跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/02 01:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:藍敏瑛
研究生(外文):Ming-Ying Lan
論文名稱:辨識鼻咽癌的治療標的及具潛力藥物
論文名稱(外文):Identify NPC Therapeutic Targets and Potential Drugs
指導教授:黃奇英林進清林進清引用關係
指導教授(外文):Chi-Ying F. HuangJin-Ching Lin
學位類別:博士
校院名稱:國立陽明大學
系所名稱:臨床醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:135
中文關鍵詞:鼻咽癌蛋白質蛋白質交互作用連接網絡資料庫支持向量機基因藥物
外文關鍵詞:Nasopharyngeal carcinomaProtein-protein interactionConnectivity MapSupport Vector MachinesGeneDrug
相關次數:
  • 被引用被引用:0
  • 點閱點閱:327
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
鼻咽癌是個獨特的癌症,主要發生在南亞地區,起因於基因、病毒、食物及環境因子的複雜交互作用。許多不同表現的基因被發現與鼻咽癌有關;然而,如何從未整理的基因名單中排序出重要的基因仍然未知。此外,雖然同步化學放射治療是大多數鼻咽癌患者的主要治療方式,但屬後期的患者其預後不佳仍是未解決的問題。為了排序出重要的鼻咽癌基因及發現具潛力藥物,我們從已發表的微陣列分析資料及文獻收集了鼻咽癌558個高表現及993個低表現的基因。我們進一步假設將基因特徵轉化成蛋白質交互作用網路來分析網路拓樸學結構可對鼻咽癌致病因中的重要調控因子有深入的了解。較特別引起注意的是 “團”(clique)的出現,它是在推論的鼻咽癌網路中自己完全相連接的子圖。這些以團為基礎的集線點,與3個以上的查詢點相連,比鼻咽癌蛋白質交互作用網路中其他的點排序較前,被進一步以路徑分析得到24個高表現及6個低表現的瓶頸基因用來預測鼻咽癌致癌過程。此外,額外的致癌基因、抑癌基因、與蛋白質複合物相關的基因、及以功能性分析得到的基因與瓶頸基因綜合在一起得到38個高表現及10個低表現的最終基因特徵。我們分別利用初始及最終基因特徵來搜尋「連接網絡資料庫」 (Connectivity Map,簡稱CMap),發現經由我们的方式來歸納簡化標的可以有效的發現具潛力的藥物。我們於3年後更新鼻咽癌基因特徵並重建鼻咽癌蛋白質交互作用網路。我們得到一個更緻密的蛋白質交互作用網路。「支持向量機」(Support Vector Machines,簡稱SVM) 被進一步用來分類對鼻咽癌有效的測試藥,利用藥物在連接網絡資料庫的基因表現資料來辨識對藥物敏感性基因,並預測出87個具潛力治療鼻咽癌的藥物。排序前兩名藥物,thioridazine及vorinostat,進一步證實可有效抑制鼻咽癌細胞。此外,根據文獻回顧,將近半數的預測藥物具抗癌作用。我們架設一個整合網站(http://140.109.23.188:8080/NPC)以利於未來鼻咽癌的研究。此經由電腦模擬從標的排序到辨識具潛力藥物的方法,可能對其他癌症研究也是一種有效方式。
Nasopharyngeal carcinoma (NPC) is a unique cancer occurring primarily in south Asia and is caused by a complex interaction of genetic, viral, dietary, and environmental factors. Many differentially expressed genes have been linked to NPC; however, how to prioritize therapeutic targets from un-sorted gene lists remains largely unknown. Besides, although concurrent chemoradiotherapy is the mainstay treatment for most NPC cases, the poor outcomes of patients at advanced stages present an unsolved problem that needs to be addressed. In order to prioritize the important genes and discover potential drugs for NPC, we first collected 558 up- and 993 down-regulated NPC genes from published microarray data and the primary literatures. We then postulated that conversion of gene signatures into the protein-protein interaction (PPI) network and analyzing the network topologically could provide insight into key regulators involved in tumorgenesis of NPC. Of particular interests were the presences of cliques, referred to as fully connected sub-graphs, in the inferred NPC networks. These clique-based hubs, connecting with more than three queries and ranked higher than other nodes in the NPC PPI network, were further narrowed down by pathway analysis to retrieve 24 up- and 6 down-regulated bottleneck genes for predicting NPC carcinogenesis. Moreover, additional oncogenes, tumor suppressor genes, genes involved in protein complexes and genes obtained after functional profiling were merged with the bottleneck genes to form the final gene signatures of 38 up- and 10 down-regulated genes. We used the initial and final NPC gene signatures to query the Connectivity Map (CMap) respectively and found that target reduction via our pipeline could efficiently uncover potential drugs. We then updated the NPC gene signatures and reconstructed the NPC PPI network 3 years later. A more highly interconnected network was obtained. Support Vector Machines (SVM) were further utilized to classify the effectiveness of tested drugs against NPC using their gene expression from CMap, to identify several chemically sensitive genes, and to predict 87 drugs with potential for treating NPC. The two top-ranked drugs, thioridazine and vorinostat, were further demonstrated to be effective in inhibiting NPC cells. Moreover, according the literature reviews, nearly half of the predicted drugs have anticancer effects. An integrative website (http://140.109.23.188:8080/NPC) was established to facilitate future NPC research. This in silico approach, from target prioritization to potential drugs identification, might be an effective method for various cancer researches.
English abstract …………………………………………………… 5-6
Chinese abstract………………………………………………………7
List of abbreviation…………………………………………………8
Introduction…………………………………………………………… 9-12
Materials and methods………………………………………………13-21
Results…………………………………………………………………… 22-30
Discussion …………………………………………………………… 31-42
Conclusion……………………………………………………………… 43
Perspectives…………………………………………………………… 43
References……………………………………………………………… 44-54
Tables………………………………………………………………………55-115
Figures……………………………………………………………………116-133
Publication list………………………………………………………134-135

References
1. Cho WC. Nasopharyngeal carcinoma: molecular biomarker discovery and progress. Mol Cancer 2007; 6: 1.
2. Lu JJ CJ, Lee AWM. Nasopharyngeal Cancer: Multidisciplinary Management Springer, 2010.
3. Tao Q, Chan AT. Nasopharyngeal carcinoma: molecular pathogenesis and therapeutic developments. Expert Rev Mol Med 2007; 9: 1-24.
4. Chou J, Lin YC, Kim J, You L, Xu Z, He B, et al. Nasopharyngeal carcinoma--review of the molecular mechanisms of tumorigenesis. Head Neck 2008; 30: 946-63.
5. Lee YC, Hwang YC, Chen KC, Lin YS, Huang DY, Huang TW, et al. Effect of Epstein-Barr virus infection on global gene expression in nasopharyngeal carcinoma. Funct Integr Genomics 2007; 7: 79-93.
6. Chen X, Liang S, Zheng W, Liao Z, Shang T, Ma W. Meta-analysis of nasopharyngeal carcinoma microarray data explores mechanism of EBV-regulated neoplastic transformation. BMC Genomics 2008; 9: 322.
7. Fang CY, Lee CH, Wu CC, Chang YT, Yu SL, Chou SP, et al. Recurrent chemical reactivations of EBV promotes genome instability and enhances tumor progression of nasopharyngeal carcinoma cells. Int J Cancer 2009; 124: 2016-25.
8. Huang SY, Fang CY, Tsai CH, Chang Y, Takada K, Hsu TY, et al. N-methyl-N'-nitro-N-nitrosoguanidine induces and cooperates with 12-O-tetradecanoylphorbol-1,3-acetate/sodium butyrate to enhance Epstein-Barr virus reactivation and genome instability in nasopharyngeal carcinoma cells. Chem Biol Interact 2010; 188: 623-34.
9. Fang CY, Huang SY, Wu CC, Hsu HY, Chou SP, Tsai CH, et al. The synergistic effect of chemical carcinogens enhances Epstein-Barr virus reactivation and tumor progression of nasopharyngeal carcinoma cells. PLoS One 2012; 7: e44810.
10. Sriuranpong V, Mutirangura A, Gillespie JW, Patel V, Amornphimoltham P, Molinolo AA, et al. Global gene expression profile of nasopharyngeal carcinoma by laser capture microdissection and complementary DNA microarrays. Clin Cancer Res 2004; 10: 4944-58.
11. Shi W, Bastianutto C, Li A, Perez-Ordonez B, Ng R, Chow KY, et al. Multiple dysregulated pathways in nasopharyngeal carcinoma revealed by gene expression profiling. Int J Cancer 2006; 119: 2467-75.
12. Zeng ZY, Zhou YH, Zhang WL, Xiong W, Fan SQ, Li XL, et al. Gene expression profiling of nasopharyngeal carcinoma reveals the abnormally regulated Wnt signaling pathway. Hum Pathol 2007; 38: 120-33.
13. Fang W, Li X, Jiang Q, Liu Z, Yang H, Wang S, et al. Transcriptional patterns, biomarkers and pathways characterizing nasopharyngeal carcinoma of Southern China. J Transl Med 2008; 6: 32.
14. Chang ET, Adami HO. The enigmatic epidemiology of nasopharyngeal carcinoma. Cancer Epidemiol Biomarkers Prev 2006 Oct;15(10):1765-77.
15. Jeong H, Mason SP, Barabasi AL, Oltvai ZN. Lethality and centrality in protein networks. Nature 2001; 411: 41-2.
16. Batada NN, Hurst LD, Tyers M. Evolutionary and physiological importance of hub proteins. PLoS Comput Biol 2006; 2: e88.
17. Hahn MW, Kern AD. Comparative genomics of centrality and essentiality in three eukaryotic protein-interaction networks. Mol Biol Evol 2005; 22: 803-6.
18. Yu H, Greenbaum D, Xin Lu H, Zhu X, Gerstein M. Genomic analysis of essentiality within protein networks. Trends Genet 2004; 20: 227-31.
19. Lee SA, Chan CH, Chen TC, Yang CY, Huang KC, Tsai CH, et al. POINeT: Protein Interactome with Sub-network Analysis and Hub Prioritization. BMC Bioinformatics 2009; 10: 114.
20. Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ, et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. Science 2006; 313: 1929-35.
21. Lamb J. The Connectivity Map: a new tool for biomedical research. Nat Rev Cancer 2007; 7: 54-60.
22. Hieronymus H, Lamb J, Ross KN, Peng XP, Clement C, Rodina A, et al. Gene expression signature-based chemical genomic prediction identifies a novel class of HSP90 pathway modulators. Cancer Cell 2006; 10: 321-30.
23. Wei G, Twomey D, Lamb J, Schlis K, Agarwal J, Stam RW, et al. Gene expression-based chemical genomics identifies rapamycin as a modulator of MCL1 and glucocorticoid resistance. Cancer Cell 2006; 10: 331-42.
24. Corinna C, Vapnik V. Support-Vector Networks. Machine Learning 1995; 20: 273-97.
25. Hsu CN, Chang YM, Kuo CJ, Lin YS, Huang HS, Chung IF. Integrating high dimensional bi-directional parsing models for gene mention tagging. Bioinformatics 2008; 24: i286-94.
26. Lin KT, Liu CH, Chiou JJ, Tseng WH, Lin KL, Hsu CN. Gene Name Service : No-Nonsense Alias Resolution Service for Homo Sapiens Genes. In Proceedings, 2007 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology-Workshops (WI-IAT Workshops 2007), Workshop on Bio-Medicine Applications of Web Technologies (BMWT-2007); 2007 5 November; Silicon Valley, CA, USA; 2007.
27. Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T. Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 2011; 27: 431-2.
28. Bader GD, Hogue CWV. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 2003; 4: 2.
29. Kamburov A, Wierling C, Lehrach H, Herwig R. ConsensusPathDB--a database for integrating human functional interaction networks. Nucleic Acids Res 2009; 37: D623-8.
30. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009; 4: 44-57.
31. Kuhn M, von Mering C, Campillos M, Jensen LJ, Bork P. STITCH: interaction networks of chemicals and proteins. Nucleic Acids Res 2008; 36: D684-8.
32. Wishart DS, Knox C, Guo AC, Cheng D, Shrivastava S, Tzur D, et al. DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res 2008; 36: D901-6.
33. Lin CT, Chan WY, Chen W, Huang HM, Wu HC, Hsu MM, et al. Characterization of seven newly established nasopharyngeal carcinoma cell lines. Lab Invest 1993; 68: 716-27.
34. Liao SK, Perng YP, Shen YC, Chung PJ, Chang YS, Wang CH. Chromosomal abnormalities of a new nasopharyngeal carcinoma cell line (NPC-BM1) derived from a bone marrow metastatic lesion. Cancer Genet Cytogenet 1998; 103: 52-8.
35. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 2005; 102: 15545-50.
36. Guyon I, Weston J, Barnhill S, Vapnik V. Gene selection for cancer classification using support vector machines. Machine Learning 2002; 46: 389–422.
37. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 2004; 5: R80.
38. R Development Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2008: ISBN 3-900051-07–0. Available at: http://www. R-project. org, 2011.
39. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological) 1995: 289-300.
40. Spirin V, Mirny LA. Protein complexes and functional modules in molecular networks. Proc Natl Acad Sci U S A 2003; 100: 12123-8.
41. Frouin I, Montecucco A, Biamonti G, Hubscher U, Spadari S, Maga G. Cell cycle-dependent dynamic association of cyclin/Cdk complexes with human DNA replication proteins. EMBO J 2002; 21: 2485-95.
42. Ellison V, Stillman B. Reconstitution of recombinant human replication factor C (RFC) and identification of an RFC subcomplex possessing DNA-dependent ATPase activity. J Biol Chem 1998; 273: 5979-87.
43. Lee SH, Kwong AD, Pan ZQ, Hurwitz J. Studies on the activator 1 protein complex, an accessory factor for proliferating cell nuclear antigen-dependent DNA polymerase delta. J Biol Chem 1991; 266: 594-602.
44. Uhlmann F, Cai J, Flores-Rozas H, Dean FB, Finkelstein J, O'Donnell M, et al. In vitro reconstitution of human replication factor C from its five subunits. Proc Natl Acad Sci U S A 1996; 93: 6521-6.
45. Wang Y, Cortez D, Yazdi P, Neff N, Elledge SJ, Qin J. BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev 2000; 14: 927-39.
46. Hayano T, Yanagida M, Yamauchi Y, Shinkawa T, Isobe T, Takahashi N. Proteomic analysis of human Nop56p-associated pre-ribosomal ribonucleoprotein complexes. Possible link between Nop56p and the nucleolar protein treacle responsible for Treacher Collins syndrome. J Biol Chem 2003; 278: 34309-19.
47. Bouwmeester T, Bauch A, Ruffner H, Angrand PO, Bergamini G, Croughton K, et al. A physical and functional map of the human TNF-alpha/NF-kappa B signal transduction pathway. Nat Cell Biol 2004; 6: 97-105.
48. Leong JL, Loh KS, Putti TC, Goh BC, Tan LK. Epidermal growth factor receptor in undifferentiated carcinoma of the nasopharynx. Laryngoscope 2004; 114: 153-7.
49. Pan J, Kong L, Lin S, Chen G, Chen Q, Lu JJ. The clinical significance of coexpression of cyclooxygenases-2, vascular endothelial growth factors, and epidermal growth factor receptor in nasopharyngeal carcinoma. Laryngoscope 2008; 118: 1970-5.
50. Ma BB, Poon TC, To KF, Zee B, Mo FK, Chan CM, et al. Prognostic significance of tumor angiogenesis, Ki 67, p53 oncoprotein, epidermal growth factor receptor and HER2 receptor protein expression in undifferentiated nasopharyngeal carcinoma--a prospective study. Head Neck 2003; 25: 864-72.
51. Bar-Sela G, Kuten A, Ben-Eliezer S, Gov-Ari E, Ben-Izhak O. Expression of HER2 and C-KIT in nasopharyngeal carcinoma: implications for a new therapeutic approach. Mod Pathol 2003; 16: 1035-40.
52. Yan J, Fang Y, Huang BJ, Liang QW, Wu QL, Zeng YX. Absence of evidence for HER2 amplification in nasopharyngeal carcinoma. Cancer Genet Cytogenet 2002; 132: 116-9.
53. Bose S, Yap LF, Fung M, Starzcynski J, Saleh A, Morgan S, et al. The ATM tumour suppressor gene is down-regulated in EBV-associated nasopharyngeal carcinoma. J Pathol 2009; 217: 345-52.
54. Reimand J, Kull M, Peterson H, Hansen J, Vilo J. g:Profiler--a web-based toolset for functional profiling of gene lists from large-scale experiments. Nucleic Acids Res 2007; 35: W193-200.
55. Weinberg RA. P53 and apoptosis: master guardian and executioner. In: Weinberg RA, editor. The biology of cancer. New York: Garland Science; 2007. P.307-56.
56. Li L, Guo L, Tao Y, Zhou S, Wang Z, Luo W, et al. Latent membrane protein 1 of Epstein-Barr virus regulates p53 phosphorylation through MAP kinases. Cancer Lett 2007; 255: 219-31.
57. Ogino T, Moriai S, Ishida Y, Ishii H, Katayama A, Miyokawa N, et al. Association of immunoescape mechanisms with Epstein-Barr virus infection in nasopharyngeal carcinoma. Int J Cancer 2007; 120: 2401-10.
58. Ho SY, Guo HR, Chen HH, Hsiao JR, Jin YT, Tsai ST. Prognostic implications of Fas-ligand expression in nasopharyngeal carcinoma. Head Neck 2004; 26: 977-83.
59. Hou X, Li Y, Luo RZ, Fu JH, He JH, Zhang LJ, et al. High expression of the transcriptional co-activator p300 predicts poor survival in resectable non-small cell lung cancers. Eur J Surg Oncol 2012; 38: 523-30.
60. Debes JD, Sebo TJ, Lohse CM, Murphy LM, Haugen DA, Tindall DJ. p300 in prostate cancer proliferation and progression. Cancer Res 2003; 63: 7638-40.
61. Li Y, Yang HX, Luo RZ, Zhang Y, Li M, Wang X, et al. High expression of p300 has an unfavorable impact on survival in resectable esophageal squamous cell carcinoma. Ann Thorac Surg 2011; 91: 1531-8.
62. Gil-Ad I, Shtaif B, Levkovitz Y, Nordenberg J, Taler M, Korov I, et al. Phenothiazines induce apoptosis in a B16 mouse melanoma cell line and attenuate in vivo melanoma tumor growth. Oncol Rep 2006; 15: 107-12.
63. Zhelev Z, Ohba H, Bakalova R, Hadjimitova V, Ishikawa M, Shinohara Y, et al. Phenothiazines suppress proliferation and induce apoptosis in cultured leukemic cells without any influence on the viability of normal lymphocytes. Phenothiazines and leukemia. Cancer Chemother Pharmacol 2004; 53: 267-75.
64. Lin C, Zhao XY, Li L, Liu HY, Cao K, Wan Y, et al. NOXA-induced alterations in the Bax/Smac axis enhance sensitivity of ovarian cancer cells to cisplatin. PLoS One 2012; 7: e36722.
65. Izumi H, Ise T, Murakami T, Torigoe T, Ishiguchi H, Uramoto H, et al. Structural and functional characterization of two human V-ATPase subunit gene promoters. Biochim Biophys Acta 2003; 1628: 97-104.
66. Briggs JW, Ren L, Nguyen R, Chakrabarti K, Cassavaugh J, Rahim S, et al. The ezrin metastatic phenotype is associated with the initiation of protein translation. Neoplasia 2012; 14: 297-310.
67. Wang L, Lin GN, Jiang XL, Lu Y. Expression of ezrin correlates with poor prognosis of nasopharyngeal carcinoma. Tumour Biol 2011; 32: 707-12.
68. Wu M, Li X, Li G. Signaling transduction network mediated by tumor suppressor/susceptibility genes in NPC. Curr Genomics 2009; 10: 216-22.
69. Perez-Leal O, Barrero CA, Clarkson AB, Casero RA Jr, Merali S. Polyamine-regulated translation of spermidine/spermine-N1-acetyltransferase. Mol Cell Biol 2012; 32: 1453-67.
70. Rodrigo JP, Garcia-Pedrero JM, Fernandez MP, Morgan RO, Suarez C, Herrero A. Annexin A1 expression in nasopharyngeal carcinoma correlates with squamous differentiation. Am J Rhinol 2005; 19: 483-7.
71. Kang H, Ko J, Jang SW. The role of annexin A1 in expression of matrix metalloproteinase-9 and invasion of breast cancer cells. Biochem Biophys Res Commun 2012; 423: 188-94.
72. Junrong T, Huancheng Z, Feng H, Yi G, Xiaoqin Y, Zhengmao L, et al. Proteomic identification of CIB1 as a potential diagnostic factor in hepatocellular carcinoma. J Biosci 2011; 36: 659-68.
73. Ko MT, Su CY, Huang SC, Chen CH, Hwang CF. Overexpression of cyclin E messenger ribonucleic acid in nasopharyngeal carcinoma correlates with poor prognosis. J Laryngol Otol 2009; 123: 1021-6.
74. Li YH, Hu CF, Shao Q, Huang MY, Hou JH, Xie D, et al. Elevated expressions of survivin and VEGF protein are strong independent predictors of survival in advanced nasopharyngeal carcinoma. J Transl Med 2008; 6: 1.
75. Grice DM, Vetter I, Faddy HM, Kenny PA, Roberts-Thomson SJ, Monteith GR. Golgi calcium pump secretory pathway calcium ATPase 1 (SPCA1) is a key regulator of insulin-like growth factor receptor (IGF1R) processing in the basal-like breast cancer cell line MDA-MB-231. J Biol Chem 2010; 285: 37458-66.
76. Bernal JA, Luna R, Espina A, Lázaro I, Ramos-Morales F, Romero F, et al. Human securin interacts with p53 and modulates p53-mediated transcriptional activity and apoptosis. Nat Genet 2002; 32: 306-11.
77. Yoon CH, Kim MJ, Lee H, Kim RK, Lim EJ, Yoo KC, et al. PTTG1 oncogene promotes tumor malignancy via epithelial to mesenchymal transition and expansion of cancer stem cell population. J Biol Chem 2012; 287: 19516-27.
78. Fang W, Li X, Jiang Q, Liu Z, Yang H, Wang S, et al. Transcriptional patterns, biomarkers and pathways characterizing nasopharyngeal carcinoma of Southern China. J Transl Med 2008; 6: 32.
79. Janisiewicz AM, Shin JH, Murillo-Sauca O, Kwok S, Le QT, Kong C, et al. CD44(+) cells have cancer stem cell-like properties in nasopharyngeal carcinoma. Int Forum Allergy Rhinol 2012; 2: 465-70.
80. Hu FJ, Ge MH, Li P, Wang CC, Ling YT, Mao WM, et al. Unfavorable clinical implications of circulating CD44+ lymphocytes in patients with nasopharyngeal carcinoma undergoing radiochemotherapy. Clin Chim Acta 2012; 413: 213-8.
81. Oberg K. Genetics and molecular pathology of neuroendocrine gastrointestinal and pancreatic tumors (gastroenteropancreatic neuroendocrine tumors). Curr Opin Endocrinol Diabetes Obes 2009; 16: 72-8.
82. Krcmery J, Camarata T, Kulisz A, Simon HG. Nucleocytoplasmic functions of the PDZ-LIM protein family: new insights into organ development. Bioessays 2010; 32: 100-8.
83. Jia Y, Yang Y, Brock MV, Cao B, Zhan Q, Li Y, et al. Methylation of TFPI-2 is an early event of esophageal carcinogenesis. Epigenomics 2012; 4: 135-46.
84. Wu D, Xiong L, Wu S, Jiang M, Lian G, Wang M. TFPI-2 methylation predicts poor prognosis in non-small cell lung cancer. Lung Cancer 2012; 76: 106-11.
85. Navakauskiene R, Treigyte G, Borutinskaite VV, Matuzevicius D, Navakauskas D, Magnusson KE. Alpha-Dystrobrevin and its associated proteins in human promyelocytic leukemia cells induced to apoptosis. J Proteomics 2012; 75: 3291-303.
86. Sachlos E, Risueno RM, Laronde S, Shapovalova Z, Lee JH, Russell J, et al. Identification of drugs including a dopamine receptor antagonist that selectively target cancer stem cells. Cell 2012; 149: 1284-97.
87. Kang S, Dong SM, Kim BR, Park MS, Trink B, Byun HJ, et al. Thioridazine induces apoptosis by targeting the PI3K/Akt/mTOR pathway in cervical and endometrial cancer cells. Apoptosis 2012; 17: 989-97.
88. Chen MH, Yang WL, Lin KT, Liu CH, Liu YW, Huang KW, et al. Gene expression-based chemical genomics identifies potential therapeutic drugs in hepatocellular carcinoma. PLoS One 2011; 6: e27186.
89. Yeh CT, Wu AT, Chang PM, Chen KY, Yang CN, Yang SC, et al. Trifluoperazine, an antipsychotic agent, inhibits cancer stem cell growth and overcomes drug resistance of lung cancer. Am J Respir Crit Care Med 2012; 186: 1180-8.
90. New M, Olzscha H, La Thangue NB. HDAC inhibitor-based therapies: can we interpret the code? Mol Oncol 2012; 6: 637-56.
91. Hui KF, Ho DN, Tsang CM, Middeldorp JM, Tsao GS, Chiang AK. Activation of lytic cycle of Epstein-Barr virus by suberoylanilide hydroxamic acid leads to apoptosis and tumor growth suppression of nasopharyngeal carcinoma. Int J Cancer 2012; 131: 1930-40.
92. Gryder BE, Sodji QH, Oyelere AK. Targeted cancer therapy: giving histone deacetylase inhibitors all they need to succeed. Future Med Chem 2012; 4: 505-24.
93. Prassas I, Karagiannis GS, Batruch I, Dimitromanolakis A, Datti A, Diamandis EP. Digitoxin-induced cytotoxicity in cancer cells is mediated through distinct kinase and interferon signaling networks. Mol Cancer Ther 2011; 10: 2083-93.
94. Kepp O, Menger L, Vacchelli E, Adjemian S, Martins I, Ma Y, et al. Anticancer activity of cardiac glycosides: At the frontier between cell-autonomous and immunological effects. Oncoimmunology 2012; 1: 1640-2.
95. Menger L, Vacchelli E, Adjemian S, Martins I, Ma Y, Shen S, et al. Cardiac glycosides exert anticancer effects by inducing immunogenic cell death. Sci Transl Med 2012; 4: 143ra99.
96. Cerella C, Dicato M, Diederich M. Assembling the puzzle of anti-cancer mechanisms triggered by cardiac glycosides. Mitochondrion 2013; 13: 225-34.
97. Wong CC, Cheng KW, Rigas B. Preclinical predictors of anticancer drug efficacy: critical assessment with emphasis on whether nanomolar potency should be required of candidate agents. J Pharmacol Exp Ther 2012; 341: 572-8.
98. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 2012; 483: 603-7.
99. Yang W.L.R., Lee Y.E., Chen M.H., Chao K.M., Huang C.Y.F. In-silico drug screening and potential target identification for hepatocellular carcinoma using Support Vector Machines based on drug screening result. Gene 2013; 518: 201-8.
100. Mathema VB, Koh YS, Thakuri BC, Sillanpaa M. Parthenolide, a Sesquiterpene Lactone, Expresses Multiple Anti-cancer and Anti-inflammatory Activities. Inflammation 2012; 35: 560-5.
101. Pozarowski P, Halicka DH, Parzykiewicz Z. NF-kappaB inhibitor sesquiterpene parthenolide induces concurrently a typical apoptosis and cell necrosis: difficulties in identification of dead cells in such cultures. Cytometry A 2003; 54: 118-24.
102. Zhang S, Ong CN, Shen HM. Critical roles of intracellular thiols and calcium in parthenolide-induced apoptosis in human colorectal cancer cells. Cancer Lett 2004; 208: 143-53.
103. Park JH, Liu L, Kim IH, Kim JH, You KR, Kim DG. Identification of the genes involved in enhanced fenretinide-induced apoptosis by parthenolide in human hepatoma cells. Cancer Res 2005; 65: 2804-14.
104. Kim JH, Liu L, Lee SO, Kim YT, You KR, Kim DG. Susceptibility of cholangiocarcinoma cells to parthenolide-induced apoptosis. Cancer Res 2005; 65: 6312-20.
105. Sohma I, Fujiwara Y, Sugita Y, Yoshioka A, Shirakawa M, Moon JH, et al. Parthenolide, an NF-kappaB inhibitor, suppresses tumor growth and enhances response to chemotherapy in gastric cancer. Cancer Genomics Proteomics 2011; 8: 39-47.
106. Gunn EJ, Williams JT, Huynh DT, Iannotti MJ, Han C, Barrios FJ, et al. The natural products parthenolide and andrographolide exhibit anti-cancer stem cell activity in multiple myeloma. Leuk Lymphoma 2011; 52: 1085-97.
107. Kim YR, Eom JI, Kim SJ, Jeung HK, Cheong JW, Kim JS, et al. Myeloperoxidase expression as a potential determinant of parthenolide-induced apoptosis in leukemia bulk and leukemia stem cells. J Pharmacol Exp Ther 2010; 335: 389-400.
108. Liu JW, Cai MX, Xin Y, Wu QS, Ma J, Yang P, et al. Parthenolide induces proliferation inhibition and apoptosis of pancreatic cancer cells in vitro. J Exp Clin Cancer Res 2010; 29: 108.
109. Herrera F, Martin V, Rodriguez-Blanco J, García-Santos G, Antolín I, Rodriguez C. Intracellular redox state regulation by parthenolide. Biochem Biophys Res Commun 2005; 332: 321–25.
110. Dai Y, Guzman ML, Chen S, Wang L, Yeung SK, Pei XY, et al. The NF (Nuclear factor)-kappaB inhibitor parthenolide interacts with histone deacetylase inhibitors to induce MKK7/JNK1-dependent apoptosis in human acute myeloid leukaemia cells. Br.J.Haematol 2010; 151: 70-83.
111. Carlisi D, D'Anneo A, Angileri L, Lauricella M, Emanuele S, Santulli A, et al. Parthenolide sensitizes hepatocellular carcinoma cells to TRAIL by inducing the expression of death receptors through inhibition of STAT3 activation. J Cell Physiol 2011; 226: 1632-41.
112. Minucci S, Pelicci PG. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nature Reviews Cancer 2006; 6: 38–51.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top