|
1 Lees, A. J., Hardy, J. &; Revesz, T. Parkinson's disease. Lancet 373, 2055-2066 (2009). 2 Gelb, D. J., Oliver, E. &; Gilman, S. Diagnostic criteria for Parkinson disease. Archives of neurology 56, 33-39 (1999). 3 McGeer, P. L., Itagaki, S., Boyes, B. E. &; McGeer, E. G. Reactive microglia are positive for HLA‐DR in the substantia nigra of Parkinson's and Alzheimer's disease brains Neurology 38, 1285 (1988). 4 Mogi, M., Togari, A., Kondo, T., Mizuno, Y., Komure, O., Kuno, S., Ichinose, H. &; Nagatsu, T. Caspase activities and tumor necrosis factor receptor R1 (p55) level are elevated in the substantia nigra from Parkinsonian brain. Journal of neural transmission 107, 335-341 (2000). 5 Nagatsu, T., Mogi, M., Ichinose, H. &; Togari, A. Changes in cytokines and neurotrophins in Parkinson’s disease. (2000). 6 Mogia, M., Haradaa, M., Kondob, T., Riedererd, P., Inagakic, H., Minamic, M. &; Nagatsu, T. Interleukin-1β, interleukin-6, epidermal growth factor and transforming growth factor-α are elevated in the brain from parkinsonian patients. Neuroscience letters 180, 147-150 (1994). 7 McCoy, M. K. &; Tansey, M. G. TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease. Journal of neuroinflammation 5, 45 (2008). 8 Schober, A. Classic toxin-induced animal models of Parkinson's disease: 6-OHDA and MPTP. Cell and tissue research 318, 215-224 (2004). 9 Engler, H., Doenlen, R., Riether, C., Engler, A., Niemi, M. B., Besedovsky, H. O., del Rey, A., Pacheco-Lopez, G., Feldon, J. &; Schedlowski, M. Time-dependent alterations of peripheral immune parameters after nigrostriatal dopamine depletion in a rat model of Parkinson's disease. Brain, behavior, and immunity 23, 518-526 (2009). 10 Wu, S. Y., Wang, T. F., Yu, L., Jen, C. J., Chuang, J. I., Wu, F. S., Wu, C. W. &; Kuo, Y. M. Running exercise protects the substantia nigra dopaminergic neurons against inflammation-induced degeneration via the activation of BDNF signaling pathway. Brain, behavior, and immunity 25, 135-146 (2011). 11 Ding, Y. H., Young, C. N., Luan, X., Li, J., Rafols, J. A., Clark, J. C., McAllister, J. P., 2nd &; Ding, Y. Exercise preconditioning ameliorates inflammatory injury in ischemic rats during reperfusion. Acta neuropathologica 109, 237-246 (2005). 12 Ding, Y. H., Mrizek, M., Lai, Q., Wu, Y., Reyes, R., Jr., Li, J., Davis, W. W. &; Ding, Y. Exercise preconditioning reduces brain damage and inhibits TNF-alpha receptor expression after hypoxia/reoxygenation: an in vivo and in vitro study. Current neurovascular research 3, 263-271 (2006). 13 Parkinson, J. An Essay on the Shaking Palsy. (1817). 14 Beal, M. F. Experimental models of Parkinson's disease. Nature reviews. neuroscience. 2, 325-334 (2001). 15 Deumens, R., Blokland, A. &; Prickaerts, J. Modeling Parkinson's disease in rats: an evaluation of 6-OHDA lesions of the nigrostriatal pathway. Experimental neurology 175, 303-317 (2002). 16 Gao, H. M. &; Hong, J. S. Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease progression. Trends in immunology 29, 357-365 (2008). 17 Bartels, A. L. &; Leenders, K. L. Neuroinflammation in the pathophysiology of Parkinson's disease: evidence from animal models to human in vivo studies with [11C]-PK11195 PET. Movement disorders 22, 1852-1856 (2007). 18 Dauer, W. &; Przedborski, S. Parkinson’s disease: mechanisms and models. Neuron 39, 889-909 (2003). 19 Tansey, M. G. &; Goldberg, M. S. Neuroinflammation in Parkinson's disease: its role in neuronal death and implications for therapeutic intervention. Neurobiology of disease 37, 510-518 (2010). 20 Hirsch, E. C. &; Hunot, S. Neuroinflammation in Parkinson's disease: a target for neuroprotection? Lancet neurology 8, 382-397 (2009). 21 Dobbs, R. J., Charlett, A., Purkiss, A. G., Dobbs, S. M., Weller, C. &; Peterson, D. W. Association of circulating TNF-α and IL-6 with ageing and parkinsonism. Acta neurologica scandinavica 100, 34-41 (1999). 22 Mogi M, Harada M, Riederer P, Narabayashi H, Fujita K &; T., N. Tumor necrosis factor-alpha (TNF-alpha) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients. Neuroscience letters 165, 208-210 (1994). 23 Gagne, J. J. &; Power, M. C. Anti-inflammatory drugs and risk of Parkinson disease: A meta-analysis. Neurology 74, 995-1002 (2010). 24 He, Y., Appel, S. &; Le, W. Minocycline inhibits microglial activation and protects nigral cells after 6-hydroxydopamine injection into mouse striatum. Brain research 909, 187-193 (2001). 25 Carswell, E. A., Old, L. J., Kassel, R. L., Green, S., Fiore, N. &; Williamson, B. An endotoxin-induced serum factor that causes necrosis of tumors. Proceedings of the national academy of sciences of the United States of America 72, 3666-3670 (1975). 26 Hanisch, U. K. Microglia as a source and target of cytokines. Glia 40, 140-155 (2002). 27 Liu, T., Clark, R. K., McDonnell, P. C., Young, P. R., White, R. F., Barone, F. C. &; Feuerstein, G. Z. Tumor necrosis factor-alpha expression in ischemic neurons. Stroke 25, 1481-1488 (1994). 28 Lieberman, A. P., Pitha, P. M., Shint, H. S. &; M.L., S. Production of tumor necrosis factor and other cytokines by astrocytes stimulated with lipopolysaccharide or a neurotropic virus. Proceedings of the national academy of sciences of the United States of America 86, 6348-6352 (1989). 29 Tartaglia, L. A., Rothe, M., Hu, Y. F. &; Goeddel, D. V. Tumor necrosis factor's cytotoxic activity is signaled by the p55 TNF receptor. Cell 73, 213-216 (1993). 30 Montgomery, S. L. &; Bowers, W. J. Tumor necrosis factor-alpha and the roles it plays in homeostatic and degenerative processes within the central nervous system. Journal of neuroimmune pharmacology 7, 42-59 (2012). 31 Rauert, H., Wicovsky, A., Muller, N., Siegmund, D., Spindler, V., Waschke, J., Kneitz, C. &; Wajant, H. Membrane tumor necrosis factor (TNF) induces p100 processing via TNF receptor-2 (TNFR2). The journal of biological chemistry 285, 7394-7404 (2010). 32 Flood, P. M., Qian, L., Peterson, L. J., Zhang, F., Shi, J. S., Gao, H. M. &; Hong, J. S. Transcriptional Factor NF-kappaB as a Target for Therapy in Parkinson's Disease. Parkinson's disease 2011 (2011). 33 Sun, S. C. The noncanonical NF-kappaB pathway. Immunological reviews 246, 125-140 (2012). 34 Kim, J. Y., Morgan, M., Kim, D.-G., Lee, J.-Y., Bai, L., Lin, Y., Liu, Z.-g. &; Kim, Y.-S. TNF-α-induced noncanonical NF-κB activation is attenuated by RIP1 through stabilization of TRAF2. Journal of cell science 124, 647-656 (2011). 35 Marchetti, L., Klein, M., Schlett, K., Pfizenmaier, K. &; Eisel, U. L. Tumor necrosis factor (TNF)-mediated neuroprotection against glutamate-induced excitotoxicity is enhanced by N-methyl-D-aspartate receptor activation. Essential role of a TNF receptor 2-mediated phosphatidylinositol 3-kinase-dependent NF-kappa B pathway. The journal of biological chemistry 279, 32869-32881 (2004). 36 Burow, M. E., Weldon, C. B., Melnik, L. I., Duong, B. N., Collins-Burow, B. M., Beckman, B. S. &; McLachlan, J. A. PI3-K/AKT regulation of NF-κB signaling events in suppression of TNF-induced apoptosis. Biochemical and biophysical research communications 271, 342-345 (2000). 37 Nishimura, M., Mizuta, I., Mizuta, E., Yamasaki, S., Ohta, M., Kaji, R. &; Kuno, S. Tumor necrosis factor gene polymorphisms in patients with sporadic Parkinson's disease. Neuroscience letters 311, 1-4 (2001). 38 Wu, Y. R., Feng, I. H., Lyu, R. K., Chang, K. H., Lin, Y. Y., Chan, H., Hu, F. J., Lee-Chen, G. J. &; Chen, C. M. Tumor necrosis factor-alpha promoter polymorphism is associated with the risk of Parkinson's disease. American journal of medical genetics part b (neuropsychiatric genetics) 144B, 300-304 (2007). 39 Boka, G., Anglade, P., Wallach, D., Javoy-Agid, F., Agid, Y. &; Hirsch, E. C. Immunocytochemical analysis of tumor necrosis factor and its receptors in Parkinson's disease. Neuroscience letters 172, 151-154 (1994). 40 Mladenović, A., Perović, M., Raičević, N., Kanazir, S., Rakić, L. &; Ruždijić, S. 6-Hydroxydopamine increases the level of TNFα and bax mRNA in the striatum and induces apoptosis of dopaminergic neurons in hemiparkinsonian rats. Brain research 996, 237-245 (2004). 41 McCoy, M. K., Martinez, T. N., Ruhn, K. A., Szymkowski, D. E., Smith, C. G., Botterman, B. R., Tansey, K. E. &; Tansey, M. G. Blocking soluble tumor necrosis factor signaling with dominant-negative tumor necrosis factor inhibitor attenuates loss of dopaminergic neurons in models of Parkinson's disease. The journal of neuroscience 26, 9365-9375 (2006). 42 Mogi, M., Kondo, T., Mizuno, Y. &; Nagatsu, T. p53 protein, interferon-γ, and NF-κB levels are elevated in the parkinsonian brain. Neuroscience letters 414, 94-97 (2007). 43 Hunot, S., Brugg, B., Ricard, D., Michel, P. P., Muriel, M. P., Ruberg, M., Faucheux, B. A., Agid, Y. &; Hirsch, E. C. Nuclear translocation of NF-κB is increased in dopaminergic neurons of patients with Parkinson disease. Proceedings of the national academy of sciences 94, 7531-7536 (1997). 44 Fischer, R., Maier, O., Siegemund, M., Wajant, H., Scheurich, P. &; Pfizenmaier, K. A TNF receptor 2 selective agonist rescues human neurons from oxidative stress-induced cell death. PLoS One 6, e27621 (2011). 45 Perese, D. A., Ulman, J., Viola, J., Ewing, S. E. &; Bankiewicz, K. S. A 6-hydroxydopamine-induced selective parkinsonian rat model. Brain research 494, 285-293 (1989). 46 Ungerstedt, U. Adipsia and aphagia after 6-hydroxydopamine induced degeneration of the nigro-striatal dopamine system. Acta physiologica scandinavica. supplementum 367, 95-122 (1971). 47 Blandini, F., Armentero, M. T. &; Martignoni, E. The 6-hydroxydopamine model: news from the past. Parkinsonism &; related disorders 14 Suppl 2, S124-129 (2008). 48 Jeon, B. S., Jackson-Lewis, V. &; Burke, R. E. 6-Hydroxydopamine lesion of the rat substantia nigra: time course and morphology of cell death. Neurodegeneration 4, 131-137 (1995). 49 Przedborski, S., Vernice Jackson-Lewis, Ali B. Naini, Michael Jakowec, Giselle Petzinger, Miller, R. &; Akram, M. The parkinsonian toxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): a technical review of its utility and safety. Journal of neurochemistry 76, 1265-1274 (2001). 50 Cohen, A. D., Tillerson, J. L., Smith, A. D., Schallert, T. &; Zigmond, M. J. Neuroprotective effects of prior limb use in 6-hydroxydopamine-treated rats: possible role of GDNF. Journal of neurochemistry 85, 299-305 (2003). 51 Mabandla, M., Kellaway, L., St. Clair Gibson, A. &; Russell, V. A. Voluntary running provides neuroprotection in rats after 6-Hydroxydopamine injection into the medial forebrain bundle. Metabolic brain disease 19, 43-50 (2004). 52 Tillerson, J. Exercise induces behavioral recovery and attenuates neurochemical deficits in rodent models of Parkinson's disease. Neuroscience 119, 899-911 (2003). 53 Meredith, G. E. &; Kang, U. J. Behavioral models of Parkinson's disease in rodents: a new look at an old problem. Movement disorders 21, 1595-1606 (2006). 54 Rozas, G., Guerra, M. J. &; Labandeira-Garc´ıa, J. L. An automated rotarod method for quantitative drug-free evaluation of overall motor deficits in rat models of parkinsonism. Brain research protocols 2, 75-84 (1997). 55 Dekundy, A., Lundblad, M., Danysz, W. &; Cenci, M. A. Modulation of L-DOPA-induced abnormal involuntary movements by clinically tested compounds: further validation of the rat dyskinesia model. Behavioural brain research 179, 76-89 (2007). 56 Lee, E. Y., Lee, J. E., Park, J. H., Shin, I. C. &; Koh, H. C. Rosiglitazone, a PPAR-gamma agonist, protects against striatal dopaminergic neurodegeneration induced by 6-OHDA lesions in the substantia nigra of rats. Toxicology letters 213, 332-344 (2012). 57 Sriram, K., Matheson, J. M., Benkovic, S. A., Miller, D. B., Luster, M. I. &; O’Callaghan, J. P. Mice deficient in TNF receptors are protected against dopaminergic neurotoxicity: Implications for Parkinson's disease. The FASEB journal 16, 1474-1494 (2002). 58 Scalzo, P., Kummer, A., Cardoso, F. &; Teixeira, A. L. Increased serum levels of soluble tumor necrosis factor-alpha receptor-1 in patients with Parkinson's disease. Journal of neuroimmunology 216, 122-125 (2009). 59 Grassi-Oliveira, R., Brietzke, E., Pezzi, J. C., Lopes, R. P., Teixeira, A. L. &; Bauer, M. E. Increased soluble tumor necrosis factor-alpha receptors in patients with major depressive disorder. Psychiatry and clinical neurosciences 63, 202-208 (2009). 60 Engelmann, H., Novick, D. &; Wallach, D. Two Tumor Necrosis Factor-binding Proteins Purified from human urine. The journal of biological chemistry 265, 1531-1536 (1990). 61 Mogi, M., Togari, A., Tanaka, K.-i., Ogawa, N., Ichinose, H. &; Nagatsu, T. Increase in level of tumor necrosis factor (TNF)-a in 6-hydroxydopamine-lesioned striatum in rats without influence of systemic L-DOPA on the TNF-a induction. Neuroscience letters 268, 101-104 (1999). 62 Mogi, M., Togari, A., Tanaka, K.-i., Ogawa, N., Ichinose, H. &; Nagatsu, T. Increase in level of tumor necrosis factor-a in 6-hydroxydopaminelesioned striatum in rats is suppressed by immunosuppressant FK506. Neuroscience letters 289, 165-168 (2000). 63 McGuire, S. O., Ling, Z. D., Lipton, J. W., Sortwell, C. E., Collier, T. J. &; Carvey, P. M. Tumor necrosis factor alpha is toxic to embryonic mesencephalic dopamine neurons. Experimental neurology 169, 219-230 (2001). 64 McCoy, M. K., Ruhn, K. A., Martinez, T. N., McAlpine, F. E., Blesch, A. &; Tansey, M. G. Intranigral Lentiviral Delivery of Dominant-negative TNF Attenuates Neurodegeneration and Behavioral Deficits in Hemiparkinsonian rats. Molecular therapy 16, 1572-1579 (2008). 65 Ginis I, S. U., Brenner M, Liu J, Azzam N, Spatz M, Hallenbeck JM. TNF-alpha pretreatment prevents subsequent activation of cultured brain cells with TNF-alpha and hypoxia via ceramide. American journal of physiology 276, 1171-1183 (1999). 66 De Lella Ezcurra, A. L., Chertoff, M., Ferrari, C., Graciarena, M. &; Pitossi, F. Chronic expression of low levels of tumor necrosis factor-alpha in the substantia nigra elicits progressive neurodegeneration, delayed motor symptoms and microglia/macrophage activation. Neurobiology of disease 37, 630-640 (2010). 67 Bette, M., Kaut, O., Schafer, M. K. &; Weihe, E. Constitutive expression of p55TNFR mRNA and mitogen-specific up-regulation of TNF alpha and p75TNFR mRNA in mouse brain. The journal of comparative neurology 465, 417-430 (2003). 68 Veroni, C., Gabriele, L., Canini, I., Castiello, L., Coccia, E., Remoli, M. E., Columba-Cabezas, S., Arico, E., Aloisi, F. &; Agresti, C. Activation of TNF receptor 2 in microglia promotes induction of anti-inflammatory pathways. Molecular and cellular neurosciences 45, 234-244 (2010). 69 Xiao, B. G., Lu, C. Z. &; Link, H. Cell biology and clinical promise of G-CSF: immunomodulation and neuroprotection. Journal of cellular and molecular medicine 11, 1272-1290 (2007). 70 Delgado, M. &; Ganea, D. Anti-inflammatory neuropeptides: a new class of endogenous immunoregulatory agents. Brain, behavior, and immunity 22, 1146-1151 (2008). 71 Annemarie Ledeboer, John J. P. BreveÂ, Anne Wierinckx, Saskia van der Jagt, Adrian F. Bristow, JoseÂe E. Leysen, Fred J. H. Tilders &; Dam, A.-M. V. Expression and regulation of interleukin-10 and interleukin-10 receptor in rat astroglial and microglial cells. European journal of neuroscience 16, 1175-1185 (2002). 72 Tajiri, N., Yasuhara, T., Shingo, T., Kondo, A., Yuan, W., Kadota, T., Wang, F., Baba, T., Tayra, J. T., Morimoto, T., Jing, M., Kikuchi, Y., Kuramoto, S., Agari, T., Miyoshi, Y., Fujino, H., Obata, F., Takeda, I., Furuta, T. &; Date, I. Exercise exerts neuroprotective effects on Parkinson's disease model of rats. Brain research 1310, 200-207 (2010). 73 Yoon, M. C., Shin, M. S., Kim, T. S., Kim, B. K., Ko, I. G., Sung, Y. H., Kim, S. E., Lee, H. H., Kim, Y. P. &; Kim, C. J. Treadmill exercise suppresses nigrostriatal dopaminergic neuronal loss in 6-hydroxydopamine-induced Parkinson's rats. Neuroscience letters 423, 12-17 (2007). 74 Sung, Y. H., Kim, S. C., Hong, H. P., Park, C. Y., Shin, M. S., Kim, C. J., Seo, J. H., Kim, D. Y., Kim, D. J. &; Cho, H. J. Treadmill exercise ameliorates dopaminergic neuronal loss through suppressing microglial activation in Parkinson's disease mice. Life sciences 91, 1309-1316 (2012). 75 Poulton, N. P. &; Muir, G. D. Treadmill training ameliorates dopamine loss but not behavioral deficits in hemi-parkinsonian rats. Experimental neurology 193, 181-197 (2005). 76 Petzinger, G. M., Walsh, J. P., Akopian, G., Hogg, E., Abernathy, A., Arevalo, P., Turnquist, P., Vuckovic, M., Fisher, B. E., Togasaki, D. M. &; Jakowec, M. W. Effects of treadmill exercise on dopaminergic transmission in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse model of basal ganglia injury. The journal of neuroscience 27, 5291-5300 (2007).
|