跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.174) 您好!臺灣時間:2024/12/03 20:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉俞伶
研究生(外文):Yu-Ling Ye
論文名稱:利用功能性磁振造影探討動作學習增進大腦功能性連結的效應
論文名稱(外文):Using Functional Magnetic Resonance Imaging to Explore Effects of Motor Learning on Functional Connectivity
指導教授:江明彰
指導教授(外文):Ming-Chang Chiang
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:醫學工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:47
中文關鍵詞:功能性磁振造影動作學習情境干擾效應心理生理交互作用
外文關鍵詞:functional magnetic resonance imaging (fMRI)motor learningcontextual interference effectpsycophysiological interaction (PPI)
相關次數:
  • 被引用被引用:2
  • 點閱點閱:465
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用功能性磁振造影(functional Magnetic Resonance Imaging, fMRI)來探討動作學習(Motor learning)對於大腦功能性連結的改變。過去很多關於提升動作學習的研究,情境干擾效應(contextual interference effect, CI effect)就是其中一種。給予受試者程度不同的動作訓練,本實驗使用4種不同燈號的按鍵排序,設計為兩種不同干擾程度,分別為重複性的序列練習(低干擾)以及交錯性的序列練習(高干擾),在交錯性的訓練方式下會有助於動作學習。
以心理生理交互作用(psycophysiological interaction, PPI)分析fMRI影像,來研究CI effect是否會產生腦區間的功能性連結改變。在第一、二天的練習期,交錯性序列練習的群族比起重覆性序列練習的群族,在雙側的PM、DLPFC、SMA以及Caudate腦區皆有顯著的功能性連結增強。在第五天的測驗期,交錯性序列練習的群族比起重覆性序列練習的群族,在left PM、right PM、right DLPFC、left SMA以及right SMA腦區皆有顯著的功能性連結增強。這些腦區的功能性連結增強也可表示能增進動作的學習以及技能的提取。
We used functional magnetic resonance imaging (fMRI) to explore changes in functional connectivity under the contextual interference (CI) paradigm of motor learning, where practice context was manipulated by presenting multiple tasks in either a repetitive order (lower interference) or an interleaved order (higher interference).
We used psycophysiological interaction (PPI) analysis to explore the changes in functional connectivity of the cerebral motor learning network on practicing different motor sequences. On day 1 and 2 of practice, the interleaved practice group had stronger functional connectivity than the repetitive practice group in the bilateral premotor area (PM), the dorsal lateral prefrontal cortex (DLPFC), the supplementary motor area (SMA), and the caudate nucleus. On day 5, however, the repetitive practice group had stronger functional connectivity than the interleaved practice group in the above areas except the caudate nucleus. These findings demonstrate that the stronger functional connectivity is associated with better motor learning and skill retrieval.
目錄
致謝 i
中文摘要 ii
ABSTRACT iii
目錄 iv
圖目錄 vi
表目錄 vii
第一章 緒論 1
1.1 動作學習(motor learning) 1
1.2 情境干擾效應(contextual interference effect) 2
1.3 功能性腦影像 4
1.3.1 核子醫學影像 5
1.3.2 功能性磁振造影 5
1.4 動作學習與大腦功能網路 6
1.5 功能性連結 8
1.6 研究動機與目的 10
第二章 實驗材料與方法 11
2.1 實驗一 11
2.1.1 受試者 11
2.1.2 實驗設計 11
2.1.3 序列按鍵實驗(serial reaction-time tasks) 12
2.1.4 功能性磁振造影 13
2.2 實驗二 14
2.2.1 受試者 14
2.2.2 實驗設計 14
第三章 實驗數據分析 16
3.1 序列按鍵反應實驗 16
3.2 功能性磁振造影 17
3.2.1 影像前處理 17
3.2.2 統計分析 18
3.3 功能性連結 18
第四章 實驗結果與討論 20
4.1 序列按鍵反應實驗 20
4.2 功能性磁振造影 24
4.2.1 血氧濃度相依 24
4.2.2 心理生理交互作用 25
第五章 PPI實驗結果(圖表) 29
5.1 練習期 29
5.2 測驗期 39
第六章 結論 46
參考文獻 47

圖目錄
圖 1 情境干擾效應 4
圖 2 心理生理交互作用 9
圖 3 實驗一使用之重複性以及交錯性序列排序 12
圖 4 序列按鍵的顯示 13
圖 5 實驗二使用之重複性以及交錯性序列排序 15
圖 6 影像前處理與統計分析流程 17
圖 7 實驗一行為實驗結果 21
圖 8 實驗一行為實驗結果(RP then IP) 21
圖 9 實驗一行為實驗結果(IP then RP) 22
圖 10 實驗二行為實驗結果 23
圖 11 Hemodynamic response 25
圖 12 練習期以PM做為seed之連結增強的腦區 30
圖 13 練習期以DLPFC做為seed之連結增強的腦區 32
圖 14 練習期以SMA做為seed之連結增強的腦區 34
圖 15 練習期以caudate做為seed之連結增強的腦區 36
圖 16 練習期以hippocampus做為seed之連結增強的腦區 38
圖 17 測驗期以PM做為seed之連結增強的腦區 40
圖 18 測驗期以DLPFC做為seed之連結增強的腦區 42
圖 19 測驗期以SMA做為seed之連結增強的腦區 44
圖 20 測驗期以hippocampus做為seed之連結增強的腦區 45
表目錄
表 1 練習期以PM做為seed之連結增強的腦區 29
表 2 練習期以DLPFC做為seed之連結增強的腦區 31
表 3 練習期以SMA做為seed之連結增強的腦區 33
表 4 練習期以caudate做為seed之連結增強的腦區 35
表 5 練習期以hippocampus做為seed之連結增強的腦區 37
表 6 測驗期以PM做為seed之連結增強的腦區 39
表 7 測驗期以DLPFC做為seed之連結增強的腦區 41
表 8 測驗期以SMA做為seed之連結增強的腦區 43
表 9 測驗期以hippocampus做為seed之連結增強的腦區 45


Albouy, G., Sterpenich, V., Balteau, E., Vandewalle, G., Desseilles, M., Thanh, D. V., . . . Maquet1, P. (2008). Both the Hippocampus and Striatum Are Involved in Consolidation of Motor SequenceMemory. Neuron, 58, 261-272. doi: 10.1016/j.neuron.2008.02.008
Battig, W. F., &; Berry, J. K. (1996). Effects of number and similarity of pretraining alternatives on paired-associate performance on pretrained and new items under correction and noncorrection procedures. J Exp Psychol 72, 722-730.
Chumbley, J., Worsley, K., Flandin, G., &; Friston, K. (2010). Topological FDR for neuroimaging. [Research Support, Non-U.S. Gov't]. Neuroimage, 49(4), 3057-3064. doi: 10.1016/j.neuroimage.2009.10.090
Chumbley, J. R., &; Friston, K. J. (2009). False discovery rate revisited: FDR and topological inference using Gaussian random fields. [Research Support, Non-U.S. Gov't]. Neuroimage, 44(1), 62-70. doi: 10.1016/j.neuroimage.2008.05.021
Cross, E. S., Schmitt, P. J., &; Grafton, S. T. (2007). Neural Substrates of Contextual Interference during Motor Learning Support a Model of Active Preparation. J Cognitive Neuroscience, 19, 1854-1871.
Eldaief, M. C., Halko, M. A., Buckner, R. L., &; Pascual-Leone, A. (2011). Transcranial magnetic stimulation modulates the brain's intrinsic activity in a frequency-dependent manner. Proc Natl Acad Sci U S A, 108(52), 21229-21234. doi: 10.1073/pnas.1113103109
Fitts, P. M., &; Posner, M. I. (1967). Human Performance. Belmont, CA: Brooks/Cole.
Friston, K. J., Buechel, C., Fink, G. R., Morris, J., Rolls, E., &; Dolan, R. J. (1997). Psychophysiological and Modulatory Interactions in Neuroimaging. Neuroimage, 6, 218-229.
Gitelman, D. R., Penny, W. D., Ashburner, J., &; Friston, K. J. (2003). Modeling regional and psychophysiologic interactions in fMRI: the importance of hemodynamic deconvolution. Neuroimage, 19(1), 200-207. doi: 10.1016/s1053-8119(03)00058-2
Grafton, S. T., Mazziotta, J. C., Presty, S., Friston, K. J., Frackowiak, R. S. J., &; Phelps, M. E. (1992). Functional anatomy of human procedural learning determined with regional cerebral blood flow and PET. J Neuroscience, 12(7), 2542-2548.
Lee, T. D., &; Magill, R. A. (1983). The Locus of Contextual Interference in Motor-Skill Acquisition. J Exp Psychol: Hum Learn Memor, 9, 730-746.
Lin, C. H., Chiang, M. C., Knowlton, B. J., Iacoboni, M., Udompholkul, P., &; Wu, A. D. (2013). Interleaved practice enhances skill learning and the functional connectivity of fronto-parietal networks. Hum Brain Mapp, 34(7), 1542-1558. doi: 10.1002/hbm.22009
Lin, C. H., Knowlton, B. J., Chiang, M. C., Iacoboni, M., Udompholkul, P., &; Wu, A. D. (2011). Brain-behavior correlates of optimizing learning through interleaved practice. Neuroimage, 56(3), 1758-1772. doi: 10.1016/j.neuroimage.2011.02.066
Neufang, S., Fink, G. R., Herpertz-Dahlmann, B., Willmes, K., &; Konrad, K. (2008). Developmental changes in neural activation and psychophysiological interaction patterns of brain regions associated with interference control and time perception. [Research Support, Non-U.S. Gov't]. Neuroimage, 43(2), 399-409. doi: 10.1016/j.neuroimage.2008.07.039
47
Ogawa, S., Tank, D. W., Menon, R., Ellermann, J. M., Kim, S.-G., Merkle, H., &; Ugurbil, K. (July 1992). Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Neurobiology, 89, 5951-5955.
Olson, I. R., Rao, H., Moore, K. S., Wang, J., Detre, J. A., &; Aguirre, G. K. (2006). Using perfusion fMRI to measure continuous changes in neural activity with learning. Brain Cogn, 60(3), 262-271. doi: 10.1016/j.bandc.2005.11.010
Perez, C. R., Meira, C. M. J., &; Tani, G. (2005). Does the contextual interference effect last over extended transfer trials? Perceptual Motor Skills, 100, 58-60.
Poldrack, R. A., Sabb, F. W., Foerde, K., Tom, S. M., Asarnow, R. F., Bookheimer, S. Y., &; Knowlton, B. J. (2005). The neural correlates of motor skill automaticity. J Neurosci, 25(22), 5356-5364. doi: 10.1523/JNEUROSCI.3880-04.2005
Poo, M. M. (Jan 2001). Neurotrophins as synaptic modulators. Nat Rev Neurosci, 2, 24-32.
Schmidt, R. A., &; Bjork, R. A. (1992). New conceptualizations of practice:common principles in three paradigms suggest new concepts for Training. Psychol sci, 3, 207-217.
Shea, J. B., &; Morgan, R. L. (1979). Contextual Interference Effects on the Acquisition, Retention, and Transfer of a Motor Skill. J Exp Psychol: Hum Learn Memor, 5, 179-187.
Shea, J. B., &; Zimny, S. T. (1983). Contextual effects in memory and learning movement information. In: Magill RA, editor. Memory and Control of Action. Amsterdam: Elsevier, pp345-366.
Song, S., Sharma, N., Buch, E. R., &; Cohen, L. G. (2012). White matter microstructural correlates of superior long-term skill gained implicitly under randomized practice. Cereb Cortex, 22(7), 1671-1677. doi: 10.1093/cercor/bhr247
Wright, D. L., Magnuson, C. E., &; Black, C. B. (2005). Programming and reprogramming sequence timing following high and low contextual interference practice. Res Quart Exe Sports, 76, 258-266.
Wu, T., Chan, P., &; Hallett, M. (2008). Modifications of the interactions in the motor networks when a movement becomes automatic. [Research Support, N.I.H., Intramural]. J Physiol, 586(Pt 17), 4295-4304. doi: 10.1113/jphysiol.2008.153445
Wu, W. F., Young, D. E., Schandler, S. L., Meir, G., Judy, R. L., Perez, J., &; Cohen, M. J. (2011). Contextual interference and augmented feedback: is there an additive effect for motor learning? Hum Mov Sci, 30(6), 1092-1101. doi: 10.1016/j.humov.2011.02.004
Wulf, G., Shea, C., &; Lewthwaite, R. (2010). Motor skill learning and performance: a review of influential factors. [Review]. Med Educ, 44(1), 75-84. doi: 10.1111/j.1365-2923.2009.03421.x
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top