|
1. 葛應欽, 台灣嚼時檳榔與健康, 1994: 屏東醫療網通訊. 2. Awang, M.N., Betel quid and oral carcinogenesis. Singapore Med J, 1988. 29(6): p. 589-93. 3. Wang, C.K. and M.J. Wu, The separation of phenolics from Piper betle leaf and the effect on the mutagenicity of arecoline. The Chinese Agricultural Chemical Society., 1996. 34(5): p. 638-647. 4. Branshaw, S.a., UPPER ALIMENTARY TRACT CANCER IN NATAL INDIANS WITH SPECIAL REFERENCE TO THE BETEL-CHEWING HABIT. 1969. 5. Nair, U.J., et al., Effect of lime composition on the formation of reactive oxygen species from areca nut extract in vitro. Carcinogenesis, 1990. 11(12): p. 2145-8. 6. Shirname, L.P., M.M. Menon, and S.V. Bhide, Mutagenicity of betel quid and its ingredients using mammalian test systems. Carcinogenesis, 1984. 5(4): p. 501-3. 7. Jeng, J.H., et al., Genotoxic and non-genotoxic effects of betel quid ingredients on oral mucosal fibroblasts in vitro. J Dent Res, 1994. 73(5): p. 1043-9. 8. J.Nair, H.O., M.Friesen, A.Croisy, S.V.Bhide and H.Bartsch, Tobacco-specific and betel nut-specific N-nitroso compounds: occurrence in saliva and urine of betel quid chewers and formation in vitro by nitrosation of betel quid. 1985. 9. Wenke, G. and D. Hoffmann, A study of betel quid carcinogenesis. 1. On the in vitro N-nitrosation of arecoline. Carcinogenesis, 1983. 4(2): p. 169-72. 10. Rosin, M.P., The influence of pH on the convertogenic activity of plant phenolics. Mutat Res, 1984. 135(2): p. 109-13. 11. Nair, U.J., et al., Formation of reactive oxygen species and of 8-hydroxydeoxyguanosine in DNA in vitro with betel quid ingredients. Chem Biol Interact, 1987. 63(2): p. 157-69. 12. Wang, C. and L. Hwang, phenolic compounds of betel quid chewing juice. Food Sci, 1993. 20: p. 458-471. 13. Bolton, J.L., N.M. Acay, and V. Vukomanovic, Evidence that 4-allyl-o-quinones spontaneously rearrange to their more electrophilic quinone methides: potential bioactivation mechanism for the hepatocarcinogen safrole. Chem Res Toxicol, 1994. 7(3): p. 443-50. 14. Miller, E.C., et al., Sulfuric acid esters as ultimate electrophilic and carcinogenic metabolites of some alkenylbenzenes and aromatic amines in mouse liver. Carcinog Compr Surv, 1985. 10: p. 93-107. 15. Jeng, J.H., et al., Reactive oxygen species are crucial for hydroxychavicol toxicity toward KB epithelial cells. Cell Mol Life Sci, 2004. 61(1): p. 83-96. 16. Nakagawa, Y., et al., Biotransformation and cytotoxic effects of hydroxychavicol, an intermediate of safrole metabolism, in isolated rat hepatocytes. Chem Biol Interact, 2009. 180(1): p. 89-97. 17. Borchert, P., et al., The metabolism of the naturally occurring hepatocarcinogen safrole to 1'-hydroxysafrole and the electrophilic reactivity of 1'-acetoxysafrole. Cancer Res, 1973. 33(3): p. 575-89. 18. Jeurissen, S.M., et al., Human cytochrome p450 enzyme specificity for bioactivation of safrole to the proximate carcinogen 1'-hydroxysafrole. Chem Res Toxicol, 2004. 17(9): p. 1245-50. 19. Ueng, Y.F., et al., Identification of the main human cytochrome P450 enzymes involved in safrole 1'-hydroxylation. Chem Res Toxicol, 2004. 17(8): p. 1151-6. 20. Ioannides, C., M. Delaforge, and D.V. Parke, Interactions of safrole and isosafrole and their metabolites with cytochromes P-450. Chem Biol Interact, 1985. 53(3): p. 303-11. 21. 施惠瀅, 檳榔嚼塊組成物影響香菸中NNK代謝物肢之體內研究, 2006, 國立陽明大學: 醫學院藥理學研究所. 22. Yamazaki, H., et al., Cytochrome P450 2E1 and 2A6 enzymes as major catalysts for metabolic activation of N-nitrosodialkylamines and tobacco-related nitrosamines in human liver microsomes. Carcinogenesis, 1992. 13(10): p. 1789-94. 23. Schuller, H.M., Mechanisms of smoking-related lung and pancreatic adenocarcinoma development. Nat Rev Cancer, 2002. 2(6): p. 455-63. 24. Hecht, S.S., Tobacco smoke carcinogens and lung cancer. J Natl Cancer Inst, 1999. 91(14): p. 1194-210. 25. Hoffmann, D., I. Hoffmann, and K. El-Bayoumy, The less harmful cigarette: a controversial issue. a tribute to Ernst L. Wynder. Chem Res Toxicol, 2001. 14(7): p. 767-90. 26. Hecht, S.S., Tobacco carcinogens, their biomarkers and tobacco-induced cancer. Nat Rev Cancer, 2003. 3(10): p. 733-44. 27. Hecht, S.S., Human urinary carcinogen metabolites: biomarkers for investigating tobacco and cancer. Carcinogenesis, 2002. 23(6): p. 907-22. 28. Hecht, S.S., DNA adduct formation from tobacco-specific N-nitrosamines. Mutat Res, 1999. 424(1-2): p. 127-42. 29. van Zeeland, A.A., et al., 8-Hydroxydeoxyguanosine in DNA from leukocytes of healthy adults: relationship with cigarette smoking, environmental tobacco smoke, alcohol and coffee consumption. Mutat Res, 1999. 439(2): p. 249-57. 30. Hecht, S.S., Biochemistry, biology, and carcinogenicity of tobacco-specific N-nitrosamines. Chem Res Toxicol, 1998. 11(6): p. 559-603. 31. von Weymarn, L.B., J.A. Chun, and P.F. Hollenberg, Effects of benzyl and phenethyl isothiocyanate on P450s 2A6 and 2A13: potential for chemoprevention in smokers. Carcinogenesis, 2006. 27(4): p. 782-90. 32. Messina, E.S., R.F. Tyndale, and E.M. Sellers, A major role for CYP2A6 in nicotine C-oxidation by human liver microsomes. J Pharmacol Exp Ther, 1997. 282(3): p. 1608-14. 33. Yamazaki, H., et al., Roles of CYP2A6 and CYP2B6 in nicotine C-oxidation by human liver microsomes. Arch Toxicol, 1999. 73(2): p. 65-70. 34. Goniewicz, M.L., et al., Comparison of urine cotinine and the tobacco-specific nitrosamine metabolite 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) and their ratio to discriminate active from passive smoking. Nicotine Tob Res, 2011. 13(3): p. 202-8. 35. Thomson, J.J., Rays of positive electricity, and their application to chemical analyses. 1913: London, Longmans. 36. Kloepfer, A., J.B. Quintana, and T. Reemtsma, Operational options to reduce matrix effects in liquid chromatography-electrospray ionization-mass spectrometry analysis of aqueous environmental samples. J Chromatogr A, 2005. 1067(1-2): p. 153-60. 37. Niessen, W.M.A., In Liquid Chromatography-Mass Spectrometry. Atmospheric pressure ionization., 2006: p. 141. 38. Kitamura, R., et al., Improvement in precision of the liquid chromatographic-electrospray ionization tandem mass spectrometric analysis of 3'-C-ethynylcytidine in rat plasma. J Chromatogr B Biomed Sci Appl, 2001. 754(1): p. 113-9. 39. Lindberg, R., et al., Determination of antibiotic substances in hospital sewage water using solid phase extraction and liquid chromatography/mass spectrometry and group analogue internal standards. Chemosphere, 2004. 57(10): p. 1479-88. 40. Wen, C.P., et al., Uncovering the relation between betel quid chewing and cigarette smoking in Taiwan. Tob Control, 2005. 14 Suppl 1: p. i16-22. 41. Shah, K.A., M.S. Halquist, and H.T. Karnes, A modified method for the determination of tobacco specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol in human urine by solid phase extraction using a molecularly imprinted polymer and liquid chromatography tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci, 2009. 877(14-15): p. 1575-82. 42. Chiang, H.C., et al., 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone is correlated with 8-hydroxy-2'-deoxyguanosine in humans after exposure to environmental tobacco smoke. Sci Total Environ, 2012. 414: p. 134-9. 43. Castonguay, A., et al., Metabolism and tissue distribution of tobacco-specific N-nitrosamines in the marmoset monkey (Callithrix jacchus). Carcinogenesis, 1985. 6(11): p. 1543-50. 44. Morse, M.A., et al., Characterization of a glucuronide metabolite of 4-(methyl-nitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and its dose-dependent excretion in the urine of mice and rats. Carcinogenesis, 1990. 11(10): p. 1819-23. 45. Hecht, S.S., et al., A tobacco-specific lung carcinogen in the urine of men exposed to cigarette smoke. N Engl J Med, 1993. 329(21): p. 1543-6. 46. Carmella, S.G., et al., Analysis of N- and O-glucuronides of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL) in human urine. Chem Res Toxicol, 2002. 15(4): p. 545-50. 47. Byrd, G.D. and M.W. Ogden, Liquid chromatographic/tandem mass spectrometric method for the determination of the tobacco-specific nitrosamine metabolite NNAL in smokers' urine. J Mass Spectrom, 2003. 38(1): p. 98-107. 48. Benowitz, N., et al., Urine cotinine underestimates exposure to the tobacco-derived lung carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in passive compared with active smokers. Cancer Epidemiol Biomarkers Prev, 2010. 19(11): p. 2795-800. 49. Ko, Y.C., et al., Betel quid chewing, cigarette smoking and alcohol consumption related to oral cancer in Taiwan. J Oral Pathol Med, 1995. 24(10): p. 450-3. 50. 黃惠慈, 香菸中致癌物NNK與黃樟素之倉鼠體內基因毒性探討, 2009: 國立陽明大學醫學院 環境與職業衛生研究所. 51. Muscat, J.E., et al., Racial differences in exposure and glucuronidation of the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK). Cancer, 2005. 103(7): p. 1420-6. 52. Tricker, A.R., et al., Metabolism of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) in A/J mouse lung and effect of cigarette smoke exposure on in vivo metabolism to biological reactive intermediates. Adv Exp Med Biol, 2001. 500: p. 451-4. 53. Zhang, X., et al., CYP2A13: variable expression and role in human lung microsomal metabolic activation of the tobacco-specific carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone. J Pharmacol Exp Ther, 2007. 323(2): p. 570-8. 54. Chiang, H.C., et al., Metabolic effects of CYP2A6 and CYP2A13 on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced gene mutation--a mammalian cell-based mutagenesis approach. Toxicol Appl Pharmacol, 2011. 253(2): p. 145-52. 55. Liu, J., et al., Global gene expression associated with hepatocarcinogenesis in adult male mice induced by in utero arsenic exposure. Environ Health Perspect, 2006. 114(3): p. 404-11. 56. Waalkes, M.P., J.M. Ward, and B.A. Diwan, Induction of tumors of the liver, lung, ovary and adrenal in adult mice after brief maternal gestational exposure to inorganic arsenic: promotional effects of postnatal phorbol ester exposure on hepatic and pulmonary, but not dermal cancers. Carcinogenesis, 2004. 25(1): p. 133-41. 57. Jalas, J.R., S.S. Hecht, and S.E. Murphy, Cytochrome P450 enzymes as catalysts of metabolism of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, a tobacco specific carcinogen. Chem Res Toxicol, 2005. 18(2): p. 95-110 58. Chiu, H.F., et al., Does arsenic exposure increase the risk for liver cancer? J Toxicol Environ Health A, 2004. 67(19): p. 1491-500. 59. Lee, H.L., et al., Enhancements of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) metabolism and carcinogenic risk via NNK/arsenic interaction. Toxicol Appl Pharmacol, 2008. 227(1): p. 108-14. 60. Ono, S., et al., Specificity of substrate and inhibitor probes for cytochrome P450s: evaluation of in vitro metabolism using cDNA-expressed human P450s and human liver microsomes. Xenobiotica, 1996. 26(7): p. 681-93. 61. Draper, A.J., A. Madan, and A. Parkinson, Inhibition of coumarin 7-hydroxylase activity in human liver microsomes. Arch Biochem Biophys, 1997. 341(1): p. 47-61. 62. Takeuchi, H., et al., Pretreatment with 8-methoxypsoralen, a potent human CYP2A6 inhibitor, strongly inhibits lung tumorigenesis induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in female A/J mice. Cancer Res, 2003. 63(22): p. 7581-3. 63. Miyazaki, M., et al., Mechanisms of chemopreventive effects of 8-methoxypsoralen against 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced mouse lung adenomas. Carcinogenesis, 2005. 26(11): p. 1947-55. 64. Takeuchi, H., et al., 8-Methoxypsoralen, a potent human CYP2A6 inhibitor, inhibits lung adenocarcinoma development induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone in female A/J mice. Mol Med Rep, 2009. 2(4): p. 585-8. 65. Kresty, L.A., et al., Metabolites of a tobacco-specific nitrosamine, 4-(methylnitrosamino)- 1-(3-pyridyl)-1-butanone (NNK), in the urine of smokeless tobacco users: relationship between urinary biomarkers and oral leukoplakia. Cancer Epidemiol Biomarkers Prev, 1996. 5(7): p. 521-5. 66. Chung, C.J., et al., Low ratio of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol-glucuronides (NNAL-Gluc)/free NNAL increases urothelial carcinoma risk. Sci Total Environ, 2011. 409(9): p. 1638-42. 67. Rostron, B., NNAL exposure by race and menthol cigarette use among U.S. smokers. Nicotine Tob Res, 2013. 15(5): p. 950-6. 68. Lee, H.L., et al., Correlation between the urine profile of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone metabolites and N7-methylguanine in urothelial carcinoma patients. Cancer Epidemiol Biomarkers Prev, 2008. 17(12): p. 3390-5. 69. Wu, K.D., et al., The milk-alkali syndrome caused by betelnuts in oyster shell paste. J Toxicol Clin Toxicol, 1996. 34(6): p. 741-5. 70. Yiang, G.-T., et al., The milk-alkali syndrome caused by chewing betel nuts. J Med Sci, 2000. 20: p. 429-434. 71. Lin, S.H., et al., Hypercalcaemia and metabolic alkalosis with betel nut chewing: emphasis on its integrative pathophysiology. Nephrol Dial Transplant, 2002. 17(5): p. 708-14. 72. Pilger, A., et al., Longitudinal study of urinary 8-hydroxy-2'-deoxyguanosine excretion in healthy adults. Free Radic Res, 2001. 35(3): p. 273-80. 73. Chuang, C.Y., et al., Oxidative DNA damage estimated by urinary 8-hydroxydeoxyguanosine: influence of taxi driving, smoking and areca chewing. Chemosphere, 2003. 52(7): p. 1163-71. 74. Chao, M.R., et al., Rapid and sensitive quantification of urinary N7-methylguanine by isotope-dilution liquid chromatography/electrospray ionization tandem mass spectrometry with on-line solid-phase extraction. Rapid Commun Mass Spectrom, 2005. 19(17): p. 2427-32. 75. 廖芸儹, 嚼食檳榔與吸菸造成氧化性傷害之研究, 2008, 國立陽明大學 環境與職業衛生研究所. 76. Dietz, B.M. and J.L. Bolton, Biological reactive intermediates (BRIs) formed from botanical dietary supplements. Chem Biol Interact, 2011. 192(1-2): p. 72-80. 77. Maser, E., Significance of reductases in the detoxification of the tobacco-specific carcinogen NNK. Trends Pharmacol Sci, 2004. 25(5): p. 235-7.
|