跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/04 12:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林菁惠
研究生(外文):Ching-Hui Lin
論文名稱:研究 PIM1 激酶參與調控 RIG-I 訊息傳遞路俓之機制
論文名稱(外文):Investigation of the role of PIM1 kinase in RIG-I-mediated signaling pathway
指導教授:黃麗華黃麗華引用關係
指導教授(外文):Lih-Hwa Hwang
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:微生物及免疫學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:69
中文關鍵詞:先天免疫
外文關鍵詞:RIG-IPIM1
相關次數:
  • 被引用被引用:0
  • 點閱點閱:223
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
RLRs (RIG-I-like receptors) 為一群位於細胞質中的模式識別受器,負責辨識暴露於細胞質內病毒的病原相關片段,訊息路徑最終活化下游兩個轉錄因子 IFN-regulatory factor 3 (IRF3) 以及 nucler factor kappa B (NF-κB),產生第一型干擾素與促發炎細胞激素,以幫助細胞對抗病毒。先前實驗室前人研究指出,原致癌基因 PIM1 絲胺酸/蘇胺酸激酶 (serine/threonine kinase) 藉由其激酶活性負向調控RLR 訊息傳遞路徑,並且作用點可能在 RIG-I。在本實驗中我們發現 PIM1 會與 RIG-I 之多個區域進行相互作用。藉由活體外激酶試驗 (in vitro kinase assay),我們看到 PIM1 會對全長 RIG-I 以及 RIG-I 蛋白的 N 端區域進行磷酸化,而 RIG-I 的 C 端或中央 RNA 螺旋酶區域 (RNA helicase domain) 則不會被磷酸化。此外,在活體內 (in vivo) 系統下我們也得到類似的實驗結果,顯示 RIG-I 蛋白確實是 PIM1 激酶的受質。然而,經由液相層析串聯質譜儀 (LC/MS) 分析後,我們發現 RIG-I 蛋白上有許多 PIM1 磷酸化之位點,且不侷限於 RIG-I 的 N 端區域。初步我們將 RIG-I Ser183、Thr662 及 Thr671 三點進行點突變,並由功能分析試驗顯示, RIG-I 蛋白 Ser183 位置磷酸化會抑制 RIG-I 活化 IFN-β 啟動子之活性; Thr662 胺基酸本身即具重要性; Thr671 之磷酸化則不影響 RIG-I 活性。另外,我們針對 PIM1 對不同片段 RIG-I 活性影響進行測試,結果發現 PIM1藉由其激酶活性抑制 RIG-I 之活性只針對全長之 RIG-I 而為之,顯示 RIG-I 的結構對 PIM1 激酶之調控十分重要。以往,對 PIM1 功能之了解多著重於細胞增生與細胞凋亡方面,本篇研究指出 PIM1 可能藉由其激酶活性對 RIG-I 蛋白進行磷酸化,而負向調控 RLR 訊息傳遞。
RIG-I-like receptors (RLRs) are one of the germline-encoded pattern recognition receptors (PRRs), utilized to identify viral pathogens by engaging pathogen-associated molecular patterns (PAMPs). Once recognizing the PAMPs, downstream transcriptional factors of IFN-regulatory factor 3 (IRF3) and nucler factor kappa B (NF-κB) are activated, and type I interferon (IFN) as well as proinflammatory cytokines are produced to limit viral replication.
The data from our previously study have shown that a proto-oncogene, PIM1 ( a serine/threonine kinase), may target RIG-I to down-regulate the RLR-mediated antiviral responses. In this study, we further demonstrate that PIM1 can interact with various regions of the RIG-I protein. From in vitro and in vivo assays, we showed that PIM1 phosphorylated RIG-I at its N-terminal domain, but not its C terminal domain and RNA helicase domain. These data collectively indicate that RIG-I is one of PIM1’s substrates. However, the analysis of liquid chromatography-mass spectrometry (LC/MS) indicated that PIM1 phosphorylated multiple sites of RIG-I, residing in the N-terminal domain, the helicase domain and the C-terminal domain. Site-directed mutagenesis of RIG-I at the Ser183, Thr662 and Thr671 residues was performed to reveal the significance of the phosphorylation of these sites. Our results showed that, phosphorylation of RIG-I at Ser183 dramatically suppressed RIG-I activity; the Thr662 per se was important to the RIG-I activity as mutation to either Ala or Glu significantly reduced RIG-I activity; and phosphorylation of Thr671 had no effects on RIG-I activity at all. We also examined the effect of the kinase activity of PIM1 on the signal transduction of the full-length and the truncated RIG-I. It was found that the full-length RIG-I activity was inhibited by PIM1 via the kinase activity, whereas the truncated RIG-I activities were inhibited via other mechanisms.
These data collectively indicate that PIM1 kinase may phosphorylate RIG-I to down-regulate the RIG-I-mediated antiviral responses, and the correct RIG-I conformation may be important to PIM1 phosphorylation.

致謝 i
中文摘要 ii
英文摘要 iii
目錄 v
圖表目錄 vi
英文縮寫對照表 vii
第一章 緒論 1
第一節 先天免疫系統 (innate immune system) 與第一型干擾素系統 (Type I interferon system) 1
第二節 RLR 訊息傳遞路徑與調控 6
第三節 原致癌基因 (proto-oncogene) PIM1 激酶 9
第四節 前人研究與實驗目的 15
第二章 實驗材料與方法 17
第一節 實驗材料 17
第二節 實驗方法 23
第三章 實驗結果 30
第一節 在活體內 (in vivo) PIM1 蛋白與 RIG-I 蛋白有相互作用
(interaction) 30
第二節 在活體外 (in vitro) 及活體內 (in vivo) PIM1 蛋白會對
RIG-I 蛋白進行磷酸化 (phosphorylation) 31
第三節 RIG-I Ser183 可能是 RIG-I 蛋白上 PIM1 蛋白磷酸化的位置之一 34
第四節 PIM1 可能藉由不同機制抑制 RIG-I, N-RIG 或 2CARD 所誘導之
RLR 訊息路徑 35
第四章 討論 38
圖表 42
附圖 57
參考文獻 61
圖一 建構不同片段 RIG-I (truncated RIG-I) 之示意圖與蛋白表現情形及各片段 RIG-I 活化 IFN-β 啟動子活性之情況。 42
圖二 PIM1 與 RIG-I 及不同片段間有相互作用 (interaction)。 43
圖三 帶有 GST tag 蛋白純化情形。 45
圖四 在活體外 (in vitro) 情況下,PIM1 會對全長 RIG-I 與 N-RIG 進行磷酸化。 47
圖五 在活體內 (in vivo) 情況下,PIM1 會對全長 RIG-I 及 N-RIG 進行磷酸化。 50
圖六 各片段 RIG-I與 PIM1 之間相互作用與磷酸化關係之示意圖 。 52
圖七 以 LC/MS 進行 RIG-I 蛋白上 PIM1 可能磷酸化位置之定序分析。 53
圖八 PIM1 藉由其激酶活性負向調控全長 RIG-I 誘導活化之 IFN-β 啟動子活性。 55
附圖一 由 RIG-I 或 MDA5以及 RIG-I 與 MDA5 同時辨識之病毒。 57
附圖二 RLR 訊息傳遞示意圖。 58
附圖三 PIM1 藉由其激酶活性負向調控 SeV 感染所活化之訊息路徑。 59

1. Ranjan P, Bowzard JB, Schwerzmann JW, Jeisy-Scott V, Fujita T, Sambhara S. 2009. Cytoplasmic nucleic acid sensors in antiviral immunity. Trends Mol Med 15: 359-68
2. Yoneyama M, Fujita T. 2009. RNA recognition and signal transduction by RIG-I-like receptors. Immunol Rev 227: 54-65
3. Baum A, Garcia-Sastre A. 2010. Induction of type I interferon by RNA viruses: cellular receptors and their substrates. Amino Acids 38: 1283-99
4. Honda K, Takaoka A, Taniguchi T. 2006. Type I interferon [corrected] gene induction by the interferon regulatory factor family of transcription factors. Immunity 25: 349-60
5. Takaoka A, Yanai H. 2006. Interferon signalling network in innate defence. Cell Microbiol 8: 907-22
6. Jensen S, Thomsen AR. 2012. Sensing of RNA viruses: a review of innate immune receptors involved in recognizing RNA virus invasion. J Virol 86: 2900-10
7. Taniguchi T, Takaoka A. 2002. The interferon-alpha/beta system in antiviral responses: a multimodal machinery of gene regulation by the IRF family of transcription factors. Curr Opin Immunol 14: 111-6
8. Taniguchi T, Takaoka A. 2001. A weak signal for strong responses: interferon-alpha/beta revisited. Nat Rev Mol Cell Biol 2: 378-86
9. Wilkins C, Gale M, Jr. 2010. Recognition of viruses by cytoplasmic sensors. Curr Opin Immunol 22: 41-7
10. Yeow WS, Au WC, Juang YT, Fields CD, Dent CL, Gewert DR, Pitha PM. 2000. Reconstitution of virus-mediated expression of interferon alpha genes in human fibroblast cells by ectopic interferon regulatory factor-7. J Biol Chem 275: 6313-20
11. Peters KL, Smith HL, Stark GR, Sen GC. 2002. IRF-3-dependent, NFkappa B- and JNK-independent activation of the 561 and IFN-beta genes in response to double-stranded RNA. Proc Natl Acad Sci U S A 99: 6322-7
12. Lin R, Heylbroeck C, Pitha PM, Hiscott J. 1998. Virus-dependent phosphorylation of the IRF-3 transcription factor regulates nuclear translocation, transactivation potential, and proteasome-mediated degradation. Mol Cell Biol 18: 2986-96
13. Dragan AI, Hargreaves VV, Makeyeva EN, Privalov PL. 2007. Mechanisms of activation of interferon regulator factor 3: the role of C-terminal domain phosphorylation in IRF-3 dimerization and DNA binding. Nucleic Acids Res 35: 3525-34
14. Hayden MS, Ghosh S. 2004. Signaling to NF-kappaB. Genes Dev 18: 2195-224
15. Wullaert A, Heyninck K, Janssens S, Beyaert R. 2006. Ubiquitin: tool and target for intracellular NF-kappaB inhibitors. Trends Immunol 27: 533-40
16. Merika M, Thanos D. 2001. Enhanceosomes. Curr Opin Genet Dev 11: 205-8
17. Morin P, Braganca J, Bandu MT, Lin R, Hiscott J, Doly J, Civas A. 2002. Preferential binding sites for interferon regulatory factors 3 and 7 involved in interferon-A gene transcription. J Mol Biol 316: 1009-22
18. Erlandsson L, Blumenthal R, Eloranta ML, Engel H, Alm G, Weiss S, Leanderson T. 1998. Interferon-beta is required for interferon-alpha production in mouse fibroblasts. Curr Biol 8: 223-6
19. Yang H, Ma G, Lin CH, Orr M, Wathelet MG. 2004. Mechanism for transcriptional synergy between interferon regulatory factor (IRF)-3 and IRF-7 in activation of the interferon-beta gene promoter. Eur J Biochem 271: 3693-703
20. Randall RE, Goodbourn S. 2008. Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J Gen Virol 89: 1-47
21. Telerman A, Amson R, Zakut-Houri R, Givol D. 1988. Identification of the human pim-1 gene product as a 33-kilodalton cytoplasmic protein with tyrosine kinase activity. Mol Cell Biol 8: 1498-503
22. Cuypers HT, Selten G, Quint W, Zijlstra M, Maandag ER, Boelens W, van Wezenbeek P, Melief C, Berns A. 1984. Murine leukemia virus-induced T-cell lymphomagenesis: integration of proviruses in a distinct chromosomal region. Cell 37: 141-50
23. Fujii C, Nakamoto Y, Lu P, Tsuneyama K, Popivanova BK, Kaneko S, Mukaida N. 2005. Aberrant expression of serine/threonine kinase Pim-3 in hepatocellular carcinoma development and its role in the proliferation of human hepatoma cell lines. Int J Cancer 114: 209-18
24. Rock FL, Hardiman G, Timans JC, Kastelein RA, Bazan JF. 1998. A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci U S A 95: 588-93
25. Chiang C, Beachy PA. 1994. Expression of a novel Toll-like gene spans the parasegment boundary and contributes to hedgehog function in the adult eye of Drosophila. Mech Dev 47: 225-39
26. Kageyama M, Takahasi K, Narita R, Hirai R, Yoneyama M, Kato H, Fujita T. 2011. 55 Amino acid linker between helicase and carboxyl terminal domains of RIG-I functions as a critical repression domain and determines inter-domain conformation. Biochem Biophys Res Commun 415: 75-81
27. Kang DC, Gopalkrishnan RV, Wu Q, Jankowsky E, Pyle AM, Fisher PB. 2002. mda-5: An interferon-inducible putative RNA helicase with double-stranded RNA-dependent ATPase activity and melanoma growth-suppressive properties. Proc Natl Acad Sci U S A 99: 637-42
28. Diao F, Li S, Tian Y, Zhang M, Xu LG, Zhang Y, Wang RP, Chen D, Zhai Z, Zhong B, Tien P, Shu HB. 2007. Negative regulation of MDA5- but not RIG-I-mediated innate antiviral signaling by the dihydroxyacetone kinase. Proc Natl Acad Sci U S A 104: 11706-11
29. Rothenfusser S, Goutagny N, DiPerna G, Gong M, Monks BG, Schoenemeyer A, Yamamoto M, Akira S, Fitzgerald KA. 2005. The RNA helicase Lgp2 inhibits TLR-independent sensing of viral replication by retinoic acid-inducible gene-I. J Immunol 175: 5260-8
30. Yoneyama M, Kikuchi M, Matsumoto K, Imaizumi T, Miyagishi M, Taira K, Foy E, Loo YM, Gale M, Jr., Akira S, Yonehara S, Kato A, Fujita T. 2005. Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J Immunol 175: 2851-8
31. Loo YM, Gale M, Jr. 2011. Immune signaling by RIG-I-like receptors. Immunity 34: 680-92
32. Kato H, Takeuchi O, Mikamo-Satoh E, Hirai R, Kawai T, Matsushita K, Hiiragi A, Dermody TS, Fujita T, Akira S. 2008. Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J Exp Med 205: 1601-10
33. Loo YM, Fornek J, Crochet N, Bajwa G, Perwitasari O, Martinez-Sobrido L, Akira S, Gill MA, Garcia-Sastre A, Katze MG, Gale M, Jr. 2008. Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. J Virol 82: 335-45
34. Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, Uematsu S, Jung A, Kawai T, Ishii KJ, Yamaguchi O, Otsu K, Tsujimura T, Koh CS, Reis e Sousa C, Matsuura Y, Fujita T, Akira S. 2006. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441: 101-5
35. Kato H, Sato S, Yoneyama M, Yamamoto M, Uematsu S, Matsui K, Tsujimura T, Takeda K, Fujita T, Takeuchi O, Akira S. 2005. Cell type-specific involvement of RIG-I in antiviral response. Immunity 23: 19-28
36. Plumet S, Herschke F, Bourhis JM, Valentin H, Longhi S, Gerlier D. 2007. Cytosolic 5'-triphosphate ended viral leader transcript of measles virus as activator of the RIG I-mediated interferon response. PLoS One 2: e279
37. Kawai T, Takahashi K, Sato S, Coban C, Kumar H, Kato H, Ishii KJ, Takeuchi O, Akira S. 2005. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol 6: 981-8
38. Seth RB, Sun L, Ea CK, Chen ZJ. 2005. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122: 669-82
39. Kayagaki N, Phung Q, Chan S, Chaudhari R, Quan C, O'Rourke KM, Eby M, Pietras E, Cheng G, Bazan JF, Zhang Z, Arnott D, Dixit VM. 2007. DUBA: a deubiquitinase that regulates type I interferon production. Science 318: 1628-32
40. Sharma S, tenOever BR, Grandvaux N, Zhou GP, Lin R, Hiscott J. 2003. Triggering the interferon antiviral response through an IKK-related pathway. Science 300: 1148-51
41. Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E, Golenbock DT, Coyle AJ, Liao SM, Maniatis T. 2003. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 4: 491-6
42. Bhoj VG, Chen ZJ. 2009. Ubiquitylation in innate and adaptive immunity. Nature 458: 430-7
43. Ea CK, Deng L, Xia ZP, Pineda G, Chen ZJ. 2006. Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol Cell 22: 245-57
44. Wu CJ, Conze DB, Li T, Srinivasula SM, Ashwell JD. 2006. Sensing of Lys 63-linked polyubiquitination by NEMO is a key event in NF-kappaB activation [corrected]. Nat Cell Biol 8: 398-406
45. Eisenacher K, Krug A. 2012. Regulation of RLR-mediated innate immune signaling--it is all about keeping the balance. Eur J Cell Biol 91: 36-47
46. Xu L, Xiao N, Liu F, Ren H, Gu J. 2009. Inhibition of RIG-I and MDA5-dependent antiviral response by gC1qR at mitochondria. Proc Natl Acad Sci U S A 106: 1530-5
47. Gack MU, Shin YC, Joo CH, Urano T, Liang C, Sun L, Takeuchi O, Akira S, Chen Z, Inoue S, Jung JU. 2007. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446: 916-20
48. Oshiumi H, Matsumoto M, Hatakeyama S, Seya T. 2009. Riplet/RNF135, a RING finger protein, ubiquitinates RIG-I to promote interferon-beta induction during the early phase of viral infection. J Biol Chem 284: 807-17
49. Oshiumi H, Miyashita M, Inoue N, Okabe M, Matsumoto M, Seya T. 2010. The ubiquitin ligase Riplet is essential for RIG-I-dependent innate immune responses to RNA virus infection. Cell Host Microbe 8: 496-509
50. Gao D, Yang YK, Wang RP, Zhou X, Diao FC, Li MD, Zhai ZH, Jiang ZF, Chen DY. 2009. REUL is a novel E3 ubiquitin ligase and stimulator of retinoic-acid-inducible gene-I. PLoS One 4: e5760
51. Friedman CS, O'Donnell MA, Legarda-Addison D, Ng A, Cardenas WB, Yount JS, Moran TM, Basler CF, Komuro A, Horvath CM, Xavier R, Ting AT. 2008. The tumour suppressor CYLD is a negative regulator of RIG-I-mediated antiviral response. EMBO Rep 9: 930-6
52. Zhang M, Wu X, Lee AJ, Jin W, Chang M, Wright A, Imaizumi T, Sun SC. 2008. Regulation of IkappaB kinase-related kinases and antiviral responses by tumor suppressor CYLD. J Biol Chem 283: 18621-6
53. Nistal-Villan E, Gack MU, Martinez-Delgado G, Maharaj NP, Inn KS, Yang H, Wang R, Aggarwal AK, Jung JU, Garcia-Sastre A. 2010. Negative role of RIG-I serine 8 phosphorylation in the regulation of interferon-beta production. J Biol Chem 285: 20252-61
54. Gack MU, Nistal-Villan E, Inn KS, Garcia-Sastre A, Jung JU. 2010. Phosphorylation-mediated negative regulation of RIG-I antiviral activity. J Virol 84: 3220-9
55. Maharaj NP, Wies E, Stoll A, Gack MU. 2012. Conventional protein kinase C-alpha (PKC-alpha) and PKC-beta negatively regulate RIG-I antiviral signal transduction. J Virol 86: 1358-71
56. Wies E, Wang MK, Maharaj NP, Chen K, Zhou S, Finberg RW, Gack MU. 2013. Dephosphorylation of the RNA sensors RIG-I and MDA5 by the phosphatase PP1 is essential for innate immune signaling. Immunity 38: 437-49
57. Saitoh T, Tun-Kyi A, Ryo A, Yamamoto M, Finn G, Fujita T, Akira S, Yamamoto N, Lu KP, Yamaoka S. 2006. Negative regulation of interferon-regulatory factor 3-dependent innate antiviral response by the prolyl isomerase Pin1. Nat Immunol 7: 598-605
58. Cui J, Zhu L, Xia X, Wang HY, Legras X, Hong J, Ji J, Shen P, Zheng S, Chen ZJ, Wang RF. 2010. NLRC5 negatively regulates the NF-kappaB and type I interferon signaling pathways. Cell 141: 483-96
59. Selten G, Cuypers HT, Boelens W, Robanus-Maandag E, Verbeek J, Domen J, van Beveren C, Berns A. 1986. The primary structure of the putative oncogene pim-1 shows extensive homology with protein kinases. Cell 46: 603-11
60. Hoover D, Friedmann M, Reeves R, Magnuson NS. 1991. Recombinant human pim-1 protein exhibits serine/threonine kinase activity. J Biol Chem 266: 14018-23
61. Padma R, Nagarajan L. 1991. The human PIM-1 gene product is a protein serine kinase. Cancer Res 51: 2486-9
62. Shay KP, Wang Z, Xing PX, McKenzie IF, Magnuson NS. 2005. Pim-1 kinase stability is regulated by heat shock proteins and the ubiquitin-proteasome pathway. Mol Cancer Res 3: 170-81
63. Mizuno K, Shirogane T, Shinohara A, Iwamatsu A, Hibi M, Hirano T. 2001. Regulation of Pim-1 by Hsp90. Biochem Biophys Res Commun 281: 663-9
64. Brault L, Gasser C, Bracher F, Huber K, Knapp S, Schwaller J. 2010. PIM serine/threonine kinases in the pathogenesis and therapy of hematologic malignancies and solid cancers. Haematologica 95: 1004-15
65. Allen JD, Verhoeven E, Domen J, van der Valk M, Berns A. 1997. Pim-2 transgene induces lymphoid tumors, exhibiting potent synergy with c-myc. Oncogene 15: 1133-41
66. Feldman JD, Vician L, Crispino M, Tocco G, Marcheselli VL, Bazan NG, Baudry M, Herschman HR. 1998. KID-1, a protein kinase induced by depolarization in brain. J Biol Chem 273: 16535-43
67. Saris CJ, Domen J, Berns A. 1991. The pim-1 oncogene encodes two related protein-serine/threonine kinases by alternative initiation at AUG and CUG. EMBO J 10: 655-64
68. Xie Y, Xu K, Dai B, Guo Z, Jiang T, Chen H, Qiu Y. 2006. The 44 kDa Pim-1 kinase directly interacts with tyrosine kinase Etk/BMX and protects human prostate cancer cells from apoptosis induced by chemotherapeutic drugs. Oncogene 25: 70-8
69. Ionov Y, Le X, Tunquist BJ, Sweetenham J, Sachs T, Ryder J, Johnson T, Lilly MB, Kraft AS. 2003. Pim-1 protein kinase is nuclear in Burkitt's lymphoma: nuclear localization is necessary for its biologic effects. Anticancer Res 23: 167-78
70. Bachmann M, Moroy T. 2005. The serine/threonine kinase Pim-1. Int J Biochem Cell Biol 37: 726-30
71. Qian KC, Wang L, Hickey ER, Studts J, Barringer K, Peng C, Kronkaitis A, Li J, White A, Mische S, Farmer B. 2005. Structural basis of constitutive activity and a unique nucleotide binding mode of human Pim-1 kinase. J Biol Chem 280: 6130-7
72. Wang Z, Bhattacharya N, Weaver M, Petersen K, Meyer M, Gapter L, Magnuson NS. 2001. Pim-1: a serine/threonine kinase with a role in cell survival, proliferation, differentiation and tumorigenesis. J Vet Sci 2: 167-79
73. Matikainen S, Sareneva T, Ronni T, Lehtonen A, Koskinen PJ, Julkunen I. 1999. Interferon-alpha activates multiple STAT proteins and upregulates proliferation-associated IL-2Ralpha, c-myc, and pim-1 genes in human T cells. Blood 93: 1980-91
74. Domen J, Von Lindern M, Hermans A, Breuer M, Grosveld G, Berns A. 1987. Comparison of the human and mouse PIM-1 cDNAs: nucleotide sequence and immunological identification of the in vitro synthesized PIM-1 protein. Oncogene Res 1: 103-12
75. Selten G, Cuypers HT, Berns A. 1985. Proviral activation of the putative oncogene Pim-1 in MuLV induced T-cell lymphomas. EMBO J 4: 1793-8
76. Nasser MW, Datta J, Nuovo G, Kutay H, Motiwala T, Majumder S, Wang B, Suster S, Jacob ST, Ghoshal K. 2008. Down-regulation of micro-RNA-1 (miR-1) in lung cancer. Suppression of tumorigenic property of lung cancer cells and their sensitization to doxorubicin-induced apoptosis by miR-1. J Biol Chem 283: 33394-405
77. Huang X, Ding L, Bennewith KL, Tong RT, Welford SM, Ang KK, Story M, Le QT, Giaccia AJ. 2009. Hypoxia-inducible mir-210 regulates normoxic gene expression involved in tumor initiation. Mol Cell 35: 856-67
78. Thomas M, Lange-Grunweller K, Weirauch U, Gutsch D, Aigner A, Grunweller A, Hartmann RK. 2012. The proto-oncogene Pim-1 is a target of miR-33a. Oncogene 31: 918-28
79. De Benedetti A, Graff JR. 2004. eIF-4E expression and its role in malignancies and metastases. Oncogene 23: 3189-99
80. Hoover DS, Wingett DG, Zhang J, Reeves R, Magnuson NS. 1997. Pim-1 protein expression is regulated by its 5'-untranslated region and translation initiation factor elF-4E. Cell Growth Differ 8: 1371-80
81. Culjkovic B, Topisirovic I, Skrabanek L, Ruiz-Gutierrez M, Borden KL. 2006. eIF4E is a central node of an RNA regulon that governs cellular proliferation. J Cell Biol 175: 415-26
82. Kim O, Jiang T, Xie Y, Guo Z, Chen H, Qiu Y. 2004. Synergism of cytoplasmic kinases in IL6-induced ligand-independent activation of androgen receptor in prostate cancer cells. Oncogene 23: 1838-44
83. Bullock AN, Debreczeni J, Amos AL, Knapp S, Turk BE. 2005. Structure and substrate specificity of the Pim-1 kinase. J Biol Chem 280: 41675-82
84. Losman JA, Chen XP, Vuong BQ, Fay S, Rothman PB. 2003. Protein phosphatase 2A regulates the stability of Pim protein kinases. J Biol Chem 278: 4800-5
85. Ma J, Arnold HK, Lilly MB, Sears RC, Kraft AS. 2007. Negative regulation of Pim-1 protein kinase levels by the B56beta subunit of PP2A. Oncogene 26: 5145-53
86. Zhang Y, Wang Z, Li X, Magnuson NS. 2008. Pim kinase-dependent inhibition of c-Myc degradation. Oncogene 27: 4809-19
87. Leverson JD, Koskinen PJ, Orrico FC, Rainio EM, Jalkanen KJ, Dash AB, Eisenman RN, Ness SA. 1998. Pim-1 kinase and p100 cooperate to enhance c-Myb activity. Mol Cell 2: 417-25
88. Mochizuki T, Kitanaka C, Noguchi K, Muramatsu T, Asai A, Kuchino Y. 1999. Physical and functional interactions between Pim-1 kinase and Cdc25A phosphatase. Implications for the Pim-1-mediated activation of the c-Myc signaling pathway. J Biol Chem 274: 18659-66
89. Bachmann M, Kosan C, Xing PX, Montenarh M, Hoffmann I, Moroy T. 2006. The oncogenic serine/threonine kinase Pim-1 directly phosphorylates and activates the G2/M specific phosphatase Cdc25C. Int J Biochem Cell Biol 38: 430-43
90. Peltola KJ, Paukku K, Aho TL, Ruuska M, Silvennoinen O, Koskinen PJ. 2004. Pim-1 kinase inhibits STAT5-dependent transcription via its interactions with SOCS1 and SOCS3. Blood 103: 3744-50
91. Wang Z, Bhattacharya N, Mixter PF, Wei W, Sedivy J, Magnuson NS. 2002. Phosphorylation of the cell cycle inhibitor p21Cip1/WAF1 by Pim-1 kinase. Biochim Biophys Acta 1593: 45-55
92. Morishita D, Katayama R, Sekimizu K, Tsuruo T, Fujita N. 2008. Pim kinases promote cell cycle progression by phosphorylating and down-regulating p27Kip1 at the transcriptional and posttranscriptional levels. Cancer Res 68: 5076-85
93. Nihira K, Ando Y, Yamaguchi T, Kagami Y, Miki Y, Yoshida K. 2010. Pim-1 controls NF-kappaB signalling by stabilizing RelA/p65. Cell Death Differ 17: 689-98
94. Zippo A, De Robertis A, Serafini R, Oliviero S. 2007. PIM1-dependent phosphorylation of histone H3 at serine 10 is required for MYC-dependent transcriptional activation and oncogenic transformation. Nat Cell Biol 9: 932-44
95. Rainio EM, Sandholm J, Koskinen PJ. 2002. Cutting edge: Transcriptional activity of NFATc1 is enhanced by the Pim-1 kinase. J Immunol 168: 1524-7
96. Aho TL, Sandholm J, Peltola KJ, Mankonen HP, Lilly M, Koskinen PJ. 2004. Pim-1 kinase promotes inactivation of the pro-apoptotic Bad protein by phosphorylating it on the Ser112 gatekeeper site. FEBS Lett 571: 43-9
97. Friedmann M, Nissen MS, Hoover DS, Reeves R, Magnuson NS. 1992. Characterization of the proto-oncogene pim-1: kinase activity and substrate recognition sequence. Arch Biochem Biophys 298: 594-601
98. Saito T, Hirai R, Loo YM, Owen D, Johnson CL, Sinha SC, Akira S, Fujita T, Gale M, Jr. 2007. Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2. Proc Natl Acad Sci U S A 104: 582-7
99. Takahasi K, Yoneyama M, Nishihori T, Hirai R, Kumeta H, Narita R, Gale M, Jr., Inagaki F, Fujita T. 2008. Nonself RNA-sensing mechanism of RIG-I helicase and activation of antiviral immune responses. Mol Cell 29: 428-40
100. Gee P, Chua PK, Gevorkyan J, Klumpp K, Najera I, Swinney DC, Deval J. 2008. Essential role of the N-terminal domain in the regulation of RIG-I ATPase activity. J Biol Chem 283: 9488-96
101. Sun Z, Ren H, Liu Y, Teeling JL, Gu J. 2011. Phosphorylation of RIG-I by casein kinase II inhibits its antiviral response. J Virol 85: 1036-47


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top