|
1. Chang Y, et al. (1994) Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science 266(5192):1865-1869. 2. Gallo RC (1998) HIV-1, HHV-8, and Kaposi's sarcoma. Journal of human virology 1(3):185-186. 3. Deng B, O'Connor CM, Kedes DH, &; Zhou ZH (2008) Cryo-electron tomography of Kaposi's sarcoma-associated herpesvirus capsids reveals dynamic scaffolding structures essential to capsid assembly and maturation. Journal of structural biology 161(3):419-427. 4. Boshoff C, et al. (1995) Kaposi's sarcoma-associated herpesvirus infects endothelial and spindle cells. Nature medicine 1(12):1274-1278. 5. Corbellino M, et al. (1996) Restricted tissue distribution of extralesional Kaposi's sarcoma-associated herpesvirus-like DNA sequences in AIDS patients with Kaposi's sarcoma. AIDS research and human retroviruses 12(8):651-657. 6. Whitby D, et al. (1995) Detection of Kaposi sarcoma associated herpesvirus in peripheral blood of HIV-infected individuals and progression to Kaposi's sarcoma. Lancet 346(8978):799-802. 7. Moore PS &; Chang Y (2010) Why do viruses cause cancer? Highlights of the first century of human tumour virology. Nature reviews. Cancer 10(12):878-889. 8. Gill PS, et al. (1998) Evidence for multiclonality in multicentric Kaposi's sarcoma. Proceedings of the National Academy of Sciences of the United States of America 95(14):8257-8261. 9. Rabkin CS, Biggar RJ, &; Horm JW (1991) Increasing incidence of cancers associated with the human immunodeficiency virus epidemic. International journal of cancer. Journal international du cancer 47(5):692-696. 10. Hengge UR, et al. (2002) Update on Kaposi's sarcoma and other HHV8 associated diseases. Part 2: pathogenesis, Castleman's disease, and pleural effusion lymphoma. The Lancet infectious diseases 2(6):344-352. 11. Wen KW &; Damania B (2010) Kaposi sarcoma-associated herpesvirus (KSHV): molecular biology and oncogenesis. Cancer letters 289(2):140-150. 12. Soulier J, et al. (1995) Kaposi's sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman's disease. Blood 86(4):1276-1280. 13. Boshoff C &; Chang Y (2001) Kaposi's sarcoma-associated herpesvirus: a new DNA tumor virus. Annual review of medicine 52:453-470. 14. Chang Y &; Moore PS (1996) Kaposi's Sarcoma (KS)-associated herpesvirus and its role in KS. Infectious agents and disease 5(4):215-222. 15. Miller G, et al. (1997) Selective switch between latency and lytic replication of Kaposi's sarcoma herpesvirus and Epstein-Barr virus in dually infected body cavity lymphoma cells. Journal of virology 71(1):314-324. 16. Sun R, et al. (1998) A viral gene that activates lytic cycle expression of Kaposi's sarcoma-associated herpesvirus. Proceedings of the National Academy of Sciences of the United States of America 95(18):10866-10871. 17. Roizman BS, A. E (1990) Herpes simplex viruses and their replication. In Virology, 2nd edn, pp. 1795-1841. Edited by B. N. Fields. New York: Raven Press. 18. Russo JJ, et al. (1996) Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proceedings of the National Academy of Sciences of the United States of America 93(25):14862-14867. 19. Krithivas A, Fujimuro M, Weidner M, Young DB, &; Hayward SD (2002) Protein interactions targeting the latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus to cell chromosomes. Journal of virology 76(22):11596-11604. 20. Ballestas ME, Chatis PA, &; Kaye KM (1999) Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen. Science 284(5414):641-644. 21. Lukac DM, Garibyan L, Kirshner JR, Palmeri D, &; Ganem D (2001) DNA binding by Kaposi's sarcoma-associated herpesvirus lytic switch protein is necessary for transcriptional activation of two viral delayed early promoters. Journal of virology 75(15):6786-6799. 22. Lu F, et al. (2003) Chromatin remodeling of the Kaposi's sarcoma-associated herpesvirus ORF50 promoter correlates with reactivation from latency. Journal of virology 77(21):11425-11435. 23. Gwack Y, et al. (2003) Principal role of TRAP/mediator and SWI/SNF complexes in Kaposi's sarcoma-associated herpesvirus RTA-mediated lytic reactivation. Molecular and cellular biology 23(6):2055-2067. 24. Izumiya Y, et al. (2003) Kaposi's sarcoma-associated herpesvirus K-bZIP is a coregulator of K-Rta: physical association and promoter-dependent transcriptional repression. Journal of virology 77(2):1441-1451. 25. Izumiya Y, et al. (2005) Kaposi's sarcoma-associated herpesvirus K-bZIP represses gene transcription via SUMO modification. Journal of virology 79(15):9912-9925. 26. Izumiya Y, et al. (2007) Kaposi's sarcoma-associated herpesvirus-encoded protein kinase and its interaction with K-bZIP. Journal of virology 81(3):1072-1082. 27. Chang PC, et al. (2010) Kaposi's sarcoma-associated herpesvirus (KSHV) encodes a SUMO E3 ligase that is SIM-dependent and SUMO-2/3-specific. The Journal of biological chemistry 285(8):5266-5273. 28. Lefort S, Soucy-Faulkner A, Grandvaux N, &; Flamand L (2007) Binding of Kaposi's sarcoma-associated herpesvirus K-bZIP to interferon-responsive factor 3 elements modulates antiviral gene expression. Journal of virology 81(20):10950-10960. 29. Yu Y, Wang SE, &; Hayward GS (2005) The KSHV immediate-early transcription factor RTA encodes ubiquitin E3 ligase activity that targets IRF7 for proteosome-mediated degradation. Immunity 22(1):59-70. 30. Lefort S &; Flamand L (2009) Kaposi's sarcoma-associated herpesvirus K-bZIP protein is necessary for lytic viral gene expression, DNA replication, and virion production in primary effusion lymphoma cell lines. Journal of virology 83(11):5869-5880. 31. Wang Y, Sathish N, Hollow C, &; Yuan Y (2011) Functional characterization of Kaposi's sarcoma-associated herpesvirus open reading frame K8 by bacterial artificial chromosome-based mutagenesis. Journal of virology 85(5):1943-1957. 32. Meluh PB &; Koshland D (1995) Evidence that the MIF2 gene of Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein CENP-C. Molecular biology of the cell 6(7):793-807. 33. Shen Z, Pardington-Purtymun PE, Comeaux JC, Moyzis RK, &; Chen DJ (1996) UBL1, a human ubiquitin-like protein associating with human RAD51/RAD52 proteins. Genomics 36(2):271-279. 34. Garcia-Dominguez M &; Reyes JC (2009) SUMO association with repressor complexes, emerging routes for transcriptional control. Biochimica et biophysica acta 1789(6-8):451-459. 35. Rosonina E, Duncan SM, &; Manley JL (2010) SUMO functions in constitutive transcription and during activation of inducible genes in yeast. Genes &; development 24(12):1242-1252. 36. Makhnevych T, et al. (2009) Global map of SUMO function revealed by protein-protein interaction and genetic networks. Molecular cell 33(1):124-135. 37. Saitoh H &; Hinchey J (2000) Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. The Journal of biological chemistry 275(9):6252-6258. 38. Tatham MH, et al. (2001) Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. The Journal of biological chemistry 276(38):35368-35374. 39. Matic I, et al. (2008) In vivo identification of human small ubiquitin-like modifier polymerization sites by high accuracy mass spectrometry and an in vitro to in vivo strategy. Molecular &; cellular proteomics : MCP 7(1):132-144. 40. Ayaydin F &; Dasso M (2004) Distinct in vivo dynamics of vertebrate SUMO paralogues. Molecular biology of the cell 15(12):5208-5218. 41. Geiss-Friedlander R &; Melchior F (2007) Concepts in sumoylation: a decade on. Nature reviews. Molecular cell biology 8(12):947-956. 42. Meulmeester E, Kunze M, Hsiao HH, Urlaub H, &; Melchior F (2008) Mechanism and consequences for paralog-specific sumoylation of ubiquitin-specific protease 25. Molecular cell 30(5):610-619. 43. Li SJ &; Hochstrasser M (2000) The yeast ULP2 (SMT4) gene encodes a novel protease specific for the ubiquitin-like Smt3 protein. Molecular and cellular biology 20(7):2367-2377. 44. Li SJ &; Hochstrasser M (1999) A new protease required for cell-cycle progression in yeast. Nature 398(6724):246-251. 45. Di Bacco A, et al. (2006) The SUMO-specific protease SENP5 is required for cell division. Molecular and cellular biology 26(12):4489-4498. 46. Gong L &; Yeh ET (2006) Characterization of a family of nucleolar SUMO-specific proteases with preference for SUMO-2 or SUMO-3. The Journal of biological chemistry 281(23):15869-15877. 47. Song J, Durrin LK, Wilkinson TA, Krontiris TG, &; Chen Y (2004) Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proceedings of the National Academy of Sciences of the United States of America 101(40):14373-14378. 48. Bailey D &; O'Hare P (2002) Herpes simplex virus 1 ICP0 co-localizes with a SUMO-specific protease. The Journal of general virology 83(Pt 12):2951-2964. 49. Boggio R &; Chiocca S (2006) Viruses and sumoylation: recent highlights. Current opinion in microbiology 9(4):430-436. 50. Adamson AL &; Kenney S (2001) Epstein-barr virus immediate-early protein BZLF1 is SUMO-1 modified and disrupts promyelocytic leukemia bodies. Journal of virology 75(5):2388-2399. 51. Chang LK, et al. (2004) Post-translational modification of Rta of Epstein-Barr virus by SUMO-1. The Journal of biological chemistry 279(37):38803-38812. 52. Wimmer P, Schreiner S, &; Dobner T (2012) Human pathogens and the host cell SUMOylation system. Journal of virology 86(2):642-654. 53. Okazaki Y, et al. (2002) Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cDNAs. Nature 420(6915):563-573. 54. Baker M (2011) Long noncoding RNAs: the search for function. Nature methods. 55. Wahlestedt C (2013) Targeting long non-coding RNA to therapeutically upregulate gene expression. Nature reviews. Drug discovery 12(6):433-446. 56. Spizzo R, Almeida MI, Colombatti A, &; Calin GA (2012) Long non-coding RNAs and cancer: a new frontier of translational research? Oncogene 31(43):4577-4587. 57. Lyst MJ &; Stancheva I (2007) A role for SUMO modification in transcriptional repression and activation. Biochemical Society transactions 35(Pt 6):1389-1392. 58. Laurie Daviesa UG (1993) The Identification of Multiple Outliers. Journal of the American Statistical Association 88(423):782-792. 59. Liu HW, et al. (2012) Chromatin modification by SUMO-1 stimulates the promoters of translation machinery genes. Nucleic acids research 40(20):10172-10186. 60. Stielow B, et al. (2008) Identification of SUMO-dependent chromatin-associated transcriptional repression components by a genome-wide RNAi screen. Molecular cell 29(6):742-754. 61. Zhang XD, et al. (2008) SUMO-2/3 modification and binding regulate the association of CENP-E with kinetochores and progression through mitosis. Molecular cell 29(6):729-741. 62. Dunham I KA, Aldred SF, Collins PJ, Davis CA, Doyle F, Epstein CB, Frietze S, Harrow J, Kaul R, et al (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414):57-74. 63. Cheng CY PCC, C.H. C, F.R. H, C.Y. T, W.C. W, H.J. K (2013) An improved ChIP‐seq peak detection system for simultaneously identifying post‐translational modified transcription factors by using combinatorial fusion: SUMOylation as an example. International conference on Bioinformatics. 64. Chang TH, et al. (2009) Ebola Zaire virus blocks type I interferon production by exploiting the host SUMO modification machinery. PLoS pathogens 5(6):e1000493. 65. Bentz GL, Shackelford J, &; Pagano JS (2012) Epstein-Barr virus latent membrane protein 1 regulates the function of interferon regulatory factor 7 by inducing its sumoylation. Journal of virology 86(22):12251-12261. 66. Kubota T, et al. (2008) Virus infection triggers SUMOylation of IRF3 and IRF7, leading to the negative regulation of type I interferon gene expression. The Journal of biological chemistry 283(37):25660-25670. 67. Lefort S, Gravel A, &; Flamand L (2010) Repression of interferon-alpha stimulated genes expression by Kaposi's sarcoma-associated herpesvirus K-bZIP protein. Virology 408(1):14-30. 68. Marusic MB, Mencin N, Licen M, Banks L, &; Grm HS (2010) Modification of human papillomavirus minor capsid protein L2 by sumoylation. Journal of virology 84(21):11585-11589.
|