|
1. Yang, Y.L., et al., High rates of antimicrobial resistance among clinical isolates of nontyphoidal Salmonella in Taiwan. Eur. J. Clin. Microbiol. Infect. Dis, 1998. 17:880-883. 2. Altekruse, S.F., M.L. Cohen, and D.L. Swerdlow, Emerging foodborne diseases. Emerg Infect Dis, 1997. 3(3): p. 285-93. 3. Boyd, D., et al., Characterization of variant Salmonella genomic island 1 multidrug resistance regions from serovars Typhimurium DT104 and Agona. Antimicrob Agents Chemother, 2002. 46(6): p. 1714-22. 4. Lee, H.Y., et al., High rate of reduced susceptibility to ciprofloxacin and ceftriaxone among nontyphoid Salmonella clinical isolates in Asia. Antimicrob Agents Chemother, 2009. 53(6): p. 2696-9. 5. Hu, W.S., P.C. Li, and C.Y. Cheng, Correlation between ceftriaxone resistance of Salmonella enterica serovar Typhimurium and expression of outer membrane proteins OmpW and Ail/OmpX-like protein, which are regulated by BaeR of a two-component system. Antimicrob Agents Chemother, 2005. 49(9): p. 3955-8. 6. Tenover, F.C., Mechanisms of antimicrobial resistance in bacteria. Am J Med, 2006. 119(6 Suppl 1): p. S3-10; discussion S62-70. 7. Wright, G.D., The antibiotic resistome: the nexus of chemical and genetic diversity. Nat Rev Microbiol, 2007. 5(3): p. 175-86. 8. Poole, K., Mechanisms of bacterial biocide and antibiotic resistance. Symp Ser Soc Appl Microbiol, 2002(31): p. 55S-64S. 9. Paulsen, I.T., et al., The SMR family: a novel family of multidrug efflux proteins involved with the efflux of lipophilic drugs. Mol Microbiol, 1996. 19(6): p. 1167-75. 10. Putman, M., H.W. van Veen, and W.N. Konings, Molecular properties of bacterial multidrug transporters. Microbiol Mol Biol Rev, 2000. 64(4): p. 672-93. 11. Laub, M.T. and M. Goulian, Specificity in two-component signal transduction pathways. Annu Rev Genet, 2007. 41: p. 121-45. 12. Hoch, J.A., Two-component and phosphorelay signal transduction. Curr Opin Microbiol, 2000. 3(2): p. 165-70. 13. Goudreau, P.N. and A.M. Stock, Signal transduction in bacteria: molecular mechanisms of stimulus-response coupling. Curr Opin Microbiol, 1998. 1(2): p. 160-9. 14. Stock, A.M., V.L. Robinson, and P.N. Goudreau, Two-component signal 87 transduction. Annu Rev Biochem, 2000. 69: p. 183-215. 15. Delcour, A.H., Outer membrane permeability and antibiotic resistance. Biochim Biophys Acta, 2009. 1794(5): p. 808-16. 16. Hanson, S.R., M.D. Best, and C.H. Wong, Sulfatases: structure, mechanism, biological activity, inhibition, and synthetic utility. Angew Chem Int Ed Engl, 2004. 43(43): p. 5736-63. 17. Das, S., et al., Characterization of an acid-inducible sulfatase in Salmonella enterica serovar typhimurium. Appl Environ Microbiol, 2013. 79(6): p. 2092-5. 18. Datsenko, K.A. and B.L. Wanner, One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A, 2000. 97(12): p. 6640-5. 19. Galvao, T.C., V. de Lorenzo, and D. Canovas, Uncoupling of choline-O-sulphate utilization from osmoprotection in Pseudomonas putida. Mol Microbiol, 2006. 62(6): p. 1643-54. 20. Favre, D., P.K. Ngai, and K.N. Timmis, Relatedness of a periplasmic, broad-specificity RNase from Aeromonas hydrophila to RNase I of Escherichia coli and to a family of eukaryotic RNases. J Bacteriol, 1993. 175(12): p. 3710-22. 21. Hu, W.S., et al., The expression levels of outer membrane proteins STM1530 and OmpD, which are influenced by the CpxAR and BaeSR two-component systems, play important roles in the ceftriaxone resistance of Salmonella enterica serovar Typhimurium. Antimicrob Agents Chemother, 2011. 55(8): p. 3829-37. 22. Jubelin, G., et al., CpxR/OmpR interplay regulates curli gene expression in response to osmolarity in Escherichia coli. J Bacteriol, 2005. 187(6): p. 2038-49. 23. Labandeira-Rey, M., C.A. Brautigam, and E.J. Hansen, Characterization of the CpxRA regulon in Haemophilus ducreyi. Infect Immun, 2010. 78(11): p. 4779-91. 24. Osteras, M., et al., Presence of a gene encoding choline sulfatase in Sinorhizobium meliloti bet operon: choline-O-sulfate is metabolized into glycine betaine. Proc Natl Acad Sci U S A, 1998. 95(19): p. 11394-9. 25. Smith, L.T., et al., Osmotic control of glycine betaine biosynthesis and degradation in Rhizobium meliloti. J Bacteriol, 1988. 170(7): p. 3142-9. 26. Martinez-Martinez, L., et al., Activities of imipenem and cephalosporins against clonally related strains of Escherichia coli hyperproducing chromosomal beta-lactamase and showing altered porin profiles. Antimicrob 88 Agents Chemother, 2000. 44(9): p. 2534-6. 27. Hu, W.S., et al., Outer membrane protein STM3031 (Ail/OmpX-like protein) plays a key role in the ceftriaxone resistance of Salmonella enterica serovar Typhimurium. Antimicrob Agents Chemother, 2009. 53(8): p. 3248-55. 28. Pages, J.M., C.E. James, and M. Winterhalter, The porin and the permeating antibiotic: a selective diffusion barrier in Gram-negative bacteria. Nat Rev Microbiol, 2008. 6(12): p. 893-903. 29. Santiviago, C.A., et al., Global regulation of the Salmonella enterica serovar typhimurium major porin, OmpD. J Bacteriol, 2003. 185(19): p. 5901-5. 30. Vogel, J. and K. Papenfort, Small non-coding RNAs and the bacterial outer membrane. Curr Opin Microbiol, 2006. 9(6): p. 605-11.
|