跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/11 04:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林祝任
研究生(外文):Chu-Jen Lin
論文名稱:探討基質蛋白CCN1影響TGFbeta1所調控的肺癌細胞之活性
論文名稱(外文):Studies of the Matrix Molecule CCN1 Modulating TGF1-Induced Activities in Lung Carcinomas
指導教授:呂世正
指導教授(外文):Shr-Jeng Leu
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:醫學生物技術暨檢驗學系
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:106
中文關鍵詞:肺癌
外文關鍵詞:CCN1
相關次數:
  • 被引用被引用:0
  • 點閱點閱:221
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
CCN1是CCN蛋白家族中的一員,這個家族主是由一群分泌性及富含半胱胺酸(cysteine)的細胞基質蛋白所組成。CCN1參與了許多細胞生理過程,包括血管新生、胚胎發育、傷口修復及組織重建,已知CCN1失去正常的調控,與許多癌症相關。目前CCN1被認為會抑制非小細胞肺癌(NSCLCs)的生長,臨床研究顯示CCN1表現量與肺癌惡性程度呈現負相關,並且腫瘤組織高度表現CCN1時,肺癌病患的存活率增加;而TGF和肺癌的進展有很大的關聯,可藉由誘發表皮-間質轉換(EMT)協助腫瘤的進展。CCN1蛋白由四個區塊(domain)所組成,每個區塊極有可能扮演不同的的功能角色,本研究中,我們想要找出CCN1可以抑制TGF所引起的促癌活性的功能性區塊(functional domain)。
我們使用人類非小細胞肺癌細胞株A549及H520以及小鼠的肺癌細胞株LLC-1,來研究CCN1的功能,並且採用慢病毒表現系統大量表達CCN1、不同位點突變CCN1以及CCN1的蛋白質片段來探討CCN1的功能性區塊。我們發現的結果顯示TGF會誘發細胞產生趨向間質細胞形態的改變及促使細胞移動能力的增加,而CCN1可以減緩TGF1所促進的形態改變及細胞移動,因此具有抑制腫瘤的效果。而在表現CCN1第四個區塊缺陷的細胞,則無法產生抑制TGF1作用。我們的結果顯示CCN1抑制TGF的活性,主要是透過CCN1的第四個區塊(CCN1-D4)。我們進一步地檢測不同CCN1蛋白質片段對於血管新生的作用,結果顯示全長CCN1可以產生促進血管新生活性,然而CCN1-D4蛋白片段則不會引發血管新生的作用。
總結本論文,CCN1-D4可以達到與CCN1相同抑制肺癌細胞移動性的作用,值得進一步探討其是否未來可發展作為治療肺癌的蛋白質試劑。

The CCN1 protein, a member of the matricellular CCN family, is a secreted cysteine-rich matrix molecule. CCN1 regulates multiple cellular actions. Abnormal expression of CCN1 is highly associated with a variety of human diseases including multiple cancers. Studies showed that CCN1 may play a suppressing role in human non-small cell lung carcinomas (NSCLCs) that expression of CCN1 is inversely correlated with malignancy of NSCLCs and high expression levels of CCN1 associate with enhancement of patient survival. The molecular mechanism underlying CCN1-induced lung cancer suppression remains to be explored. The TGF1 is capable of inducing epithelial-mesenchymal transition (EMT) to accelerate tumor metastasis. CCN family is composed of four conserved structural domains. In the present study, we focus on structure-function relationship of the CCN1 and aim to define the structural region of CCN1 for anti-cancer activities.
We generated various CCN1 structural mutants as well as the deletion mutants that were overexpressed in lung cancer cells by the lentivirus expression strategy. Our results showed that TGF-induced EMT process and cellular migration were attenuated by the presence of CCN1 overexpression, while these effect were not observed in the cells that overexpressed CCN1 variants with defective mutations in the fourth domain. Thus, the intrinsic activity of CCN1 in suppressing NSCLC can be defined in the domain IV fragment of CCN1, the CCN1-D4. Furthermore, by in vivo angiogenesis assay, unlike the full-length CCN1, the CCN1-D4 protein was not capable of inducing angiogenesis. Taken together, the data suggest that CCN1-D4 protein fragment may be the developed as a basis of designing an effective reagent targeting NSCLCs.

致謝. i
中文摘要 iii
Abstract iv
目次 ………………………………………………………………………………………………………………………..v
圖次 ………………………………………………………………………………………………………………………vii
壹、 緒論 (Introduction) 1
一、 CCN家族 (CCN Family) 1
二、 CCN1/Cyr61 2
三、 CCN1 與癌症上的研究 3
四、 肺癌 (Lung cancer) 4
五、 表皮-間質轉換(EMT,epithelial–mesenchymal transition) 5
六、 轉化生長因子(Transforming growth factor,TGF) 6
貳、 研究動機與目的 8
參、 實驗材料與方法 (Materials and Methods) 9
一、 實驗材料(Materials) 9
(一) 細菌培養 (Bacteria Culture) 9
(二) 細胞培養 (Cell Culture) 9
(三) 基因選殖 (Molecular Cloning) 11
(四) 常用化學試劑與緩衝溶液 (Reagents and Buffer) 13
(五) 試劑套組 (Kits) 16
(六) 儀器設備 17
二、 實驗方法 (Methods) 18
(一) 細菌培養 (Bacteria Culture) 18
(二) 細胞培養 (Cell Culture) 19
(三) 基因選殖 (Molecular Cloning) 23
(四) 蛋白質相關實驗 35
(五) 抗體純化 44
(六) 人類慢病毒pLKO_AS3w.puro-CCN1的產製,以及建立內生性CCN1 被大量表現的非小細胞肺癌細胞株 47
(七) 探討CCN1調控非小細胞肺癌之相關實驗 49
(八) 探討CCN1的血管新生作用之活性於小鼠的活體實驗 55
肆、 實驗結果 (Results) 58
一、 大量表現內生性CCN1對於非小細胞肺癌細胞株的影響 58
二、 探討CCN1對TGF 誘導的EMT所扮演的角色 58
三、 利用單株抗體YM-1B對CCN1進行功能性抑制在非小細胞肺癌中 59
四、 CCN1對於TGF誘導非小細胞肺癌細胞株移動能力的影響 60
五、 大量表現內生性CCN1對於老鼠肺癌細胞株LLC-1的影響 60
六、 大量表現內生性mCCN1對於老鼠肺癌細胞株LLC-1的影響 61
七、 利用LLC-1表現CCN1進行in vivo實驗,以及觀察重組CCN1蛋白的血管新生能力 61
伍、 實驗討論(Discussion) 63
一、 探討CCN1對非小細胞肺癌扮演的角色 63
二、 探討CCN1對TGF誘導的EMT所扮演的角色 64
三、 探討CCN1抑制非小細胞肺癌移動性的功能性區塊 65
四、 mCCN1表現於老鼠肺癌細胞LLC-1抑制TGF誘導的EMT所扮演的角色 65
五、 探討CCN1對於血管新生的作用 66
六、 總結 67
陸、 參考文獻(Reference) 68
柒、 實驗圖表 (Figures and Tables) 75
捌、 附圖 (Supplementary Figures) 93
玖、 附錄 (Appendix) 101

圖一、 Lentivirus 感染非小細胞肺癌強迫內生性表現 77
圖二、 CCN1對TGF 引起非小細胞肺癌細胞株外觀上變化的影響,並抑制TGF 引起的Stress fibers 80
圖三、觀察單株抗體YM-1B對CCN進行功能性抑制後細胞型態於TGF加入後所產生的改變。 83
圖四、 單株抗體YM-1B影響CCN1抑制TGF所引起的細胞移動 85
圖五、 CCN1對TGF 引起老鼠肺癌細胞株LLC-1外觀上變化的影響,並抑制TGF 引起的EMT 88
圖六、 表現mCCN1在老鼠肺癌細胞LLC-1觀察TGF 引起的外觀上變化 90
圖七、 利用LLC-1表現CCN1進行in vivo實驗,觀察細胞成長 91
圖八、觀察重組CCN1蛋白的血管新生能力,進行in vivo實驗 92
附圖一、重組蛋白CCN1對TGF1引起外觀上變化的影響,並抑制TGF1引起的Stress fibers 94
附圖 二、YM-1E辨識各突變CCN1蛋白,而YM-1B主要辨識於CT domain的DM區域 95
附圖三、CTD-Fc及CCN1對TGF1引起外觀上變化的影響,並抑制TGF1引起的Stress fibers 97
附圖四、CTD-Fc及CCN1抑制TGF1引起EMT marker的改變 99
附圖五、CCN1抑制TGF1所引起的LLC-1細胞移動 100



1. Bork, P., The modular architecture of a new family of growth regulators related to connective tissue growth factor. FEBS Lett, 1993. 327(2): p. 125-30.
2. Bornstein, P. and E.H. Sage, Matricellular proteins: extracellular modulators of cell function. Curr Opin Cell Biol, 2002. 14(5): p. 608-16.
3. Brigstock, D.R., Goldschmeding, R., Katsube, K. I., Lam, S. C., Lau, L. F., Lyons, K., Naus, C., Perbal, B., Riser, B., Takigawa, M., Yeger, H., Proposal for a unified CCN nomenclature. Mol Pathol, 2003. 56(2): p. 127-8.
4. Lau, L.F., Lam, S. C., The CCN family of angiogenic regulators: the integrin connection. Exp Cell Res, 1999. 248(1): p. 44-57.
5. Desnoyers, L., Structural basis and therapeutic implication of the interaction of CCN proteins with glycoconjugates. Curr Pharm Des, 2004. 10(31): p. 3913-28.
6. Chen, C.C., Lau, L. F., Functions and mechanisms of action of CCN matricellular proteins. Int J Biochem Cell Biol, 2009. 41(4): p. 771-83.
7. Lau, L.F.N., D., Identification of a set of genes expressed during the G0/G1 transition of cultured mouse cells. EMBO J, 1985. 4(12): p. 3145-51.
8. O'Brien, T.P., Yang, G. P., Sanders, L., Lau, L. F., Expression of cyr61, a growth factor-inducible immediate-early gene. Mol Cell Biol, 1990. 10(7): p. 3569-77.
9. Jay, P., Berge-Lefranc, J. L., Marsollier, C., Mejean, C., Taviaux, S., Berta, P., The human growth factor-inducible immediate early gene, CYR61, maps to chromosome 1p. Oncogene, 1997. 14(14): p. 1753-7.
10. Latinkic, B.V., T.P. O'Brien, and L.F. Lau, Promoter function and structure of the growth factor-inducible immediate early gene cyr61. Nucleic Acids Res, 1991. 19(12): p. 3261-7.
11. Mo, F.E., Muntean, A. G., Chen, C. C., Stolz, D. B., Watkins, S. C., Lau, L. F., CYR61 (CCN1) Is Essential for Placental Development and Vascular Integrity. Molecular and Cellular Biology, 2002. 22(24): p. 8709-8720.
12. Timothy P. O' Brien, L.F.L., Expression of the Growth Factor-inducible Immediate Early Gene cyr61 Correlates with Chondrogenesis during Mouse Embryonic Development. Cell Growth and Differentiation, 1992. 3: p. 645-654.
13. Wong, M., Kireeva, M. L., Kolesnikova, T. V., Lau, L. F., Cyr61, product of a growth factor-inducible immediate-early gene, regulates chondrogenesis in mouse limb bud mesenchymal cells. Dev Biol, 1997. 192(2): p. 492-508.
14. Grote, K., Salguero, G., Ballmaier, M., Dangers, M., Drexler, H., Schieffer, B., The angiogenic factor CCN1 promotes adhesion and migration of circulating CD34+ progenitor cells: potential role in angiogenesis and endothelial regeneration. Blood, 2007. 110(3): p. 877-85.
15. Yang, G.P., Lau, L. F., Cyr61, product of a growth factor-inducible immediate early gene, is associated with the extracellular matrix and the cell surface. Cell Growth Differ, 1991. 2(7): p. 351-7.
16. Kireeva, M.L., Mo, F. E., Yang, G. P., Lau, L. F., Cyr61, a product of a growth factor-inducible immediate-early gene, promotes cell proliferation, migration, and adhesion. Mol Cell Biol, 1996. 16(4): p. 1326-34.
17. Babic, A.M., Kireeva, M. L., Kolesnikova, T. V., Lau, L. F., CYR61, a product of a growth factor-inducible immediate early gene, promotes angiogenesis and tumor growth. Proc Natl Acad Sci U S A, 1998. 95(11): p. 6355-60.
18. Kireeva, M.L., Lam, S. C., Lau, L. F., Adhesion of human umbilical vein endothelial cells to the immediate-early gene product Cyr61 is mediated through integrin alphavbeta3. J Biol Chem, 1998. 273(5): p. 3090-6.
19. Chen, N., Chen, C. C., Lau, L. F., Adhesion of human skin fibroblasts to Cyr61 is mediated through integrin alpha 6beta 1 and cell surface heparan sulfate proteoglycans. J Biol Chem, 2000. 275(32): p. 24953-61.
20. Leu, S.J., Chen, N., Chen, C. C., Todorovic, V., Bai, T., Juric, V., Liu, Y., Yan, G., Lam, S. C., Lau, L. F., Targeted mutagenesis of the angiogenic protein CCN1 (CYR61). Selective inactivation of integrin alpha6beta1-heparan sulfate proteoglycan coreceptor-mediated cellular functions. J Biol Chem, 2004. 279(42): p. 44177-87.
21. Jun, J.I., Lau, L. F., The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat Cell Biol, 2010. 12(7): p. 676-85.
22. Leu, S.J., Lam, S. C., Lau, L. F., Pro-angiogenic activities of CYR61 (CCN1) mediated through integrins alphavbeta3 and alpha6beta1 in human umbilical vein endothelial cells. J Biol Chem, 2002. 277(48): p. 46248-55.
23. Sun, Z.J., Wang, Y., Cai, Z., Chen, P. P., Tong, X. J., Xie, D., Involvement of Cyr61 in growth, migration, and metastasis of prostate cancer cells. Br J Cancer, 2008. 99(10): p. 1656-67.
24. Chen, P.P., Li, W. J., Wang, Y., Zhao, S., Li, D. Y., Feng, L. Y., Shi, X. L., Koeffler, H. P., Tong, X. J., Xie, D., Expression of Cyr61, CTGF, and WISP-1 correlates with clinical features of lung cancer. PLoS One, 2007. 2(6): p. e534.
25. Tsai, M.S., Bogart, D. F., Castaneda, J. M., Li, P., Lupu, R., Cyr61 promotes breast tumorigenesis and cancer progression. Oncogene, 2002. 21(53): p. 8178-85.
26. Feng, P., Wang, B., Ren, E. C., Cyr61/CCN1 is a tumor suppressor in human hepatocellular carcinoma and involved in DNA damage response. Int J Biochem Cell Biol, 2008. 40(1): p. 98-109.
27. Tong, X., O'Kelly, J., Xie, D., Mori, A., Lemp, N., McKenna, R., Miller, C. W., Koeffler, H. P., Cyr61 suppresses the growth of non-small-cell lung cancer cells via the beta-catenin-c-myc-p53 pathway. Oncogene, 2004. 23(28): p. 4847-55.
28. Xie, D., et al., Elevated levels of connective tissue growth factor, WISP-1, and CYR61 in primary breast cancers associated with more advanced features. Cancer Res, 2001. 61(24): p. 8917-23.
29. Sampath, D., R.C. Winneker, and Z. Zhang, Cyr61, a member of the CCN family, is required for MCF-7 cell proliferation: regulation by 17beta-estradiol and overexpression in human breast cancer. Endocrinology, 2001. 142(6): p. 2540-8.
30. Nguyen, N., et al., Tumor-derived Cyr61(CCN1) promotes stromal matrix metalloproteinase-1 production and protease-activated receptor 1-dependent migration of breast cancer cells. Cancer Res, 2006. 66(5): p. 2658-65.
31. Siegel, R., Naishadham, D., Jemal, A., Cancer statistics, 2012. CA Cancer J Clin, 2012. 62(1): p. 10-29.
32. Herbst, R.S., Heymach, J. V., Lippman, S. M., Lung cancer. N Engl J Med, 2008. 359(13): p. 1367-80.
33. Wahbah, M., Boroumand, N., Castro, C., El-Zeky, F., Eltorky, M., Changing trends in the distribution of the histologic types of lung cancer: a review of 4,439 cases. Ann Diagn Pathol, 2007. 11(2): p. 89-96.
34. Howlader, N., Ries, L. A., Stinchcomb, D. G., Edwards, B. K., The impact of underreported Veterans Affairs data on national cancer statistics: analysis using population-based SEER registries. J Natl Cancer Inst, 2009. 101(7): p. 533-6.
35. Sandler, A., Gray, R., Perry, M. C., Brahmer, J., Schiller, J. H., Dowlati, A., Lilenbaum, R., Johnson, D. H., Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med, 2006. 355(24): p. 2542-50.
36. Moon, C., Y. Oh, and J.A. Roth, Current status of gene therapy for lung cancer and head and neck cancer. Clin Cancer Res, 2003. 9(14): p. 5055-67.
37. Group, N.M.-a.C., et al., Adjuvant chemotherapy, with or without postoperative radiotherapy, in operable non-small-cell lung cancer: two meta-analyses of individual patient data. Lancet, 2010. 375(9722): p. 1267-77.
38. Clegg, A., et al., Clinical and cost effectiveness of paclitaxel, docetaxel, gemcitabine, and vinorelbine in non-small cell lung cancer: a systematic review. Thorax, 2002. 57(1): p. 20-8.
39. Ramaswamy Govindan, M., Summary of Presentations from the Ninth Annual Targeted Therapies in Lung Cancer Symposium. Journal of Thoracic Oncology, 2009. 4(11): p. 1045-1089.
40. Rho, J.K., et al., p53 enhances gefitinib-induced growth inhibition and apoptosis by regulation of Fas in non-small cell lung cancer. Cancer Res, 2007. 67(3): p. 1163-9.
41. Duband, J.L., Thiery, J. P., , Appearance and distribution of fibronectin during chick embryo gastrulation and neurulation. Dev Biol, 1982. 94(2): p. 337-50.
42. Hay, E.D., An overview of epithelio-mesenchymal transformation. Acta Anat (Basel), 1995. 154(1): p. 8-20.
43. Kalluri, R., Neilson, E. G., Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest, 2003. 112(12): p. 1776-84.
44. Kalluri, R., Weinberg, R. A., The basics of epithelial-mesenchymal transition. J Clin Invest, 2009. 119(6): p. 1420-8.
45. Lee, J.M., et al., The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol, 2006. 172(7): p. 973-81.
46. Zeisberg, M., Neilson, E. G., Biomarkers for epithelial-mesenchymal transitions. J Clin Invest, 2009. 119(6): p. 1429-37.
47. Derynck, R., Akhurst, R. J., Differentiation plasticity regulated by TGF-beta family proteins in development and disease. Nat Cell Biol, 2007. 9(9): p. 1000-4.
48. Roberts, A.B., Wakefield, L. M., The two faces of transforming growth factor beta in carcinogenesis. Proc Natl Acad Sci U S A, 2003. 100(15): p. 8621-3.
49. Assoian, R.K., Komoriya, A., Meyers, C. A., Miller, D. M., Sporn, M. B., Transforming growth factor-beta in human platelets. Identification of a major storage site, purification, and characterization. J Biol Chem, 1983. 258(11): p. 7155-60.
50. Derynck, R., Lindquist, P. B., Lee, A., Wen, D., Tamm, J., Graycar, J. L., Rhee, L., Mason, A. J., Miller, D. A., Coffey, R. J., et al.,, A new type of transforming growth factor-beta, TGF-beta 3. EMBO J, 1988. 7(12): p. 3737-43.
51. Hill, J.J., et al., Glycoproteomic analysis of two mouse mammary cell lines during transforming growth factor (TGF)-beta induced epithelial to mesenchymal transition. Proteome Sci, 2009. 7: p. 2.
52. Fallon, J. and S. Reid, Kinyamu, R., Opole, I., Opole, R., Baratta, J., Korc, M., Endo, T. L., Duong, A., Nguyen, G., Karkehabadhi, M., Twardzik, D., Patel, S., Loughlin, S., In vivo induction of massive proliferation, directed migration, and differentiation of neural cells in the adult mammalian brain. Proc Natl Acad Sci U S A, 2000. 97(26): p. 14686-91.
53. Nasim, M.M., Thomas, D. M., Alison, M. R., Filipe, M. I., Transforming growth factor alpha expression in normal gastric mucosa, intestinal metaplasia, dysplasia and gastric carcinoma--an immunohistochemical study. Histopathology, 1992. 20(4): p. 339-43.
54. Khalil, N., TGF-beta: from latent to active. Microbes Infect, 1999. 1(15): p. 1255-63.
55. Herpin, A., Lelong, C., Favrel, P., Transforming growth factor-beta-related proteins: an ancestral and widespread superfamily of cytokines in metazoans. Dev Comp Immunol, 2004. 28(5): p. 461-85.
56. Ikushima, H., Miyazono, K., TGFbeta signalling: a complex web in cancer progression. Nat Rev Cancer, 2010. 10(6): p. 415-24.
57. Derynck, R., Akhurst, R. J., Balmain, A., TGF-beta signaling in tumor suppression and cancer progression. Nat Genet, 2001. 29(2): p. 117-29.
58. Hahn, S.A., Schutte, M., Hoque, A. T., Moskaluk, C. A., da Costa, L. T., Rozenblum, E., Weinstein, C. L., Fischer, A., Yeo, C. J., Hruban, R. H., Kern, S. E., DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science, 1996. 271(5247): p. 350-3.
59. Massague, J., A very private TGF-beta receptor embrace. Mol Cell, 2008. 29(2): p. 149-50.
60. Y. Waye M, W.L.P., Wong, C. H., C. Au T, Chuck, C. P., Kong, S. K., S. Chan P, To, K. F., I. Lo A, W. Chan J, Suen, Y. K., Edwin Chan, H. Y., Fung, K. P., Y. Sung J, Dennis Lo, Y. M., W. Tsui S, The 3a Protein of SARS-coronavirus Induces Apoptosis in Vero E6 Cells. Conf Proc IEEE Eng Med Biol Soc, 2005. 7: p. 7482-5.
61. Hanahan, D. and R.A. Weinberg, The hallmarks of cancer. Cell, 2000. 100(1): p. 57-70.
62. Blobe, G.C., W.P. Schiemann, and H.F. Lodish, Role of transforming growth factor beta in human disease. N Engl J Med, 2000. 342(18): p. 1350-8.
63. Holbourn, K.P., B. Perbal, and K. Ravi Acharya, Proteins on the catwalk: modelling the structural domains of the CCN family of proteins. J Cell Commun Signal, 2009. 3(1): p. 25-41.
64. Mats Grände1, Å.F., Jan-Olof Karlsson, Lars E. Ericson, Nils-Erik Heldin and Mikael Nilsson, Transforming growth factor-β and epidermal growth factor synergistically stimulate epithelial to mesenchymal transition (EMT) through a MEK-dependent mechanism in primary cultured pig thyrocytes. Journal of Cell Science, 2002. 115(22): p. 4227-4236.
65. Mayo, J.G., Biologic characterization of the subcutaneously implanted Lewis lung tumor. Cancer Chemother Rep 2, 1972. 3(1): p. 325-30.
66. Chang, C.C., et al., Connective tissue growth factor and its role in lung adenocarcinoma invasion and metastasis. J Natl Cancer Inst, 2004. 96(5): p. 364-75.
67. Leu, S.J., Sung, J. S., Chen, M. Y., Chen, C. W., Cheng, J. Y.. Wang, T. Y., Wang, J. J., The Matricellular Protein CCN1 Suppresses Lung Cancer Cell Growth by Inducing Senescence via the p53/p21 Pathway. J Cell Biochem, 2013.
68. Tong, X., Xie, D., O'Kelly, J., Miller, C. W., Muller-Tidow, C., Koeffler, H. P., Cyr61, a member of CCN family, is a tumor suppressor in non-small cell lung cancer. J Biol Chem, 2001. 276(50): p. 47709-14.
69. Folkman, J., Seminars in Medicine of the Beth Israel Hospital, Boston. Clinical applications of research on angiogenesis. N Engl J Med, 1995. 333(26): p. 1757-63.
70. Hsu, S.C., Volpert, O. V., Steck, P. A., Mikkelsen, T., Polverini, P. J., Rao, S., Chou, P., Bouck, N. P., Inhibition of angiogenesis in human glioblastomas by chromosome 10 induction of thrombospondin-1. Cancer Res, 1996. 56(24): p. 5684-91.
71. Choi, J., Lin, A., Shrier, E., Lau, L. F., Grant, M. B., Chaqour, B., Degradome Products of the Matricellular Protein CCN1 as Modulators of Pathological Angiogenesis in the Retina. J Biol Chem, 2013. 288(32): p. 23075-89.
72. Guo-Wei Zuo, C.D.K., Bai-Cheng He, Liang Chen, Wenli Zhang, Qiong Shi, Bing- Qiang Zhang, Quan Kang, Jinyong Luo, Xiaoji Luo, Eric R. Wagner, Stephanie H. Kim, Farbod Restegar, Rex C. Haydon, Zhong-Liang Deng, Hue H. Luu, Tong-Chuan He, and Qing Luo, The CCN protein important signaling mediators in stem cell differentiation and tumorigenesis. Histol Histopathal., 2010.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top