|
1. Bork, P., The modular architecture of a new family of growth regulators related to connective tissue growth factor. FEBS Lett, 1993. 327(2): p. 125-30. 2. Bornstein, P. and E.H. Sage, Matricellular proteins: extracellular modulators of cell function. Curr Opin Cell Biol, 2002. 14(5): p. 608-16. 3. Brigstock, D.R., Goldschmeding, R., Katsube, K. I., Lam, S. C., Lau, L. F., Lyons, K., Naus, C., Perbal, B., Riser, B., Takigawa, M., Yeger, H., Proposal for a unified CCN nomenclature. Mol Pathol, 2003. 56(2): p. 127-8. 4. Lau, L.F., Lam, S. C., The CCN family of angiogenic regulators: the integrin connection. Exp Cell Res, 1999. 248(1): p. 44-57. 5. Desnoyers, L., Structural basis and therapeutic implication of the interaction of CCN proteins with glycoconjugates. Curr Pharm Des, 2004. 10(31): p. 3913-28. 6. Chen, C.C., Lau, L. F., Functions and mechanisms of action of CCN matricellular proteins. Int J Biochem Cell Biol, 2009. 41(4): p. 771-83. 7. Lau, L.F.N., D., Identification of a set of genes expressed during the G0/G1 transition of cultured mouse cells. EMBO J, 1985. 4(12): p. 3145-51. 8. O'Brien, T.P., Yang, G. P., Sanders, L., Lau, L. F., Expression of cyr61, a growth factor-inducible immediate-early gene. Mol Cell Biol, 1990. 10(7): p. 3569-77. 9. Jay, P., Berge-Lefranc, J. L., Marsollier, C., Mejean, C., Taviaux, S., Berta, P., The human growth factor-inducible immediate early gene, CYR61, maps to chromosome 1p. Oncogene, 1997. 14(14): p. 1753-7. 10. Latinkic, B.V., T.P. O'Brien, and L.F. Lau, Promoter function and structure of the growth factor-inducible immediate early gene cyr61. Nucleic Acids Res, 1991. 19(12): p. 3261-7. 11. Mo, F.E., Muntean, A. G., Chen, C. C., Stolz, D. B., Watkins, S. C., Lau, L. F., CYR61 (CCN1) Is Essential for Placental Development and Vascular Integrity. Molecular and Cellular Biology, 2002. 22(24): p. 8709-8720. 12. Timothy P. O' Brien, L.F.L., Expression of the Growth Factor-inducible Immediate Early Gene cyr61 Correlates with Chondrogenesis during Mouse Embryonic Development. Cell Growth and Differentiation, 1992. 3: p. 645-654. 13. Wong, M., Kireeva, M. L., Kolesnikova, T. V., Lau, L. F., Cyr61, product of a growth factor-inducible immediate-early gene, regulates chondrogenesis in mouse limb bud mesenchymal cells. Dev Biol, 1997. 192(2): p. 492-508. 14. Grote, K., Salguero, G., Ballmaier, M., Dangers, M., Drexler, H., Schieffer, B., The angiogenic factor CCN1 promotes adhesion and migration of circulating CD34+ progenitor cells: potential role in angiogenesis and endothelial regeneration. Blood, 2007. 110(3): p. 877-85. 15. Yang, G.P., Lau, L. F., Cyr61, product of a growth factor-inducible immediate early gene, is associated with the extracellular matrix and the cell surface. Cell Growth Differ, 1991. 2(7): p. 351-7. 16. Kireeva, M.L., Mo, F. E., Yang, G. P., Lau, L. F., Cyr61, a product of a growth factor-inducible immediate-early gene, promotes cell proliferation, migration, and adhesion. Mol Cell Biol, 1996. 16(4): p. 1326-34. 17. Babic, A.M., Kireeva, M. L., Kolesnikova, T. V., Lau, L. F., CYR61, a product of a growth factor-inducible immediate early gene, promotes angiogenesis and tumor growth. Proc Natl Acad Sci U S A, 1998. 95(11): p. 6355-60. 18. Kireeva, M.L., Lam, S. C., Lau, L. F., Adhesion of human umbilical vein endothelial cells to the immediate-early gene product Cyr61 is mediated through integrin alphavbeta3. J Biol Chem, 1998. 273(5): p. 3090-6. 19. Chen, N., Chen, C. C., Lau, L. F., Adhesion of human skin fibroblasts to Cyr61 is mediated through integrin alpha 6beta 1 and cell surface heparan sulfate proteoglycans. J Biol Chem, 2000. 275(32): p. 24953-61. 20. Leu, S.J., Chen, N., Chen, C. C., Todorovic, V., Bai, T., Juric, V., Liu, Y., Yan, G., Lam, S. C., Lau, L. F., Targeted mutagenesis of the angiogenic protein CCN1 (CYR61). Selective inactivation of integrin alpha6beta1-heparan sulfate proteoglycan coreceptor-mediated cellular functions. J Biol Chem, 2004. 279(42): p. 44177-87. 21. Jun, J.I., Lau, L. F., The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat Cell Biol, 2010. 12(7): p. 676-85. 22. Leu, S.J., Lam, S. C., Lau, L. F., Pro-angiogenic activities of CYR61 (CCN1) mediated through integrins alphavbeta3 and alpha6beta1 in human umbilical vein endothelial cells. J Biol Chem, 2002. 277(48): p. 46248-55. 23. Sun, Z.J., Wang, Y., Cai, Z., Chen, P. P., Tong, X. J., Xie, D., Involvement of Cyr61 in growth, migration, and metastasis of prostate cancer cells. Br J Cancer, 2008. 99(10): p. 1656-67. 24. Chen, P.P., Li, W. J., Wang, Y., Zhao, S., Li, D. Y., Feng, L. Y., Shi, X. L., Koeffler, H. P., Tong, X. J., Xie, D., Expression of Cyr61, CTGF, and WISP-1 correlates with clinical features of lung cancer. PLoS One, 2007. 2(6): p. e534. 25. Tsai, M.S., Bogart, D. F., Castaneda, J. M., Li, P., Lupu, R., Cyr61 promotes breast tumorigenesis and cancer progression. Oncogene, 2002. 21(53): p. 8178-85. 26. Feng, P., Wang, B., Ren, E. C., Cyr61/CCN1 is a tumor suppressor in human hepatocellular carcinoma and involved in DNA damage response. Int J Biochem Cell Biol, 2008. 40(1): p. 98-109. 27. Tong, X., O'Kelly, J., Xie, D., Mori, A., Lemp, N., McKenna, R., Miller, C. W., Koeffler, H. P., Cyr61 suppresses the growth of non-small-cell lung cancer cells via the beta-catenin-c-myc-p53 pathway. Oncogene, 2004. 23(28): p. 4847-55. 28. Xie, D., et al., Elevated levels of connective tissue growth factor, WISP-1, and CYR61 in primary breast cancers associated with more advanced features. Cancer Res, 2001. 61(24): p. 8917-23. 29. Sampath, D., R.C. Winneker, and Z. Zhang, Cyr61, a member of the CCN family, is required for MCF-7 cell proliferation: regulation by 17beta-estradiol and overexpression in human breast cancer. Endocrinology, 2001. 142(6): p. 2540-8. 30. Nguyen, N., et al., Tumor-derived Cyr61(CCN1) promotes stromal matrix metalloproteinase-1 production and protease-activated receptor 1-dependent migration of breast cancer cells. Cancer Res, 2006. 66(5): p. 2658-65. 31. Siegel, R., Naishadham, D., Jemal, A., Cancer statistics, 2012. CA Cancer J Clin, 2012. 62(1): p. 10-29. 32. Herbst, R.S., Heymach, J. V., Lippman, S. M., Lung cancer. N Engl J Med, 2008. 359(13): p. 1367-80. 33. Wahbah, M., Boroumand, N., Castro, C., El-Zeky, F., Eltorky, M., Changing trends in the distribution of the histologic types of lung cancer: a review of 4,439 cases. Ann Diagn Pathol, 2007. 11(2): p. 89-96. 34. Howlader, N., Ries, L. A., Stinchcomb, D. G., Edwards, B. K., The impact of underreported Veterans Affairs data on national cancer statistics: analysis using population-based SEER registries. J Natl Cancer Inst, 2009. 101(7): p. 533-6. 35. Sandler, A., Gray, R., Perry, M. C., Brahmer, J., Schiller, J. H., Dowlati, A., Lilenbaum, R., Johnson, D. H., Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med, 2006. 355(24): p. 2542-50. 36. Moon, C., Y. Oh, and J.A. Roth, Current status of gene therapy for lung cancer and head and neck cancer. Clin Cancer Res, 2003. 9(14): p. 5055-67. 37. Group, N.M.-a.C., et al., Adjuvant chemotherapy, with or without postoperative radiotherapy, in operable non-small-cell lung cancer: two meta-analyses of individual patient data. Lancet, 2010. 375(9722): p. 1267-77. 38. Clegg, A., et al., Clinical and cost effectiveness of paclitaxel, docetaxel, gemcitabine, and vinorelbine in non-small cell lung cancer: a systematic review. Thorax, 2002. 57(1): p. 20-8. 39. Ramaswamy Govindan, M., Summary of Presentations from the Ninth Annual Targeted Therapies in Lung Cancer Symposium. Journal of Thoracic Oncology, 2009. 4(11): p. 1045-1089. 40. Rho, J.K., et al., p53 enhances gefitinib-induced growth inhibition and apoptosis by regulation of Fas in non-small cell lung cancer. Cancer Res, 2007. 67(3): p. 1163-9. 41. Duband, J.L., Thiery, J. P., , Appearance and distribution of fibronectin during chick embryo gastrulation and neurulation. Dev Biol, 1982. 94(2): p. 337-50. 42. Hay, E.D., An overview of epithelio-mesenchymal transformation. Acta Anat (Basel), 1995. 154(1): p. 8-20. 43. Kalluri, R., Neilson, E. G., Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest, 2003. 112(12): p. 1776-84. 44. Kalluri, R., Weinberg, R. A., The basics of epithelial-mesenchymal transition. J Clin Invest, 2009. 119(6): p. 1420-8. 45. Lee, J.M., et al., The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol, 2006. 172(7): p. 973-81. 46. Zeisberg, M., Neilson, E. G., Biomarkers for epithelial-mesenchymal transitions. J Clin Invest, 2009. 119(6): p. 1429-37. 47. Derynck, R., Akhurst, R. J., Differentiation plasticity regulated by TGF-beta family proteins in development and disease. Nat Cell Biol, 2007. 9(9): p. 1000-4. 48. Roberts, A.B., Wakefield, L. M., The two faces of transforming growth factor beta in carcinogenesis. Proc Natl Acad Sci U S A, 2003. 100(15): p. 8621-3. 49. Assoian, R.K., Komoriya, A., Meyers, C. A., Miller, D. M., Sporn, M. B., Transforming growth factor-beta in human platelets. Identification of a major storage site, purification, and characterization. J Biol Chem, 1983. 258(11): p. 7155-60. 50. Derynck, R., Lindquist, P. B., Lee, A., Wen, D., Tamm, J., Graycar, J. L., Rhee, L., Mason, A. J., Miller, D. A., Coffey, R. J., et al.,, A new type of transforming growth factor-beta, TGF-beta 3. EMBO J, 1988. 7(12): p. 3737-43. 51. Hill, J.J., et al., Glycoproteomic analysis of two mouse mammary cell lines during transforming growth factor (TGF)-beta induced epithelial to mesenchymal transition. Proteome Sci, 2009. 7: p. 2. 52. Fallon, J. and S. Reid, Kinyamu, R., Opole, I., Opole, R., Baratta, J., Korc, M., Endo, T. L., Duong, A., Nguyen, G., Karkehabadhi, M., Twardzik, D., Patel, S., Loughlin, S., In vivo induction of massive proliferation, directed migration, and differentiation of neural cells in the adult mammalian brain. Proc Natl Acad Sci U S A, 2000. 97(26): p. 14686-91. 53. Nasim, M.M., Thomas, D. M., Alison, M. R., Filipe, M. I., Transforming growth factor alpha expression in normal gastric mucosa, intestinal metaplasia, dysplasia and gastric carcinoma--an immunohistochemical study. Histopathology, 1992. 20(4): p. 339-43. 54. Khalil, N., TGF-beta: from latent to active. Microbes Infect, 1999. 1(15): p. 1255-63. 55. Herpin, A., Lelong, C., Favrel, P., Transforming growth factor-beta-related proteins: an ancestral and widespread superfamily of cytokines in metazoans. Dev Comp Immunol, 2004. 28(5): p. 461-85. 56. Ikushima, H., Miyazono, K., TGFbeta signalling: a complex web in cancer progression. Nat Rev Cancer, 2010. 10(6): p. 415-24. 57. Derynck, R., Akhurst, R. J., Balmain, A., TGF-beta signaling in tumor suppression and cancer progression. Nat Genet, 2001. 29(2): p. 117-29. 58. Hahn, S.A., Schutte, M., Hoque, A. T., Moskaluk, C. A., da Costa, L. T., Rozenblum, E., Weinstein, C. L., Fischer, A., Yeo, C. J., Hruban, R. H., Kern, S. E., DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science, 1996. 271(5247): p. 350-3. 59. Massague, J., A very private TGF-beta receptor embrace. Mol Cell, 2008. 29(2): p. 149-50. 60. Y. Waye M, W.L.P., Wong, C. H., C. Au T, Chuck, C. P., Kong, S. K., S. Chan P, To, K. F., I. Lo A, W. Chan J, Suen, Y. K., Edwin Chan, H. Y., Fung, K. P., Y. Sung J, Dennis Lo, Y. M., W. Tsui S, The 3a Protein of SARS-coronavirus Induces Apoptosis in Vero E6 Cells. Conf Proc IEEE Eng Med Biol Soc, 2005. 7: p. 7482-5. 61. Hanahan, D. and R.A. Weinberg, The hallmarks of cancer. Cell, 2000. 100(1): p. 57-70. 62. Blobe, G.C., W.P. Schiemann, and H.F. Lodish, Role of transforming growth factor beta in human disease. N Engl J Med, 2000. 342(18): p. 1350-8. 63. Holbourn, K.P., B. Perbal, and K. Ravi Acharya, Proteins on the catwalk: modelling the structural domains of the CCN family of proteins. J Cell Commun Signal, 2009. 3(1): p. 25-41. 64. Mats Grände1, Å.F., Jan-Olof Karlsson, Lars E. Ericson, Nils-Erik Heldin and Mikael Nilsson, Transforming growth factor-β and epidermal growth factor synergistically stimulate epithelial to mesenchymal transition (EMT) through a MEK-dependent mechanism in primary cultured pig thyrocytes. Journal of Cell Science, 2002. 115(22): p. 4227-4236. 65. Mayo, J.G., Biologic characterization of the subcutaneously implanted Lewis lung tumor. Cancer Chemother Rep 2, 1972. 3(1): p. 325-30. 66. Chang, C.C., et al., Connective tissue growth factor and its role in lung adenocarcinoma invasion and metastasis. J Natl Cancer Inst, 2004. 96(5): p. 364-75. 67. Leu, S.J., Sung, J. S., Chen, M. Y., Chen, C. W., Cheng, J. Y.. Wang, T. Y., Wang, J. J., The Matricellular Protein CCN1 Suppresses Lung Cancer Cell Growth by Inducing Senescence via the p53/p21 Pathway. J Cell Biochem, 2013. 68. Tong, X., Xie, D., O'Kelly, J., Miller, C. W., Muller-Tidow, C., Koeffler, H. P., Cyr61, a member of CCN family, is a tumor suppressor in non-small cell lung cancer. J Biol Chem, 2001. 276(50): p. 47709-14. 69. Folkman, J., Seminars in Medicine of the Beth Israel Hospital, Boston. Clinical applications of research on angiogenesis. N Engl J Med, 1995. 333(26): p. 1757-63. 70. Hsu, S.C., Volpert, O. V., Steck, P. A., Mikkelsen, T., Polverini, P. J., Rao, S., Chou, P., Bouck, N. P., Inhibition of angiogenesis in human glioblastomas by chromosome 10 induction of thrombospondin-1. Cancer Res, 1996. 56(24): p. 5684-91. 71. Choi, J., Lin, A., Shrier, E., Lau, L. F., Grant, M. B., Chaqour, B., Degradome Products of the Matricellular Protein CCN1 as Modulators of Pathological Angiogenesis in the Retina. J Biol Chem, 2013. 288(32): p. 23075-89. 72. Guo-Wei Zuo, C.D.K., Bai-Cheng He, Liang Chen, Wenli Zhang, Qiong Shi, Bing- Qiang Zhang, Quan Kang, Jinyong Luo, Xiaoji Luo, Eric R. Wagner, Stephanie H. Kim, Farbod Restegar, Rex C. Haydon, Zhong-Liang Deng, Hue H. Luu, Tong-Chuan He, and Qing Luo, The CCN protein important signaling mediators in stem cell differentiation and tumorigenesis. Histol Histopathal., 2010.
|