跳到主要內容

臺灣博碩士論文加值系統

(44.212.96.86) 您好!臺灣時間:2023/12/07 01:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蘇剛正
研究生(外文):Kang-Cheng Su
論文名稱:膽酸經由調控MAP激酶、細胞漿磷脂酶A2、環氧合酵素-2、前列腺素E2、及細胞接合蛋白增加肺泡上皮細胞通透性
論文名稱(外文):Bile acids increase alveolar epithelial permeability via MAP kinase, cytosolic phospholipase A2, cyclooxygenase-2, PGE2, and junctional proteins
指導教授:彭殿王張西川張西川引用關係
指導教授(外文):Diahn-Warng PerngShi-Chuan Chang
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:急重症醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:101
中文關鍵詞:肺泡通透性接合蛋白前列腺素E2經上皮層電阻細胞旁通量
外文關鍵詞:alveolar permeabilityjunctional proteinprostaglandin E2transepithelial electrical resistanceparacellular flux
相關次數:
  • 被引用被引用:0
  • 點閱點閱:287
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:0
背景與目標:越來越多證據顯示膽酸吸入肺部與許多肺部疾病具相關性,然而肺泡上皮細胞在接觸膽酸之後的反應卻仍然未知,因此我們假設膽酸對肺泡上皮細胞之刺激可能增加上皮細胞通透性,而導致肺傷害之形成。

方法:人類肺泡上皮細胞可在培養皿上生長成單細胞層,之後加入膽酸主成分之一的鵝去氧膽酸(chenodeoxycholic acid,CDCA)刺激,並觀察其上皮通透性之變化,而通透性之改變則可藉由經上皮層電阻(transepithelial electrical resistance,TER)之高低與小分子物質流經上皮細胞周圍間隙之能力-細胞旁通量(paracellular flux)來評估。在上皮細胞以CDCA刺激後,我們測量前列腺素E2 (prostaglandin E2,PGE2) 之產生,並評估以CDCA與PGE2刺激肺泡上皮細胞後,其通透性與細胞接合蛋白(junctional proteins)之變化。此外,我們亦藉由反轉錄聚合酶鏈式反應(reverse transcription-PCR)與西方墨點法(western blots)來顯示信息核醣核酸(mRNA)與接合蛋白之表現量。

結果:CDCA可顯著誘導p38與JNK蛋白之磷酸化反應,胞漿型磷脂水解酶A2 (cytosolic phospholipases A2, cPLA2)與環氧合酵素-2(cyclooxygenase-2, COX-2)之mRNA表現,PGE2之產生,TER之下降,與接合蛋白之衰減(接合蛋白包括occludin,zonula occludens-1 [ZO-1],與E-cadherin,其中,ZO-1所產生之變化最顯著)。CDCA之刺激可造成細胞旁通量之增加,而此變化可因dexamethasone之前處理而減少。CDCA與PGE2兩者皆可造成TER之下降,而兩者下降之趨勢一致且呈現劑量-反應(dose-response)之相關變化。此外,PGE2與CDCA皆可造成ZO-1衰減,且兩者變化之趨勢非常相近。上皮細胞若以dexamethasone或特定蛋白抑制劑包括SB203580 (抑制p38)、SP600125 (抑制JNK)、mepacrine (抑制cPLA2)與NS398 (抑制COX-2)前處理,則可逆轉CDCA刺激所導致之PGE2生成、TER降低與ZO-1衰減。

結論:肺泡上皮細胞通透性之增加與接合蛋白之衰減有關。膽酸可經由調控MAP激酶、cPLA2、COX-2、PGE2及接合蛋白而改變上皮細胞之通透性,這些變化可能為膽酸導致肺傷害之機制。
Background and objective: Increasing evidence has shown that bile acid (BA) aspiration is associated with various lung diseases. The reaction of alveolar epithelium exposed to BAs is unknown. We hypothesize that BAs may induce alveolar permeability alteration and contribute to the pathogenesis of lung injury.

Methods: Human alveolar epithelial cells were grown in monolayer and stimulated with a major component of BAs, chenodeoxycholic acid (CDCA). Transepithelial electrical resistance (TER) and paracellular fluxes were measured to assess permeability alteration. PGE2 production was measured, and its effect on TER and junctional proteins (JPs) was also examined. Reverse transcription-PCR and western blots were used to investigate the expression of mRNA and JPs.

Results: CDCA induced significant p38 and JNK phosphorylation, cPLA2 and COX-2 mRNA expression, PGE2 production, TER reduction, and decay of JPs (including occludin, zonula occludens-1 [ZO-1], and E-cadherin, in which ZO-1 had maximal change). CDCA also increased paracellular fluxes, which was abolished by dexamethasone. Both CDCA and PGE2 contributed to TER reduction in an identical trend and a dose-response manner. PGE2 also reduced ZO-1 expression, which was similar to that observed by CDCA stimulation. Pretreatment with inhibitors of p38
(SB203580), JNK (SP600125), cPLA2 (mepacrine) and COX-2 (NS398) as well as dexamethasone reversed the CDCA-induced PGE2 production, TER reduction and decay of ZO-1.

Conclusions: The increase in alveolar permeability was associated with decay of JPs.BAs may induce permeability alteration through the upregulation of MAPK, cPLA2, COX-2, PGE2 and JPs, which may contribute to the pathogenesis of BA-associated lung injury.
一、英文縮寫……………………………………………………………........1
二、中文摘要……………………………………………………………………….3
三、英文摘要……………………………………………………………………….6
四、緒論….…………………………………………………………………………9
五、方法……………………………………………………………………….. 12
六、結果………………………………………………………………...………20
七、討論………………………………………………………………...………25
八、參考文獻………………………………………………………….………..29
九、圖表………………………………………………………………...………35
十、補充資料…………………………………………………………...………50
十一、英文論文…………………………………………………...……....56

1 Hills BA, Chen Y, Masters IB et al. Raised bile acid concentrations in SIDS lungs at necropsy. Arch Dis Child.1997; 77: 120-3.
2 Sweet MP, Patti MG, Hoopes C et al. Gastro-oesophageal reflux and aspiration in patients with advanced lung disease. Thorax.2009; 64: 167-73.
3 Nagase T, Uozumi N, Ishii S et al. Acute lung injury by sepsis and acid aspiration: a key role for cytosolic phospholipase A2. Nat Immunol.2000; 1: 42-6.
4 Marik PE. Aspiration pneumonitis and aspiration pneumonia. N Engl J Med.2001; 344: 665-71.
5 Zecca E, Costa S, Lauriola V et al. Bile acid pneumonia: a "new" form of neonatal respiratory distress syndrome? Pediatrics.2004; 114: 269-72.
6 Perng DW, Chang KT, Su KC et al. Exposure of airway epithelium to bile acids associated with gastroesophageal reflux symptoms: a relation to transforming growth factor-beta1 production and fibroblast proliferation. Chest.2007; 132: 1548-56.
7 Wu YC, Hsu PK, Su KC et al. Bile acid aspiration in suspected ventilator-associated pneumonia. Chest.2009; 136: 118-24.
8 Perng DW, Wu YC, Tsai CC et al. Bile acids induce CCN2 production through p38 MAP kinase activation in human bronchial epithelial cells: a factor contributing to airway fibrosis. Respirology.2008; 13: 983-9.
9 Porembka DT, Kier A, Sehlhorst S et al. The pathophysiologic changes following bile aspiration in a porcine lung model. Chest.1993; 104: 919-24.
10 Matthay MA, Folkesson HG, Clerici C. Lung epithelial fluid transport and the resolution of pulmonary edema. Physiol Rev. 2002; 82: 569-600.
11 Matthay MA, Clerici C, Saumon G. Invited review: Active fluid clearance from the distal air spaces of the lung. J Appl Physiol.2002; 93: 1533-41.
12 Ware LB, Matthay MA. The acute respiratory distress syndrome. N Engl J Med.2000; 342: 1334-49.
13 Terao Y, Nakamura T, Morooka H et al. Effect of cyclooxygenase-2 inhibitor pretreatment on gas exchange after hydrochloric acid aspiration in rats. J Anesth.2005; 19: 257-9.
14 Perng DW, Wu YC, Tsai MC et al. Neutrophil elastase stimulates human airway epithelial cells to produce PGE2 through activation of p44/42 MAPK and upregulation of cyclooxygenase-2. Am J Physiol Lung Cell Mol Physiol. 2003; 285: L925-30.
15 Tilley SL, Coffman TM, Koller BH. Mixed messages: modulation of inflammation and immune responses by prostaglandins and thromboxanes. J Clin Invest.2001; 108: 15-23.
16 Vancheri C, Mastruzzo C, Sortino MA et al. The lung as a privileged site for the beneficial actions of PGE2. Trends Immunol.2004; 25: 40-6.
17 Montuschi P, Kharitonov SA, Ciabattoni G et al.Exhaled leukotrienes and prostaglandins in COPD. Thorax. 2003; 58: 585-8.
18 Tai HY, Tam MF, Chou H et al. Pen ch 13 allergen induces secretion of mediators and degradation of ccludin protein of human lung epithelial cells. Allergy.2006; 61: 382-8.
19 N'Guessan PD, Hippenstiel S, Etouem MO et al. Streptococcus pneumoniae induced p38 MAPK- and NF-kappaB-dependent COX-2 expression in human lung epithelium. Am J Physiol Lung Cell Mol Physiol. 2006; 290: L1131-8.
20 Tsukita S, Furuse M, Itoh M. Multifunctional strands in tight junctions. Nat Rev Mol Cell Biol.2001; 2: 285-93.
21 Van Itallie CM, Anderson JM. Claudins and epithelial paracellular transport. Annu Rev Physiol. 2006; 68: 403-29.
22 Cereijido M, Contreras RG, Shoshani L et al. Tight junction and polarity interaction in the transporting epithelial phenotype. Biochim Biophys Acta. 2008; 1778: 770-93.
23 Kypta R, Bernfield M, Burridge K et al. Cell Junctions, Cell Adhesion, and the Extracellular Matrix In: Alberts B, Johnson A, Lewis J, et al., (eds.) Molecular Biology of the Cell. Fourth edition ed. Garland Science, New York,2002; 1065-127.
24 Gumbiner B, Simons K. A functional assay for proteins involved in establishing an epithelial occluding barrier: identification of a uvomorulin-like polypeptide. J Cell Biol.1986; 102: 457-68.
25 Harhaj NS, Antonetti DA. Regulation of tight junctions and loss of barrier function in pathophysiology. Int J Biochem Cell Biol.2004; 36: 1206-37.
26 Fink MP, Delude RL. Epithelial barrier dysfunction: a unifying theme to explain the pathogenesis of multiple organ dysfunction at the cellular level. Crit Care Clin.2005; 21: 177-96.
27 Flores-Benitez D, Rincon-Heredia R, Razgado LF et al. Control of tight junctional sealing: roles of epidermal growth factor and prostaglandin E2. Am J Physiol Cell Physiol. 2009; 297: C611-20.
28 Tanaka MN, Diaz BL, de Souza W et al. Prostaglandin E2-EP1 and EP2 receptor signaling promotes apical junctional complex disassembly of Caco-2 human colorectal cancer cells. BMC Cell Biol. 2008; 9: 63.
29 Raimondi F, Santoro P, Barone MV et al. Bile acids modulate tight junction structure and barrier function of Caco-2 monolayers via EGFR activation. Am J Physiol Gastrointest Liver Physiol. 2008; 294: G906-13.
30 Han B, Mura M, Andrade CF et al. TNFalpha-induced long pentraxin PTX3 expression in human lung epithelial cells via JNK. J Immunol.2005; 175: 8303-11.
31 Perng DW, Wu YC, Chang KT et al. Leukotriene C4 induces TGF-beta1 production in airway epithelium via p38 kinase pathway. Am J Respir Cell Mol Biol.2006; 34: 101-7.
32 Zhang F, Altorki NK, Wu YC et al. Duodenal reflux induces cyclooxygenase-2 in the esophageal mucosa of rats: evidence for involvement of bile acids. Gastroenterology.2001; 121: 1391-9.
33 Borsch-Haubold AG. Regulation of cytosolic phospholipase A2 by phosphorylation. Biochem Soc Trans. 1998; 26: 350-4.
34 Piomelli D. Arachidonic acid in cell signaling. Curr Opin Cell Biol.1993; 5: 274-80.
35 Lin LL, Wartmann M, Lin AY et al. cPLA2 is phosphorylated and activated by MAP kinase. Cell. 1993; 72: 269-78.
36 Letsiou E, Kitsiouli E, Nakos G et al. Mild stretch activates cPLA2 in alveolar type II epithelial cells independently through the MEK/ERK and PI3K pathways. Biochim Biophys Acta. 2011; 1811: 370-6.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top