跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/14 15:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:簡榮志
研究生(外文):Rong-Jhih Jain
論文名稱:造成全人工髖關節髖臼杯襯墊磨耗之風險因子於襯墊磨耗位置與骨溶蝕型態的差異性
論文名稱(外文):Differences of Risk Factors in Various Wear Locations and Osteolysis Patterns for Total Hip Arthroplasty
指導教授:宋晏仁宋晏仁引用關係鄭誠功鄭誠功引用關係
指導教授(外文):Yen-Jen SungCheng-Kung Cheng
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:解剖學及細胞生物學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:85
中文關鍵詞:風險因子磨耗位置骨溶蝕型態髖臼杯元件位置
外文關鍵詞:risk factorwear positionosteolysis patternacetabular cup position
相關次數:
  • 被引用被引用:1
  • 點閱點閱:407
  • 評分評分:
  • 下載下載:63
  • 收藏至我的研究室書目清單書目收藏:0
摘要
已知許多風險因子會影響全人工髖關節髖臼杯的超高分子量聚乙烯襯墊(簡稱PE襯墊)的磨耗。從植入物材料產生的微粒磨屑和隨之而來的骨溶蝕現象,已經被認為是造成全人工髖關節置換長期失敗的主因。本論文進行一個回溯性研究,決定風險因子對PE襯墊的磨耗位置與在X光片上植入物周圍骨溶蝕標準分區的影響,進一步為亞洲人提供臨床手術及全人工髖關節設計的參考建議。從臺北馬偕紀念醫院546個人工髖關節篩選出88個全人工髖關節,使用游標卡尺測量PE襯墊磨耗位置及評分,使用前後向雙側髖部X光片判斷骨溶蝕型態包含Charnley區與Gruen區,並收集患者及取出物基本資料,最後使用SPSS進行統計分析。結果顯示影響骨溶蝕型態於Charnley區的風險因子有金屬背襯元件是否鎖螺釘在骨盆以及性別,於Gruen區的風險因子有髖臼杯的前傾角。全人工髖關節髖臼杯元件傾斜角40至50度,金屬背襯元件無螺孔,以及在PE襯墊厚度大於6公釐條件下金屬球頭直徑28公釐以上,其植入時間較長,癒後較佳。

Abstract
Several studies have shown many risk factors of wear of UHMWPE (ultrahigh molecular weight polyethylene) liner in THA (total hip arthroplasty) in the west. The osteolysis caused by the particulate wear debris from implant has been recognized as the major cause of long-term failure in THA. A retrospective study was used to determine the influence of the risk factors on different wear positions in THA and the standard zones of periprosthetic radiolucencies (osteolysis pattern). The results could have the implication for longer in vivo time of THA for Asian.

This stuty’s criteria for 546 hip retrieval prostheses in Mackay memorial hospital (Taipei, Taiwan) were bilateral hip supine anteroposterior radiograph, total hip arthroplasty, and follow-up at least 5 years (60 months). 88 chosen hip retrieval prostheses was studied for the wear position of UHMWPE liners including general wear zone and severe wear zone. Osteolysis pattern on X-ray was classified using standard zones of periprosthetic radiolucencies including 3 acetabular zones (Charnley zones) and 7 femoral stem zones (Gruen zones). Information of 88 THA patients was recorded including gender, revision age, in vivo time, tab of liner, screws of metal cup, femoral head diameter, stem pattern, the brand of implant, affected side, inclination of cup, anteversion of cup, stem angle, liner wear score, osteolysis acetabular score, and osteolysis stem score. Data was analyzed by SPSS statistical software, and the results were considered to be significant when P < 0.05.

In conclusion, screws of cup and gender had significant difference in Charnley zone, and anteversion had significant difference in Gruen zone. The results showed THA that composed of cup without holes for screws, cup inclination 40°-50°, thickness of liner > 6 mm, femoral head diameter > 28 mm would have longer in vivo time comparing with other combination.
目錄
中文摘要….......................................................................................……………….….I
英文摘要..................................................................................……………………….II
目錄…................................................................................…………………………..III
圖目錄…....................................................................…………………………….…..V
表目錄..............................................................................…………………….…….VII

第一章 前言................................................................................……………………..1
1-1人工髖關節簡介......................................................................................................2
1-1-1髖關節的解剖構造...........................................................................................2
1-1-2髖關節的生物力學….......................................................................................6
1-1-3人工髖關節置換術…..............................................................………..……8
1-1-4全人工髖關節再置換的原因…...............................................................…..10
1-2影響超高分子量聚乙烯襯墊磨耗的危險因子....................................................12
1-2-1性別、年齡和體重...........................................................................................12
1-2-2傾斜角與前傾角.............................................................................................12
1-2-3金屬球頭直徑與PE襯墊厚度.......................................................................13
1-2-4設計與植入時間.............................................................................................15
1-2-5包裝時間.........................................................................................................16
1-3文獻回顧................................................................................................................17
1-3-1髖臼杯元件傾斜角與前傾角的測量.............................................................17
1-3-2股骨元件的角度.............................................................................................19
1-3-3 PE襯墊的磨耗分區與評分...........................................................................20
1-3-4 X光片骨溶蝕分區與評分.............................................................................23
1-4研究動機與目的....................................................................................................26
第二章 材料與方法....................................................................................................27
2-1研究材料................................................................................................................27
2-2研究方法................................................................................................................32
2-2-1病患及取出物基本資料收集.........................................................................34
2-2-2髖臼杯元件傾斜角度量測.............................................................................35
2-2-3髖臼杯元件前傾角度量測.............................................................................36
2-2-4股骨柄角度量測.............................................................................................37
2-2-5 PE襯墊磨耗分區與評分...............................................................................38
2-2-6髖臼骨溶蝕分區與評分.................................................................................41
2-2-7股骨骨溶蝕分區與評分.................................................................................43
2-3統計分析................................................................................................................45
第三章 結果................................................................................................................48
3-1患者及取出物基本資料........................................................................................48
3-2危險因子於PE襯墊磨耗位置以及骨溶蝕型態的差異性................................. 50
3-2-1連續性的變數.................................................................................................50
3-2-2非連續性的變數.............................................................................................55
3-3植入時間於非連續性變數的差異性....................................................................60
3-4亞洲人理想的傾斜角度及前傾角度....................................................................64
第四章 討論................................................................................................................66
4-1髖臼骨溶蝕型態....................................................................................................68
4-1-1髖臼杯金屬背襯元件是否鎖螺釘在骨盆.....................................................68
4-1-2性別.................................................................................................................70
4-2股骨骨溶蝕型態....................................................................................................71
4-2-1前傾角.............................................................................................................71
4-3植入時間於危險因子的差異性............................................................................73
4-3-1傾斜角.............................................................................................................73
4-3-2金屬球頭直徑.................................................................................................74
4-3-3品牌型號.........................................................................................................75
4-4亞洲人理想的傾斜角度及前傾角度....................................................................77
4-5實驗限制................................................................................................................78
4-5-1髖臼杯傾斜角及前傾角的拍攝日期.............................................................78
4-5-2金屬股骨柄型態.............................................................................................78
4-5-3骨溶蝕範圍.....................................................................................................78
4-5-4 PE襯墊於人體的真實方位...........................................................................78
第五章 結論................................................................................................................79
參考文獻......................................................................................................................80














圖目錄
圖1-1骨盆的解剖構造…..............................................................................................2
圖1-2骨盆在性別上的差異..........................................................................................3
圖1-3髖骨的解剖構造..................................................................................................3
圖1-4股骨的解剖構造..................................................................................................5
圖1-5人體解剖平面......................................................................................................6
圖1-6髖關節的關節活動..............................................................................................7
圖1-7全人工髖關節元件..............................................................................................9
圖1-8骨盆雙側解剖特徵淚滴結構最下端連線........................................................17
圖1-9髖臼杯元件上緣端點及下緣端點連線............................................................18
圖1-10前傾角公式......................................................................................................18
圖1-11 PE襯墊的磨耗分區........................................................................................22
圖1-12 Charnley分區示意圖......................................................................................25
圖1-13 Gruen分區示意圖...........................................................................................25
圖2-1 Osteonics公司的Omnifit系列的髖臼杯元件.................................................30
圖2-2 Depuy公司的AMLRPlus系列的髖臼杯元件.................................................30
圖2-3 Zimmer公司的HG I系列的髖臼杯元件.........................................................30
圖2-4 Mecron公司的Mecring系列的髖臼杯元件....................................................31
圖2-5實驗流程圖........................................................................................................33
圖2-6髖臼杯元件傾斜角度量測…........... ................................................................35
圖2-7髖臼杯元件前傾角度量測................................................................................36
圖2-8股骨柄角度量測................................................................................................37
圖2-9 PE襯墊磨耗分區與評分範例..........................................................................39
圖2-10髖臼骨溶蝕分區與評分範例..........................................................................41
圖2-11股骨骨溶蝕分區與評分範例..........................................................................43
圖2-12危險因子於PE襯墊磨耗位置及骨溶蝕型態的差異性統計流程圖........... 46
圖2-13植入時間於非連續性變數的差異性統計流程圖..........................................47
圖3-1髖臼骨溶蝕分數於Charnley區的分佈............................................................52
圖3-2股骨骨溶蝕分數於Gruen區的分佈…............................................................ 52
圖3-3股骨柄元件內翻或外翻其股骨骨溶蝕分佈....................................................54
圖3-4四種大於3例品牌型號其髖臼骨溶蝕分佈.....................................................56
圖3-5四種大於3例品牌型號其股骨骨溶蝕分佈.....................................................57
圖3-6第I、II、III型的髖臼杯傾斜角其髖臼骨溶蝕分佈...........................................58
圖3-7第I、II、III型的髖臼杯傾斜角其股骨骨溶蝕分佈...........................................59
圖3-8植入時間於三型傾斜角的分佈........................................................................61
圖3-9植入時間於三種球頭直徑的分佈....................................................................62
圖3-10植入時間於四種品牌型號的分佈..................................................................63
圖3-11植入時間於傾斜角各組之間的分佈..............................................................64
圖3-12植入時間於前傾角各組之間的分佈..............................................................65
圖4-1 Arthropor公司及Depuy公司的AML系列的髖臼杯金屬背襯元件.............69
圖4-2 Zimmer公司的HG系列的髖臼杯金屬背襯元件...........................................69
圖4-3人體股骨的前傾角............................................................................................72

































表目錄
表2-1 Omnifit、AML、HG I及Mecring之金屬背襯元件特徵..................................29
表2-2 Omnifit、AML、HG I及Mecring之金屬球頭材質..........................................29
表2-3 Omnifit、AML、HG I及Mecring之股骨柄元件特徵......................................29
表2-4 PE襯墊磨耗分區..............................................................................................39
表2-5程度因數............................................................................................................39
表2-6表現因數............................................................................................................40
表2-7髖臼骨溶蝕受損區等級....................................................................................42
表2-8股骨骨溶蝕受損區等級....................................................................................44
表3-1患者基本資料....................................................................................................48
表3-2取出物基本資料................................................................................................48
表3-3連續性變數是否呈現常態分佈........................................................................50
表3-4植入時間於PE襯墊磨耗分區、骨溶蝕型態的分佈........................................51
表3-5植入時間除外,其他連續性變數於PE襯墊磨耗分區、骨溶蝕型態的分佈..51
表3-6體重與植入時間的相關性................................................................................53
表3-7非連續性變數於PE襯墊磨耗分區、骨溶蝕型態的分佈................................55
表4-1危險因子於PE襯墊磨耗位置及骨溶蝕型態的差異性統計結果整理表......66
表4-2植入時間於非連續性變數的差異性統計結果整理表....................................67
表4-3金屬背襯元件有鎖螺釘在骨盆其髖臼骨溶蝕於Charnley區的分佈............68
表4-4性別其髖臼骨溶蝕於Charnley區的分佈........................................................70
表4-5前傾角其股骨骨溶蝕於Gruen區的分佈.........................................................71
表4-6三種品牌型號其金屬球頭直徑和髖臼杯金屬背襯元件有無螺孔整理........75
表4-7三種品牌型號其股骨柄材質與披覆整理........................................................76


參考文獻
1. Wan Z, Boutary M, Dorr LD. The influence of acetabular component position on wear in total hip arthroplasty. J Arthroplasty. 2008;23:51-6.
2. Sochart DH. Relationship of acetabular wear to osteolysis and loosening in total hip arthroplasty. Clin Orthop Relat Res. 1999;363:135-50.
3. Livermore J, Ilstrup D, Morrey B. Effect of femoral head size on wear of the polyethylene acetabular component. J Bone Joint Surg Am. 1990;72:518-28.
4. Oparaugo PC, Clarke IC, Malchau H, Herberts P. Correlation of wear debris-induced osteolysis and revision with volumetric wear-rates of polyethylene: a survey of 8 reports in the literature. Acta Orthop Scand. 2001;72:22-8.
5. Oonishi H, Kadoya Y. Wear of high-dose gamma-irradiated polyethylene in total hip replacements. J Orthop Sci. 2000;5:223-8.
6. Frank HN. Netter’s Atlas of Human Anatomy. 4th ed. Singapore: Elsevier INC, 2008.
7. Carolyn K, Lynn AC. Therapeutic Exercise: Foundations and Techniques. 5th ed. Philadelphia: FA Davis, 2007.
8. http://withfriendship.com/user/levis/sagittal-plane.php
9. http://dwd.wisconsin.gov/dwd/publications/wc/WKC-7761-P.htm
10. Charnley J. Total hip replacement by low-friction arthroplasty. Clin Orthop Relat Res. 1970;72:7-21.
11. Schmalzried TP, Campell P, Brown IC, Schmitt AK, Amstutz HC. Shapes and dimensional characteristics of polyethylene wear particles generated in vivo by total knee replacements compared to total hip replacements. J Biomed Master Res. 1997;38:203-10.
12. http://orthoinfo.aaos.org/topic.cfm?topic=a00377
13. McCollum DE, Gray WJ. Dislocation after total hip arthroplasty. Causes and prevention. Clin Orthop Relat Res. 1990;261:159-70.
14. Ballard WT, Callaghan JJ, Sullivan PM, Johnston RC. The results of improved cementing techniques for total hip arthroplasty in patients less than fifty years old: a ten-year follow-up study. J Bone Joint Surg Am. 1994;76:959-64.
15. Tompkins GS, Jacobs JJ, Kull LR, Rosenberg AG, Galante JO. Primary total hip arthroplasty with a porous-coated acetabular component. Seven-to-ten-year results. J Bone Joint Surg Am. 1997;79:169-76.
16. Clohisy JC, Harris WH. The Harris-Galante porous-coated acetabular component with screw fixation. J Bone Joint Surg Am. 1999;81:66-73.
17. Claus AM, Sychterz CJ, Hopper RH, Engh CA. Pattern of osteolysis around two different cementless metal-backed cups. J Arthroplasty. 2001;16:177-82.
18. Wixson RL, Stulberg SD, Mehlhoff M. Total hip replacement with cemented, uncemented, and hybrid prostheses. A comparison of clinical and radiographic results at two to four years. J Bone Joint Surg Am. 1991;73:257-70.
19. Scott M, Morrison M, Mishra SR, Jani S. Particle analysis for the determination of UHMWPE wear. J Biomed Mater Res B Appl Biomater. 2005;73:325-37.
20. Archibeck MJ, Jacobs JJ, Roebuck KA, Glant TT. The basic science of periprosthetic osteolysis. Instr Course Lect. 2001;50:185-95.
21. Baxter RM, Freeman TA, Kurtz SM, Steinbeck MJ. Do tissues from THA revision of highly crosslinked UHMWPE liners contain wear debris and associated inflammation? Clin Orthop Relat Res. 2011;469:2308-17.
22. Weissman BN. Imaging of total hip replacement. Radiology. 1997;202:611-23.
23. Hedlundh U, Carlsson AS. Increased risk of dislocation with collar reinforced modular heads of the Lubinus SP-2 hip prosthesis. Acta Orthop Scand. 1996;67:204-5.
24. Herrlin K, Selvik G, Pettersson H, Kesek P, Onnerfält R, Ohlin A. Position, orientation and component interaction in dislocation of the total hip prosthesis. Acta Radiol. 1988;29:441-4.
25. Murray DW. Impingement and loosening of the long posterior wall acetabular implant. J Bone Joint Surg Br. 1992;74:377-9.
26. Cobb TK, Morrey BF, Ilstrup DM. The elevated-rim acetabular liner in total hip arthroplasty: relationship to postoperative dislocation. J Bone Joint Surg Am. 1996;78:80-6.
27. Yamaguchi M, Akisue T, Bauer TW, Hashimoto Y. The spatial location of impingement in total hip arthroplasty. J Arthroplasty. 2000;15:305-13.
28. Wright TM, Rimnac CM, Stulberg SD, Mintz L, Tsao AK, Klein RW, McCrae C. Wear of polyethylene in total joint replacements. Clin Orthop Relat Res. 1992;276:126-34.
29. Udomkiat P, Dorr LD, Wan Z. Cementless hemispheric porous-coated sockets implanted with press-fit technique without screws: average ten-year follow-up. J Bone Joint Surg Am. 2002;84:1195-200.
30. Patil S, Bergula A, Chen PC, Colwell CW Jr, D'Lima DD. Polyethylene wear and acetabular component orientation. J Bone Joint Surg Am. 2003;85:56-63.
31. D’Lima DD, Chen PC, Colwell CW. Optimizing acetabular component position to minimize impingement and reduce contact stress. J Bone Joint Surg Am. 2001;83:87-91.
32. Walter WL, O'toole GC, Walter WK, Ellis A, Zicat BA. Squeaking in ceramic-on-ceramic hips. The importance of acetabular component orientation. J Arthroplasty. 2007;22:496-503.
33. Charnley J, Kamangar A, Longfield MD. The optimum size of prosthetic heads in relation to the wear of plastic sockets in total replacement of hip. Med Biol Eng. 1969;7:31-9.
34. Galante JO, Rostoker W. Wear in total hip protheses. An experimental evaluation of candidate materials. Acta Orthop Scand Suppl. 1973;145:1-46.
35. Ritter MA, Stringer EA, Littrell DA, Williams JG. Correlation of prosthetic femoral head size and/or design with longevity of total hip arthroplasty. Clin Orthop Relat Res. 1983;176:252-7.
36. Morrey BF, Ilstrup D. Size of the femoral head and acetabular revision in total hip-replacement arthroplasty. J Bone Joint Surg Am. 1989;71:50-5.
37. Bartel DL, Bicknell VL, Wright TM. The effect of conformity, thickness and material on stresses in ultrahigh molecular weight components for total joint remplacement. J Bone Joint Surg Am. 1986;68:1041-51.
38. Christ JS, Kyoung H, Yashushi H, Cleveland KM, Anderson E, Thomas WB. Wear of polyethylene cups in total hip arthroplasty. J Bone Joint Surg Am. 1996;78:1193-200.
39. Curry HG, Lynskey TG, Frampton CM. Harris-Galante II acetabular cup: a survival analysis. J Bone Joint Surg. 2008;16:201-205.
40. Crowther JD, Lachiewicz PF. Survival and polyethylene wear of porous-coated acetabular components in patients less than fifty tears old: Results at nine to fourteen years. J Bone Joint Surg Am. 2002;84:729-35.
41. Sculco TP. The acetabular component: an elliptical monoblock alternative. Orthopedics. 1998;21:973-4.
42. Thanner J, Kärrholm J, Malchau H, Herberts P. Poor outcome of the PCA and Harris-Galante hip prostheses. Randomized study of 171 arthroplasties with 9-year follow-up. Acta Orthop Scand. 1999;70:155-62.
43. Puolakka TJ, Keränen JT, Juhola KA, Pajamäki KJ, Halonen PJ, Nevalainen JK, Saikko V, Lehto MU, Järvinen M. Increased volumetric wear of polyethylene liners with more than 3 years of shelf-life time. Int Orthop. 2003;27:153-9.
44. Callaghan JJ, Salvati EA, Pellicci PM, Wilson PD Jr, Ranawat CS. Results of revision for mechanical failure after cemented total hip replacement, 1979 to 1982. A two to five-year follow-up. J Bone Joint Surg Am. 1985;67:1074-85.
45. Ilchmann T, Reimold M, Müller-Schauenburg W. Estimation of the wear volume after total hip replacement. A simple access to geometrical concepts. Med Eng Phys. 2008;30:373-9.
46. Pluot E, Davis ET, Revell M, Davies AM, James SL. Hip arthroplasty. Part 2: normal and abnormal radiographic findings. Clin Radiol 2009;64:961-71.
47. Munuera L, Garcia-Cimbrelo E. The femoral component in low-friction arthroplasty after ten years. Clin Orthop Relat Res. 1992;279:163-75.
48. Hood RW, Wright TM, Burstein AH. Retrieval analysis of total knee prostheses: a method and its application to 48 total condylar prostheses. J Biomed Mater Res. 1983;17:829-42.
49. Grochowsky JC, Alaways LW, Siskey R, Most E, Kurtz SM. Digital photogrammetry for quantitative wear analysis of retrieved TKA components. J Biomed Master Res. 2006;79:263-7.
50. Akbari A, Roy ME, Whiteside LA, Katerberg BJ, Schnettgoecke DJ. Minimal backside surface changes observed in retrieved acetabular liners. J Arthroplasty. 2011;26:686-92.
51. Chu WO, Cheng CK, Su JY, Kao HC. The analysis of UHMWPE insert wear in total hip replacement. Master Thesis of Institute of Biomedical Engineering, National Yang-Ming University, Taipei, Taiwan, 2004. (In Chinese)
52. Sychterz CJ, Moon KH, Hashimoto Y, Terefenko KM, Engh CA Jr, Bauer TW. Wear of polyethylene cups in total hip arthroplasty. A study of specimens retrieved post mortem. J Bone Joint Surg Am. 1996;78:1193-200.
53. Buller L, Smith T, Bryan J, Klika A, Barsoum W, Iannotti JP. The use of patient-specific instrumentation improves the accuracy of acetabular component placement. J Arthroplasty. 2013;28:631-6.
54. Beckenbaugh RD, Ilstrup DM. Total hip arthroplasty. J Bone Joint Surg Am. 1978;60:306-13.
55. DeLee JG, Charnley J. Radiological demarcation of cemented sockets in total hip replacement. Clin Orthop Relat Res. 1976;121:20-32.
56. Gruen TA, McNeice GM, Amstutz HC. ‘‘Modes of failure’’ of cemented stem-type femoral components: a radiographic analysis of loosening. Clin Orthop Relat Res. 1979;141:17-27.
57. Huddleston HD. Femoral lysis after cemented hip arthroplasty. J Arthroplasty. 1988;3:285-97.
58. Zhu YH, Chiu KY, Tang WM. Review Article: Polyethylene wear and osteolysis in total hip arthroplasty. J Orthop Surg (Hong Kong). 2001;9:91-9.
59. Kitamura N, Sychterz-Terefenko CJ, Engh CA Sr. The temporal progression of pelvic osteolysis after uncemented total hip arthroplasty. J Arthrop. 2006;21:791-5.
60. Soto MO, Rodriguez JA, Ranawat CS. Clinical and radiographic evaluation of the Harris-Galante cup: incidence of wear and osteolysis at 7 to 9 years follow-up. J Arthroplasty. 2000;15:139-45.
61. http://www.aori.org/research/new/aaos01/aaosexp2.htm
62. Nieuwenhuis JJ, Malefijt Jde W, Hendriks JC, Gosens T, Bonnet M. Unsatisfactory results with the cementless Omnifit acetabular component due to polyethylene and severe osteolysis. Acta Orthop Belg. 2005;71:294-302.
63. Von Knoch M, Engh CA Sr, Sychterz CJ, Engh CA Jr, Willert HG. Migration of polyethylene wear debris in one type of uncemented femoral component with circumferential porous coating: an autopsy study of 5 femurs. J Arthroplasty. 2000;15:72-8.
64. http://www.hopkinsortho.org/orthopedicsurgery/femanteversion.html
65. Bono JV, Sanford L, Toussaint JT. Severe polyethylene wear in total hip arthroplasty. Observations from retrieved AML PLUS hip implants with an ACS polyethylene liner. J Arthroplasty. 1994;9:119-25.
66. Learmonth ID, Hussell JG, Smith EJ. Inadequate polyethylene thickness and osteolysis in cementless hip arthroplasty. J Arthroplasty. 1997;12:305-9.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top