跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/03 21:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許晉輔
研究生(外文):Chin-Fu Hsu
論文名稱:雌激素對力學刺激誘發人類黃韌帶細胞發炎之影響
論文名稱(外文):Effect of Estrogen on Mechanical Stress-induced Inflammatory Response in Ligamentum Flavum cell
指導教授:陳敏弘陳敏弘引用關係劉澤英
指導教授(外文):Ming-Hong ChenTes-Ying Liu
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:醫學工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:47
中文關鍵詞:黃韌帶肥厚椎管狹窄症雌激素
外文關鍵詞:Ligamentum FlavumHypertrophySpinal StenosisEstrogen
相關次數:
  • 被引用被引用:0
  • 點閱點閱:202
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
黃韌帶肥厚而造成神經根的壓迫和腰椎椎體間結構的改變,是導致椎管狹窄的主要因素之一。黃韌帶受到物理性的刺激所造成的發炎反應,與肥厚之間有互相關聯,也許我們抑制黃韌帶發炎可以用來治療椎管狹窄症。在正常情況下黃韌帶中彈性蛋白與膠原蛋白含量的比例為 2:1 ,但隨著年齡增長,彈性蛋白與膠原蛋白的比例會逐漸下降。有研究指出肌腱和韌帶上有雌激素的受器,此外雌激素在細胞外基質扮演調控者的角色,與彈性蛋白、膠原蛋白和蛋白多糖體的調節相關。黃韌帶的發炎已經被認為是造成黃韌帶肥厚的原因之一,有研究指出藉由力學刺激誘導黃韌帶發炎。已經有研究顯示雌激素與力學刺激能調控成骨細胞的增生與骨形成;另外也有研究指出在黃韌帶鈣化中雌激素受體的表現量增加。目前雌激素與黃韌帶發炎的機制尚未清楚。
在本篇研究我們所使用的黃韌帶細胞來自接受脊椎手術病患,透過離心力的刺激誘導黃韌帶細胞發炎,然後再加入10-7 ~10-9 M的雌激素做刺激。所以本篇研究的是探討雌激素對力學刺激誘發人類黃細胞發炎的影響。
本研究結果顯示雖然雌激素對黃韌帶細胞並無顯著增生的影響,但有雌激素的刺激有上升的趨勢,在濃度 10-9 M 下有較好的表現。加入力學刺激後對細胞的增生有下降的趨勢,但力學刺激前給予雌激素刺激對照單獨力學刺激組有上升的趨勢。mRNA 表現中單獨雌激素刺激組IL-1α, IL-1β, IL-6, TNF-α 這些發炎前趨因子都有顯著的下降表現;單獨力學刺激下IL-1α, IL-6, TNF-α 有顯著上升表現;力學刺激前給予雌激素中IL-1α, IL-6, TNF-α 與單獨力學刺激做比較有明顯現降的表現。此外黃韌帶細胞分泌發炎前趨蛋白中IL-6 在力學刺激前給予雌激素表現量有顯著的下降,雖然 IL-1β, TNF-α 沒有顯著差異但有下降的趨勢。最後在MAPK 細胞內訊號傳遞實驗這部分實驗結顯示出透過p-ERK來調控發炎反應。因此我們初步推論雌激素確實有抑制力學刺激所誘導黃韌帶細胞的發炎。

Ligamentum flavum hypertrophy leads to the formation of spinal canal with subsequent neural compression. Previous findings suggest that mechanical stresses induce inflammatory reactions and scar formation play an important role in the progression of ligamentum flavum hypertrophy. The normal ligamentum flavum is composed of 70% elastin protein and 30% collagen protein, but the composition ratio of elastin protein and collgen protein change in the elderly. Previous studies indicated the presence of estrogen receptors in tendons and ligament. Therefore, estrogen play an important role in the regulation of lastin protein and collgen protein. Inflammation has been proposed to be an important causative factor in ligamentum flavum hypertrophy. Mechanical force induces human ligamentum flavum fibroblasts inflammation. It also demonstrated estrogen and mechanical force are positive regulators for osteoblasts proliferation and bone formation. In addition, the expression of estrogen receptor was enhanced in calcium crystal deposit ligamentum flavum.
In this study, we used human ligamentum flavum fibroblasts were obtained from twenty-one patients undergoing lumbar spine surgery. Centrifugal force induces inflammation of human ligamentum flavum fibroblasts, and then enter 10-9 M of estrogen. Hence, the aim of the present study was to investigate the effects of estrogen on mechanical stress-induced inflammatory response in ligamentum flavum cells.
The investigation demonstrated that cell viability of ligamentum flavum fibroblast was no significant differences but rise trend and the cell viability was better in 10-9 M 17β-estradiol stimulation. Besides, The cell viability were the same reduction trend on mechanical or 17β-estradiol combined with mechanical stress stimulation groups when ligamentum flavum fibroblast treated centrifugal stimulation but had 17β-estradiol stimulation were better than mechanical stress stimulation. The IL-1α, IL-6 and TNF-α mRNA pro-inflammatory cytokines mRNA expression were indeed reduction by mechanical force stimulation but pretreated 17β-estradiol stimulation were inhibited expression. Finally, the intracellular MAPK signaling transduction pathways results were shown pro-inflammatory cytokines regulate through the p-ERK.
This initial study suggested that estrogen inhibite on mechanical stress-induced inflammatory response in ligamentum flavum cell.

中文摘要 I
ENGLISH ABSTRACT III
CONTENTS V
FIGURES VIII
TABLES X
CHAPTER 1 INTRODUCTION 1
1.1 Background 1
1.2 Objective of this study 3
CHAPTER 2 PAPER REVIEW 4
2.1 Lumbar Spinal Stenosis 4
2.2 Ligamentum Flavum 5
2.3 Estrogen 6
2.3.1 Introduction 6
2.3.2 Boiosynthesis of Estrogen 6
2.3.3 Estradiol 7
2.3.4 Estrogen Receptor 7
2.4 Cytokines 9
2.4.1 Introduction 9
2.4.2 Interleukin-1 10
2.4.3 Interleukin-6 10
2.4.4 Tumor necrosis factor-α 11
CHAPTER 3 MATERIALS AND METHODS 12
3.1 Material 12
3.1.1 Reagents 12
3.1.2 Drug 13
3.1.3 Antibodies 14
3.2 Methods 16
3.2.1 Cell Culture 16
3.2.2 Application of Mechanical Stress 17
3.2.3 Cell Proliferation Reagent WST-1 Assay 18
3.2.4 Ribonucleic Acid (RNA) Isolation and Real-time Polymerase
Chain Reaction (PCR) 19
3.2.5 Western Blotting Analysis 22
3.2.6 Enzyme Immunoassay (EIA) 22
3.2.7 Statistical Analysis 23
CHAPTER 4 RESULTS 24
4.1 Differential Effect of Estrogen Concentration on Cell Viability 24
4.2 Differential Effect of Estrogen Concentration and Mechanical
Stress on Cell Viability 25
4.3 Effect of Estrogen and Mechanical Stress on IL-1α Mrna
Expression 27
4.4 Effect of Estrogen and Mechanical Stress on IL-1β mRNA
Exression 28
4.5 Effect of Estrogen and Mechanical Stress on IL-6 mRNA
Exression 29
4.6 Effect of Estrogen and Mechanical Stress on TNF-α mRNA
Exression 30
4.7 Effect of Estrogen and Mechanical Stress on Ligamentum
Flavum Firbroblast IL-1β Protein Release 31
4.8 Effect of Estrogen and Mechanical Stress on Ligamentum
Flavum Firbroblast IL-6 Protein Release 32
4.9 Effect of Estrogen and Mechanical Stress on Ligamentum
Flavum Firbroblast TNF-α Protein Release 33
4.10 Time Course of Mechanical Stress Induced Signaling
Transduction pathways 34
4.11 Effect of Estrogen on Mechanical Stress Induced Phosphorylation of p38 35
4.12 Effect of Estrogen on Mechanical Stress Induced
Phosphorylation of ERK 36
4.13 Effect of Estrogen on Mechanical Stress Induced
Phosphorylation of JNK 37
CHAPTER 5 DISCUSSION 38
CHAPTER 6 CONCLUSION 42
REFERENCE 43

Fig 4.1 Estrogen stimulated the expression of WST-1 assay for cell
viability 24
Fig 4.2 Estrogen and Mechanical stress stimulated the expression of
WST-1 assay for cell viability 25
Fig 4.3 Effect of estrogen and mechanical stress on IL-1α mRNA
expression after 24 hours stimulation 27
Fig 4.4 Effect of estrogen and mechanical stress on IL-1β mRNA
expression after 24 hours stimulation 28
Fig 4.5 Effect of estrogen and mechanical stress on IL-6 mRNA
expression after 24 hours stimulation 29
Fig 4.6 Effect of estrogen and mechanical stress on TNF-αmRNA
expression after 24 hours stimulation 30
Fig 4.7 Effect of estrogen and mechanical stress on ligamentum flavum
fibroblast IL-1β protein release 31
Fig 4.8 Effect of estrogen and mechanical stress on ligamentum flavum
fibroblast IL-6 protein release 32
Fig 4.9 Effect of estrogen and mechanical stress on ligamentum flavum
fibroblast TNF-α protein release 33
Fig 4.10 Time course of mechanical stress induced signaling transduction
pathways 34
Fig 4.11 Effect of estrogen on mechanical stress induced phosphorylation
of p38 35
Fig 4.12 Effect of estrogen on mechanical stress induced phosphorylation
of ERK 36
Fig 4.13 Effect of estrogen on mechanical stress induced phosphorylation 
of JNK 37


Table 3.2 Forward and reverse primer and probes 21
Reference

1. Ramsey, R.H., The Anatomy of the Ligamenta Flava. Clinical Orthopaedics and Related Research, 1966. 44: p. 129-140.
2. Evans, J.H. and A.L. Nachemson, Biomechanical study of human lumbar ligamentum flavum. J Anat, 1969. 105(Pt 1): p. 188-9.
3. Park, J.B., H. Chang, and J.K. Lee, Quantitative analysis of transforming growth factor-beta 1 in ligamentum flavum of lumbar spinal stenosis and disc herniation. Spine (Phila Pa 1976), 2001. 26(21): p. E492-5.
4. Nachemson, A.L. and J.H. Evans, Some mechanical properties of the third human lumbar interlaminar ligament (ligamentum flavum). Journal of Biomechanics, 1968. 1(3): p. 211-220.
5. Fukuyama, S., et al., The effect of mechanical stress on hypertrophy of the lumbar ligamentum flavum. J Spinal Disord, 1995. 8(2): p. 126-30.
6. Bayard, F., et al., [Estradiol and progesterone receptors in human endometrium during the menstrual cycle]. C R Acad Sci Hebd Seances Acad Sci D, 1975. 281(18): p. 1341-4.
7. Teter, J., Z. Kwiatkowska, and K. Krzywdzinski, [Estradiol and progesterone plasma levels during normal menstrual cycle]. Endokrynol Pol, 1976. 27(4): p. 381-92.
8. Schwartz-Giblin, S., et al., Effects of in vivo estradiol and progesterone on tritiated flunitrazepam binding in rat spinal cord. Neuroscience, 1988. 25(1): p. 249-57.
9. Yeh, C.R., et al., Estrogen augments shear stress-induced signaling and gene expression in osteoblast-like cells via estrogen receptor-mediated expression of beta1-integrin. J Bone Miner Res, 2010. 25(3): p. 627-39.
10. Katz, J.N. and M.B. Harris, Clinical practice. Lumbar spinal stenosis. N Engl J Med, 2008. 358(8): p. 818-25.
11. Ciricillo, S.F. and P.R. Weinstein, Lumbar spinal stenosis. West J Med, 1993. 158(2): p. 171-7.
12. Szpalski, M. and R. Gunzburg, Lumbar spinal stenosis in the elderly: an overview. Eur Spine J, 2003. 12 Suppl 2: p. S170-5.
13. Genevay, S. and S.J. Atlas, Lumbar spinal stenosis. Best Pract Res Clin Rheumatol, 2010. 24(2): p. 253-65.
14. Botwin, K.P. and R.D. Gruber, Lumbar spinal stenosis: anatomy and pathogenesis. Phys Med Rehabil Clin N Am, 2003. 14(1): p. 1-15, v.
15. Lohr, M., et al., Hypertrophy of the lumbar ligamentum flavum is associated with inflammation-related TGF-beta expression. Acta Neurochir (Wien), 2011. 153(1): p. 134-41.
16. Ramani, P.S., R.H. Perry, and B.E. Tomlinson, Role of ligamentum flavum in the symptomatology of prolapsed lumbar intervertebral discs. Journal of Neurology, Neurosurgery &; Psychiatry, 1975. 38(6): p. 550-557.
17. Yoshida, M., et al., Hypertrophied ligamentum flavum in lumbar spinal canal stenosis. Pathogenesis and morphologic and immunohistochemical observation. Spine (Phila Pa 1976), 1992. 17(11): p. 1353-60.
18. Nakatani, T., et al., Mechanical stretching force promotes collagen synthesis by cultured cells from human ligamentum flavum via transforming growth factor-β1. Journal of Orthopaedic Research, 2002. 20(6): p. 1380-1386.
19. Sairyo, K., et al., Lumbar ligamentum flavum hypertrophy is due to accumulation of inflammation-related scar tissue. Spine (Phila Pa 1976), 2007. 32(11): p. E340-7.
20. Pettersson, K. and J.A. Gustafsson, Role of estrogen receptor beta in estrogen action. Annu Rev Physiol, 2001. 63: p. 165-92.
21. Joldersma, M., et al., Estrogen enhances mechanical stress-induced prostaglandin production by bone cells from elderly women. Am J Physiol Endocrinol Metab, 2001. 280(3): p. E436-42.
22. Couse, J.F., Estrogen Receptor Null Mice: What Have We Learned and Where Will They Lead Us? Endocrine Reviews, 1999. 20(3): p. 358-417.
23. Nelson, L.R. and S.E. Bulun, Estrogen production and action. Journal of the American Academy of Dermatology, 2001. 45(3): p. S116-S124.
24. Simpson, E.R., et al., Aromatase--a brief overview. Annu Rev Physiol, 2002. 64: p. 93-127.
25. Simpson, E.R., et al., Aromatase cytochrome P450, the enzyme responsible for estrogen biosynthesis. Endocr Rev, 1994. 15(3): p. 342-55.
26. Balthazart, J., A. Foidart, and J.C. Hendrick, The induction by testosterone of aromatase activity in the preoptic area and activation of copulatory behavior. Physiol Behav, 1990. 47(1): p. 83-94.
27. Garcia-Segura, L.M., et al., Aromatase expression by astrocytes after brain injury: implications for local estrogen formation in brain repair. Neuroscience, 1999. 89(2): p. 567-78.
28. Masamura, S., et al., Estrogen deprivation causes estradiol hypersensitivity in human breast cancer cells. J Clin Endocrinol Metab, 1995. 80(10): p. 2918-25.
29. Thompson, T.L. and R.L. Moss, Estrogen regulation of dopamine release in the nucleus accumbens: genomic- and nongenomic-mediated effects. J Neurochem, 1994. 62(5): p. 1750-6.
30. Fendrick, J.L., A.M. Raafat, and S.Z. Haslam, Mammary gland growth and development from the postnatal period to postmenopause: ovarian steroid receptor ontogeny and regulation in the mouse. J Mammary Gland Biol Neoplasia, 1998. 3(1): p. 7-22.
31. Russo, I.H. and J. Russo, Mammary gland neoplasia in long-term rodent studies. Environmental Health Perspectives, 1996. 104(9): p. 938-967.
32. Paech, K., Differential Ligand Activation of Estrogen Receptors ER and ER at AP1 Sites. Science, 1997. 277(5331): p. 1508-1510.
33. Nilsson, S., et al., Mechanisms of estrogen action. Physiol Rev, 2001. 81(4): p. 1535-65.
34. Sun, J., Novel Ligands that Function as Selective Estrogens or Antiestrogens for Estrogen Receptor- or Estrogen Receptor- Endocrinology, 1999. 140(2): p. 800-804.
35. Greco, B., et al., Coexpression of ER beta with ER alpha and progestin receptor proteins in the female rat forebrain: effects of estradiol treatment. Endocrinology, 2001. 142(12): p. 5172-81.
36. Brzozowski, A.M., et al., Molecular basis of agonism and antagonism in the oestrogen receptor. Nature, 1997. 389(6652): p. 753-8.
37. Menasce, L.P., et al., Localization of the estrogen receptor locus (ESR) to chromosome 6q25.1 by FISH and a simple post-FISH banding technique. Genomics, 1993. 17(1): p. 263-5.
38. Enmark, E., et al., Human estrogen receptor beta-gene structure, chromosomal localization, and expression pattern. J Clin Endocrinol Metab, 1997. 82(12): p. 4258-65.
39. Castles, C.G., et al., Auto-regulation of the estrogen receptor promoter. J Steroid Biochem Mol Biol, 1997. 62(2-3): p. 155-63.
40. Matthews, J. and J.A. Gustafsson, Estrogen signaling: a subtle balance between ER alpha and ER beta. Mol Interv, 2003. 3(5): p. 281-92.
41. Ledeen, R.W. and G. Chakraborty, Cytokines, signal transduction, and inflammatory demyelination: review and hypothesis. Neurochem Res, 1998. 23(3): p. 277-89.
42. Duff, G.W. and S.K. Durum, The pyrogenic and mitogenic actions of interleukin-1 are related. Nature, 1983. 304(5925): p. 449-51.
43. Vilcek, J. and M. Feldmann, Historical review: Cytokines as therapeutics and targets of therapeutics. Trends Pharmacol Sci, 2004. 25(4): p. 201-9.
44. Chi, H., et al., Dynamic regulation of pro- and anti-inflammatory cytokines by MAPK phosphatase 1 (MKP-1) in innate immune responses. Proc Natl Acad Sci U S A, 2006. 103(7): p. 2274-9.
45. Underwood, D.C., et al., SB 239063, a p38 MAPK inhibitor, reduces neutrophilia, inflammatory cytokines, MMP-9, and fibrosis in lung. Am J Physiol Lung Cell Mol Physiol, 2000. 279(5): p. L895-902.
46. Liles, W.C. and W.C. Van Voorhis, Review: nomenclature and biologic significance of cytokines involved in inflammation and the host immune response. J Infect Dis, 1995. 172(6): p. 1573-80.
47. Slavin, J., The role of cytokines in wound healing. J Pathol, 1996. 178(1): p. 5-10.
48. Berkenbosch, F., et al., Corticotropin-releasing factor-producing neurons in the rat activated by interleukin-1. Science, 1987. 238(4826): p. 524-6.
49. Giulian, D. and L.B. Lachman, Interleukin-1 stimulation of astroglial proliferation after brain injury. Science, 1985. 228(4698): p. 497-9.
50. Kanemoto, K., et al., Interleukin (IL)1beta, IL-1alpha, and IL-1 receptor antagonist gene polymorphisms in patients with temporal lobe epilepsy. Ann Neurol, 2000. 47(5): p. 571-4.
51. Kleemann, R., S. Zadelaar, and T. Kooistra, Cytokines and atherosclerosis: a comprehensive review of studies in mice. Cardiovasc Res, 2008. 79(3): p. 360-76.
52. Chang, H. and B. Bistrian, The role of cytokines in the catabolic consequences of infection and injury. Journal of Parenteral and Enteral Nutrition, 1998. 22(3): p. 156-166.
53. Kishimoto, T., et al., Interleukin-6 family of cytokines and gp130. Blood, 1995. 86(4): p. 1243-54.
54. Kishimoto, T., S. Akira, and T. Taga, Interleukin-6 and Its Receptor - a Paradigm for Cytokines. Science, 1992. 258(5082): p. 593-597.
55. Wilson, A.G., et al., Effects of a polymorphism in the human tumor necrosis factor alpha promoter on transcriptional activation. Proc Natl Acad Sci U S A, 1997. 94(7): p. 3195-9.
56. Torre-Amione, G., et al., Tumor necrosis factor-alpha and tumor necrosis factor receptors in the failing human heart. Circulation, 1996. 93(4): p. 704-11.
57. Chao, Y.H., et al., Centrifugal force induces human ligamentum flavum fibroblasts inflammation through activation of JNK and p38 pathways. Connect Tissue Res, 2012. 53(5): p. 422-9.
58. Lieberman, M.E., et al., Direct and reversible inhibition of estradiol-stimulated prolactin synthesis by antiestrogens in vitro. J Biol Chem, 1983. 258(8): p. 4734-40.
59. Vegeto, E., et al., Estrogen prevents the lipopolysaccharide-induced inflammatory response in microglia. J Neurosci, 2001. 21(6): p. 1809-18.
60. Xing, D., et al., Estrogen modulates TNF-alpha-induced inflammatory responses in rat aortic smooth muscle cells through estrogen receptor-beta activation. Am J Physiol Heart Circ Physiol, 2007. 292(6): p. H2607-12.
61. Girasole, G., et al., 17 beta-estradiol inhibits interleukin-6 production by bone marrow-derived stromal cells and osteoblasts in vitro: a potential mechanism for the antiosteoporotic effect of estrogens. J Clin Invest, 1992. 89(3): p. 883-91.
62. Vegeto, E., V. Benedusi, and A. Maggi, Estrogen anti-inflammatory activity in brain: a therapeutic opportunity for menopause and neurodegenerative diseases. Front Neuroendocrinol, 2008. 29(4): p. 507-19.
63. Beyaert, R., et al., The p38/RK mitogen-activated protein kinase pathway regulates interleukin-6 synthesis response to tumor necrosis factor. EMBO J, 1996. 15(8): p. 1914-23.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊