUMO-2/3潛在轉錄因子 21
四、探討SUMO-2/3在啟動子的修飾與基因表現之關聯性 22
五、探討KSHV中的K-bZIP在病毒活化中扮演的角色 24

肆、討論 26
一、病毒活化過程中基因體上SUMO paralogue結合型態的差異 26
二、病毒活化過程中,SUMO-2/3修飾與基因表現 27
三、病毒活化過程中,SUMO-2/3修飾與轉錄因子 28
四、病毒與SUMO修飾 29

伍、參考文獻 31

圖、表 37

1. Chang Y, et al. (1994) Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science 266(5192):1865-1869.
2. Gallo RC (1998) HIV-1, HHV-8, and Kaposi's sarcoma. Journal of human virology 1(3):185-186.
3. Deng B, O'Connor CM, Kedes DH, &; Zhou ZH (2008) Cryo-electron tomography of Kaposi's sarcoma-associated herpesvirus capsids reveals dynamic scaffolding structures essential to capsid assembly and maturation. Journal of structural biology 161(3):419-427.
4. Boshoff C, et al. (1995) Kaposi's sarcoma-associated herpesvirus infects endothelial and spindle cells. Nature medicine 1(12):1274-1278.
5. Corbellino M, et al. (1996) Restricted tissue distribution of extralesional Kaposi's sarcoma-associated herpesvirus-like DNA sequences in AIDS patients with Kaposi's sarcoma. AIDS research and human retroviruses 12(8):651-657.
6. Whitby D, et al. (1995) Detection of Kaposi sarcoma associated herpesvirus in peripheral blood of HIV-infected individuals and progression to Kaposi's sarcoma. Lancet 346(8978):799-802.
7. Moore PS &; Chang Y (2010) Why do viruses cause cancer? Highlights of the first century of human tumour virology. Nature reviews. Cancer 10(12):878-889.
8. Gill PS, et al. (1998) Evidence for multiclonality in multicentric Kaposi's sarcoma. Proceedings of the National Academy of Sciences of the United States of America 95(14):8257-8261.
9. Rabkin CS, Biggar RJ, &; Horm JW (1991) Increasing incidence of cancers associated with the human immunodeficiency virus epidemic. International journal of cancer. Journal international du cancer 47(5):692-696.
10. Hengge UR, et al. (2002) Update on Kaposi's sarcoma and other HHV8 associated diseases. Part 2: pathogenesis, Castleman's disease, and pleural effusion lymphoma. The Lancet infectious diseases 2(6):344-352.
11. Wen KW &; Damania B (2010) Kaposi sarcoma-associated herpesvirus (KSHV): molecular biology and oncogenesis. Cancer letters 289(2):140-150.
12. Soulier J, et al. (1995) Kaposi's sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman's disease. Blood 86(4):1276-1280.
13. Boshoff C &; Chang Y (2001) Kaposi's sarcoma-associated herpesvirus: a new DNA tumor virus. Annual review of medicine 52:453-470.
14. Chang Y &; Moore PS (1996) Kaposi's Sarcoma (KS)-associated herpesvirus and its role in KS. Infectious agents and disease 5(4):215-222.
15. Miller G, et al. (1997) Selective switch between latency and lytic replication of Kaposi's sarcoma herpesvirus and Epstein-Barr virus in dually infected body cavity lymphoma cells. Journal of virology 71(1):314-324.
16. Sun R, et al. (1998) A viral gene that activates lytic cycle expression of Kaposi's sarcoma-associated herpesvirus. Proceedings of the National Academy of Sciences of the United States of America 95(18):10866-10871.
17. Roizman BS, A. E (1990) Herpes simplex viruses and their replication. In Virology, 2nd edn, pp. 1795-1841. Edited by B. N. Fields. New York: Raven Press.
18. Russo JJ, et al. (1996) Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proceedings of the National Academy of Sciences of the United States of America 93(25):14862-14867.
19. Krithivas A, Fujimuro M, Weidner M, Young DB, &; Hayward SD (2002) Protein interactions targeting the latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus to cell chromosomes. Journal of virology 76(22):11596-11604.
20. Ballestas ME, Chatis PA, &; Kaye KM (1999) Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen. Science 284(5414):641-644.
21. Lukac DM, Garibyan L, Kirshner JR, Palmeri D, &; Ganem D (2001) DNA binding by Kaposi's sarcoma-associated herpesvirus lytic switch protein is necessary for transcriptional activation of two viral delayed early promoters. Journal of virology 75(15):6786-6799.
22. Lu F, et al. (2003) Chromatin remodeling of the Kaposi's sarcoma-associated herpesvirus ORF50 promoter correlates with reactivation from latency. Journal of virology 77(21):11425-11435.
23. Gwack Y, et al. (2003) Principal role of TRAP/mediator and SWI/SNF complexes in Kaposi's sarcoma-associated herpesvirus RTA-mediated lytic reactivation. Molecular and cellular biology 23(6):2055-2067.
24. Izumiya Y, et al. (2003) Kaposi's sarcoma-associated herpesvirus K-bZIP is a coregulator of K-Rta: physical association and promoter-dependent transcriptional repression. Journal of virology 77(2):1441-1451.
25. Izumiya Y, et al. (2005) Kaposi's sarcoma-associated herpesvirus K-bZIP represses gene transcription via SUMO modification. Journal of virology 79(15):9912-9925.
26. Izumiya Y, et al. (2007) Kaposi's sarcoma-associated herpesvirus-encoded protein kinase and its interaction with K-bZIP. Journal of virology 81(3):1072-1082.
27. Chang PC, et al. (2010) Kaposi's sarcoma-associated herpesvirus (KSHV) encodes a SUMO E3 ligase that is SIM-dependent and SUMO-2/3-specific. The Journal of biological chemistry 285(8):5266-5273.
28. Lefort S, Soucy-Faulkner A, Grandvaux N, &; Flamand L (2007) Binding of Kaposi's sarcoma-associated herpesvirus K-bZIP to interferon-responsive factor 3 elements modulates antiviral gene expression. Journal of virology 81(20):10950-10960.
29. Yu Y, Wang SE, &; Hayward GS (2005) The KSHV immediate-early transcription factor RTA encodes ubiquitin E3 ligase activity that targets IRF7 for proteosome-mediated degradation. Immunity 22(1):59-70.
30. Lefort S &; Flamand L (2009) Kaposi's sarcoma-associated herpesvirus K-bZIP protein is necessary for lytic viral gene expression, DNA replication, and virion production in primary effusion lymphoma cell lines. Journal of virology 83(11):5869-5880.
31. Wang Y, Sathish N, Hollow C, &; Yuan Y (2011) Functional characterization of Kaposi's sarcoma-associated herpesvirus open reading frame K8 by bacterial artificial chromosome-based mutagenesis. Journal of virology 85(5):1943-1957.
32. Meluh PB &; Koshland D (1995) Evidence that the MIF2 gene of Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein CENP-C. Molecular biology of the cell 6(7):793-807.
33. Shen Z, Pardington-Purtymun PE, Comeaux JC, Moyzis RK, &; Chen DJ (1996) UBL1, a human ubiquitin-like protein associating with human RAD51/RAD52 proteins. Genomics 36(2):271-279.
34. Garcia-Dominguez M &; Reyes JC (2009) SUMO association with repressor complexes, emerging routes for transcriptional control. Biochimica et biophysica acta 1789(6-8):451-459.
35. Rosonina E, Duncan SM, &; Manley JL (2010) SUMO functions in constitutive transcription and during activation of inducible genes in yeast. Genes &; development 24(12):1242-1252.
36. Makhnevych T, et al. (2009) Global map of SUMO function revealed by protein-protein interaction and genetic networks. Molecular cell 33(1):124-135.
37. Saitoh H &; Hinchey J (2000) Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. The Journal of biological chemistry 275(9):6252-6258.
38. Tatham MH, et al. (2001) Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. The Journal of biological chemistry 276(38):35368-35374.
39. Matic I, et al. (2008) In vivo identification of human small ubiquitin-like modifier polymerization sites by high accuracy mass spectrometry and an in vitro to in vivo strategy. Molecular &; cellular proteomics : MCP 7(1):132-144.
40. Ayaydin F &; Dasso M (2004) Distinct in vivo dynamics of vertebrate SUMO paralogues. Molecular biology of the cell 15(12):5208-5218.
41. Geiss-Friedlander R &; Melchior F (2007) Concepts in sumoylation: a decade on. Nature reviews. Molecular cell biology 8(12):947-956.
42. Meulmeester E, Kunze M, Hsiao HH, Urlaub H, &; Melchior F (2008) Mechanism and consequences for paralog-specific sumoylation of ubiquitin-specific protease 25. Molecular cell 30(5):610-619.
43. Li SJ &; Hochstrasser M (2000) The yeast ULP2 (SMT4) gene encodes a novel protease specific for the ubiquitin-like Smt3 protein. Molecular and cellular biology 20(7):2367-2377.
44. Li SJ &; Hochstrasser M (1999) A new protease required for cell-cycle progression in yeast. Nature 398(6724):246-251.
45. Di Bacco A, et al. (2006) The SUMO-specific protease SENP5 is required for cell division. Molecular and cellular biology 26(12):4489-4498.
46. Gong L &; Yeh ET (2006) Characterization of a family of nucleolar SUMO-specific proteases with preference for SUMO-2 or SUMO-3. The Journal of biological chemistry 281(23):15869-15877.
47. Song J, Durrin LK, Wilkinson TA, Krontiris TG, &; Chen Y (2004) Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proceedings of the National Academy of Sciences of the United States of America 101(40):14373-14378.
48. Bailey D &; O'Hare P (2002) Herpes simplex virus 1 ICP0 co-localizes with a SUMO-specific protease. The Journal of general virology 83(Pt 12):2951-2964.
49. Boggio R &; Chiocca S (2006) Viruses and sumoylation: recent highlights. Current opinion in microbiology 9(4):430-436.
50. Adamson AL &; Kenney S (2001) Epstein-barr virus immediate-early protein BZLF1 is SUMO-1 modified and disrupts promyelocytic leukemia bodies. Journal of virology 75(5):2388-2399.
51. Chang LK, et al. (2004) Post-translational modification of Rta of Epstein-Barr virus by SUMO-1. The Journal of biological chemistry 279(37):38803-38812.
52. Wimmer P, Schreiner S, &; Dobner T (2012) Human pathogens and the host cell SUMOylation system. Journal of virology 86(2):642-654.
53. Okazaki Y, et al. (2002) Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature 420(6915):563-573.
54. Baker M (2011) Long noncoding RNAs: the search for function. Nature methods.
55. Wahlestedt C (2013) Targeting long non-coding RNA to therapeutically upregulate gene expression. Nature reviews. Drug discovery 12(6):433-446.
56. Spizzo R, Almeida MI, Colombatti A, &; Calin GA (2012) Long non-coding RNAs and cancer: a new frontier of translational research? Oncogene 31(43):4577-4587.
57. Lyst MJ &; Stancheva I (2007) A role for SUMO modification in transcriptional repression and activation. Biochemical Society transactions 35(Pt 6):1389-1392.
58. Laurie Daviesa UG (1993) The Identification of Multiple Outliers. Journal of the American Statistical Association 88(423):782-792.
59. Liu HW, et al. (2012) Chromatin modification by SUMO-1 stimulates the promoters of translation machinery genes. Nucleic acids research 40(20):10172-10186.
60. Stielow B, et al. (2008) Identification of SUMO-dependent chromatin-associated transcriptional repression components by a genome-wide RNAi screen. Molecular cell 29(6):742-754.
61. Zhang XD, et al. (2008) SUMO-2/3 modification and binding regulate the association of CENP-E with kinetochores and progression through mitosis. Molecular cell 29(6):729-741.
62. Dunham I KA, Aldred SF, Collins PJ, Davis CA, Doyle F, Epstein CB, Frietze S, Harrow J, Kaul R, et al (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414):57-74.
63. Cheng CY PCC, C.H. C, F.R. H, C.Y. T, W.C. W, H.J. K (2013) An improved ChIP‐seq peak detection system for simultaneously identifying post‐translational modified transcription factors by using combinatorial fusion: SUMOylation as an example. International conference on Bioinformatics.
64. Chang TH, et al. (2009) Ebola Zaire virus blocks type I interferon production by exploiting the host SUMO modification machinery. PLoS pathogens 5(6):e1000493.
65. Bentz GL, Shackelford J, &; Pagano JS (2012) Epstein-Barr virus latent membrane protein 1 regulates the function of interferon regulatory factor 7 by inducing its sumoylation. Journal of virology 86(22):12251-12261.
66. Kubota T, et al. (2008) Virus infection triggers SUMOylation of IRF3 and IRF7, leading to the negative regulation of type I interferon gene expression. The Journal of biological chemistry 283(37):25660-25670.
67. Lefort S, Gravel A, &; Flamand L (2010) Repression of interferon-alpha stimulated genes expression by Kaposi's sarcoma-associated herpesvirus K-bZIP protein. Virology 408(1):14-30.
68. Marusic MB, Mencin N, Licen M, Banks L, &; Grm HS (2010) Modification of human papillomavirus minor capsid protein L2 by sumoylation. Journal of virology 84(21):11585-11589.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top