|
Albouy, G., Sterpenich, V., Balteau, E., Vandewalle, G., Desseilles, M., Thanh, D. V., . . . Maquet1, P. (2008). Both the Hippocampus and Striatum Are Involved in Consolidation of Motor SequenceMemory. Neuron, 58, 261-272. doi: 10.1016/j.neuron.2008.02.008 Battig, W. F., &; Berry, J. K. (1996). Effects of number and similarity of pretraining alternatives on paired-associate performance on pretrained and new items under correction and noncorrection procedures. J Exp Psychol 72, 722-730. Chumbley, J., Worsley, K., Flandin, G., &; Friston, K. (2010). Topological FDR for neuroimaging. [Research Support, Non-U.S. Gov't]. Neuroimage, 49(4), 3057-3064. doi: 10.1016/j.neuroimage.2009.10.090 Chumbley, J. R., &; Friston, K. J. (2009). False discovery rate revisited: FDR and topological inference using Gaussian random fields. [Research Support, Non-U.S. Gov't]. Neuroimage, 44(1), 62-70. doi: 10.1016/j.neuroimage.2008.05.021 Cross, E. S., Schmitt, P. J., &; Grafton, S. T. (2007). Neural Substrates of Contextual Interference during Motor Learning Support a Model of Active Preparation. J Cognitive Neuroscience, 19, 1854-1871. Eldaief, M. C., Halko, M. A., Buckner, R. L., &; Pascual-Leone, A. (2011). Transcranial magnetic stimulation modulates the brain's intrinsic activity in a frequency-dependent manner. Proc Natl Acad Sci U S A, 108(52), 21229-21234. doi: 10.1073/pnas.1113103109 Fitts, P. M., &; Posner, M. I. (1967). Human Performance. Belmont, CA: Brooks/Cole. Friston, K. J., Buechel, C., Fink, G. R., Morris, J., Rolls, E., &; Dolan, R. J. (1997). Psychophysiological and Modulatory Interactions in Neuroimaging. Neuroimage, 6, 218-229. Gitelman, D. R., Penny, W. D., Ashburner, J., &; Friston, K. J. (2003). Modeling regional and psychophysiologic interactions in fMRI: the importance of hemodynamic deconvolution. Neuroimage, 19(1), 200-207. doi: 10.1016/s1053-8119(03)00058-2 Grafton, S. T., Mazziotta, J. C., Presty, S., Friston, K. J., Frackowiak, R. S. J., &; Phelps, M. E. (1992). Functional anatomy of human procedural learning determined with regional cerebral blood flow and PET. J Neuroscience, 12(7), 2542-2548. Lee, T. D., &; Magill, R. A. (1983). The Locus of Contextual Interference in Motor-Skill Acquisition. J Exp Psychol: Hum Learn Memor, 9, 730-746. Lin, C. H., Chiang, M. C., Knowlton, B. J., Iacoboni, M., Udompholkul, P., &; Wu, A. D. (2013). Interleaved practice enhances skill learning and the functional connectivity of fronto-parietal networks. Hum Brain Mapp, 34(7), 1542-1558. doi: 10.1002/hbm.22009 Lin, C. H., Knowlton, B. J., Chiang, M. C., Iacoboni, M., Udompholkul, P., &; Wu, A. D. (2011). Brain-behavior correlates of optimizing learning through interleaved practice. Neuroimage, 56(3), 1758-1772. doi: 10.1016/j.neuroimage.2011.02.066 Neufang, S., Fink, G. R., Herpertz-Dahlmann, B., Willmes, K., &; Konrad, K. (2008). Developmental changes in neural activation and psychophysiological interaction patterns of brain regions associated with interference control and time perception. [Research Support, Non-U.S. Gov't]. Neuroimage, 43(2), 399-409. doi: 10.1016/j.neuroimage.2008.07.039 47 Ogawa, S., Tank, D. W., Menon, R., Ellermann, J. M., Kim, S.-G., Merkle, H., &; Ugurbil, K. (July 1992). Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Neurobiology, 89, 5951-5955. Olson, I. R., Rao, H., Moore, K. S., Wang, J., Detre, J. A., &; Aguirre, G. K. (2006). Using perfusion fMRI to measure continuous changes in neural activity with learning. Brain Cogn, 60(3), 262-271. doi: 10.1016/j.bandc.2005.11.010 Perez, C. R., Meira, C. M. J., &; Tani, G. (2005). Does the contextual interference effect last over extended transfer trials? Perceptual Motor Skills, 100, 58-60. Poldrack, R. A., Sabb, F. W., Foerde, K., Tom, S. M., Asarnow, R. F., Bookheimer, S. Y., &; Knowlton, B. J. (2005). The neural correlates of motor skill automaticity. J Neurosci, 25(22), 5356-5364. doi: 10.1523/JNEUROSCI.3880-04.2005 Poo, M. M. (Jan 2001). Neurotrophins as synaptic modulators. Nat Rev Neurosci, 2, 24-32. Schmidt, R. A., &; Bjork, R. A. (1992). New conceptualizations of practice:common principles in three paradigms suggest new concepts for Training. Psychol sci, 3, 207-217. Shea, J. B., &; Morgan, R. L. (1979). Contextual Interference Effects on the Acquisition, Retention, and Transfer of a Motor Skill. J Exp Psychol: Hum Learn Memor, 5, 179-187. Shea, J. B., &; Zimny, S. T. (1983). Contextual effects in memory and learning movement information. In: Magill RA, editor. Memory and Control of Action. Amsterdam: Elsevier, pp345-366. Song, S., Sharma, N., Buch, E. R., &; Cohen, L. G. (2012). White matter microstructural correlates of superior long-term skill gained implicitly under randomized practice. Cereb Cortex, 22(7), 1671-1677. doi: 10.1093/cercor/bhr247 Wright, D. L., Magnuson, C. E., &; Black, C. B. (2005). Programming and reprogramming sequence timing following high and low contextual interference practice. Res Quart Exe Sports, 76, 258-266. Wu, T., Chan, P., &; Hallett, M. (2008). Modifications of the interactions in the motor networks when a movement becomes automatic. [Research Support, N.I.H., Intramural]. J Physiol, 586(Pt 17), 4295-4304. doi: 10.1113/jphysiol.2008.153445 Wu, W. F., Young, D. E., Schandler, S. L., Meir, G., Judy, R. L., Perez, J., &; Cohen, M. J. (2011). Contextual interference and augmented feedback: is there an additive effect for motor learning? Hum Mov Sci, 30(6), 1092-1101. doi: 10.1016/j.humov.2011.02.004 Wulf, G., Shea, C., &; Lewthwaite, R. (2010). Motor skill learning and performance: a review of influential factors. [Review]. Med Educ, 44(1), 75-84. doi: 10.1111/j.1365-2923.2009.03421.x
|