(3.230.143.40) 您好!臺灣時間:2021/04/19 05:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳柏宇
研究生(外文):Po-Yu Chen
論文名稱:動態摺紙系統應用於多面體重構
論文名稱(外文):A Virtual Paper Folding Environment for Polyhedral Reconstruction
指導教授:黃永廣黃永廣引用關係
指導教授(外文):Wing-Kwong Wong
學位類別:博士
校院名稱:國立雲林科技大學
系所名稱:工程科技研究所博士班
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:94
中文關鍵詞:多面體建構多邊形摺成多面體摺面順序計算式摺紙3D摺紙
外文關鍵詞:polyhedra reconstructionpolygon foldabilitycomputational origami3D paper foldingface folding sequence
相關次數:
  • 被引用被引用:2
  • 點閱點閱:309
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
此研究包含了兩個不同的主題。第一,借由摺紙的方式建構多面體,這個主題延伸出許多值得研究的子問題,如何讓這些子問題能無縫的運作是很重要的,因此我們設計一個演算法,結合摺紙的技巧來有效率的建立多面體。第二,如何設計一套虛擬摺紙的軟體。許多現有的摺紙軟體都以2D的方式呈現,我們基於摺紙數學及計算摺紙的概念設計了一套虛擬的摺紙系統。在呈現摺紙的過程上,我們使用3D的環境,以動畫的方式讓使用者去了解摺紙如何運作,而數學的部分透過電腦代數系統來實現。電腦代數不只處理代數在摺紙定則上的幾何運算,更提供了數學代數證明能力,計算摺紙則專注在摺紙效能及過程的最佳化。這兩個概念把摺紙從平面的層次提升到立體的層次。
This study deals with two major problems. The first is that of polyhedra reconstruction, which can be divided into several sub-problems, ranging from crease generation to sequential face foldings, and each sub-problem involves various geometric issues. An algorithm is proposed to solve the problem ofsequential face folding that results in the reconstruction of a polyhedron. The second major problem is how to design a computational 3D origami environment. In this study, a 3D environment based on computer algebra system (CAS) is implemented. Users can calculate the folding parameters with CAS and observe the folding actions through 3D animation. Furthermore, CAS not only deals with fundamental computation of origami axioms but also can prove some geometric consequences of an origami construction.
中文摘要 i
ABSTRACT ii
Contents iii
List of Tables v
List of Figures vi
List of Appendixes x
1 Introduction 1
1.1. History of Paper Folding 1
1.2. History of Polyhedra 1
1.3. Paper Folding and Polyhedron 3
1.4. The Practice of Origami and Polyhedra 4
1.5 What We Done in this Research 5
2. Background 7
2.1. Traditional Origami 7
2.1.1. Origami Techniques 7
2.2. Origami Science 9
2.2.1. Origami Mathematics 10
2.2.2. Computational Origami 10
2.2.3. Origami Technology 11
2.3. Computer Programs of Origami 11
2.4. Classes of Polyhedra 14
2.5. Computer Programs of Polyhedra Construction 15
3. Axioms of Paper Folding and Relative Theorem 18
3.1. Euclidean Axiom Set for Geometry 18
3.2. Huzita-Hatori Axioms 18
3.3. Some Theorems Discovered with Paper Folding 20
4. Polyhedron Construction 25
4.1. Curvature and Gauss-Bonnet Theorem 25
4.1. Net of a Polyhedron 26
4.2. Cauchy''s Rigidity Theorem 26
4.3. Alexandrov''s Theorem 27
4.4. The Relationship between Cauchy Rigidity Theorem and Alexandrov Theorem 28
5. Method for Polyhedron Reconstruction with Paper Folding 29
5.1. The Creation of a Flattened Polygon 29
5.2. Generation of the Creases of a Foldable Polygon 30
5.2.1. Edge-to-Edge Gluings 30
5.2.2. Gluing Tree 34
5.2.3. Non-Edge-To-Edge Gluings 35
5.2.4. Comparison of Gluing Algorithms 37
5.3. Fold a Polyhedron from a Creased Polygon 38
5.3.2. Picking a vertex to glue 40
5.3.3. Computing the folding angles of two faces for gluing 43
5.4. An Algorithm on Polyhedron Reconstruction 47
6. System Design and Architecture 50
6.1. Computer Algebra System 51
6.1.1. Using CAS for Origami 51
6.1.2. Origami and Geometric Constructions on CAS 54
6.2. Origami Predicates 59
6.3. Demonstration of Paper Folding 59
6.3.1. Paper Airplane 59
6.3.2. Theorem Proving withh Folding Operations 61
6.4. Demonstration of Polyhedra Reconstruction. 64
7. Conclusion and Future Work 69
8 Appendix 71
Reference 88
1.Overview of OpenMath. 2001; Available from: http://www.openmath.org/overview/index.html.
2.Abe, T. 1984: British Origami. p. 9.
3.Alexandrov, A.D., Convex Polyhedra. Springer Monographs in Mathematics. 2005: Springer Berlin Heidelberg.
4.Buchberger, B. and T. Ida, Origami Theorem Proving. 2003, SFB Scientific Computing Technical Report 2003-23-Oct, Johannes Kepler University RISC.
5.Coxeter, H.S.M., Regular Polytopes. 1973.
6.Coxeter, H.S.M., Regular and semiregular polyhedra. Shaping Space: A Polyhedral Approach, ed. M. Senechal and G. Fleck. 1988, Boston: Birkhauser.
7.Cromwell, P.R., Polyhedra. 1999: Cambridge University.
8.Demaine, E. Recent Results in Computational Origami. in Proceedings of the 3rd International Meeting of Origami Science, Math, and Education. 2001. Monterey, California.
9.Demaine, E., et al. The 85 Foldings of the Latin Cross. Available from: http://erikdemaine.org/aleksandrov/cross/photos.html.
10.Demaine, E. and J. O''Rourke, Geometric Folding Algorithms. Linkages, Origami, Polyhedra. 2007: Cambridge University Press.
11.Demaine, E.D., et al., Vertex-unfoldings of simplicial manifolds, in Proceedings of the eighteenth annual symposium on Computational geometry. 2002, ACM: Barcelona, Spain. p. 237-243.
12.Eisenberg, M. and A. Nishioka, Creating Polyhedral Models by Computer. 1997.
13.Fastag, J., eGami: Virtual Paperfolding and Diagramming Software. 2009.
14.Fujimoto, S. and M. Nishiwaki, Sojo Suru Origami Asobi Eno Shotai. 1982: Asahi Culture Centre.
15.Fusimi, K., Trisection of angle by Abe. 1980: Saiensu. 8.
16.Geretschlager, R., Euclidean Constructions and the Geometry of Origami. Mathematics Magazine, 1995. 68(5): p. 357-371.
17.Ghourabi, F., et al., Logical and algebraic view of Huzita''s origami axioms with applications to computational origami, in Proceedings of the 2007 ACM symposium on Applied computing. 2007, ACM: Seoul, Korea. p. 767-772.
18.Graebe, H.-G. The GeoProver Package for Mechanized (Plane) Geometry Theorem Proving. 2002; Available from: http://www.reduce-algebra.com/docs/geoprover.html.
19.Gurkewitz, R. and B. Arnstein, 3-D Geometric Origami-Modular Polyhedra. 1994, New York: DOVER PUBLICATION, INC.
20.Haga, K. Kazuo Haga''s first theorem. 1994; Available from: http://www.northwestmathconf.org/NWMC2007/NotesHaroldJacobs/Hagas_First_Theorem.pdf.
21.Hatori, K. 2003; Available from: http://www.jade.dti.ne.jp/~hatori/library/conste.html.
22.Hatori, K. K''s Origami: Origami Constructions. 2006; Available from: http://origami.ousaan.com/library/conste.html.
23.Hull, T. Origami and Geometric Constructions. 1997; Available from: http://web.merrimack.edu/~thull/geoconst.html.
24.Huzita, H., Axiomatic Development of Origami Geometry, in Proceedings of the First International Meeting of Origami Science and Technology, H. Huzita, Editor. 1989. p. 143-158.
25.Ida, T. Computational Origami System Eos. in Proceedings of 4th International Conference on Origami, Science, Mathematics and Education (4OSME). 2006: Tetsuo Ida, Hidekazu Takahashi, Mircea Marin, Asem Kasem, Fadoua Ghourabi.
26.Lang, R.J. Science, Mathematics, and Technology. Available from: http://www.langorigami.com/science/science.php.
27.Lang, R.J., A computational algorithm for origami design, in Proceedings of the twelfth annual symposium on Computational geometry. 1996, ACM: Philadelphia, Pennsylvania, United States. p. 98-105.
28.Lang, R.J., Origami and Geometric Constructions. 2003.
29.Ligno3D. Available from: http://www.ligno3d.com/HTMLhelp/index.html.
30.Lubiw, A. and J. O''Rourke, When can a polygon fold to a polytope?, in AMS Conference. 1996: Lawrenceville, NJ.
31.Lucier, B., Unfolding and Reconstructing Polyhedra, in Mathematics in Computer Science. 2006, Waterloo: Ontario.
32.Malkevitch, J., Cycle lengths in polytopal graphs
Theory and Applications of Graphs, Y. Alavi and D. Lick, Editors. 1978, Springer Berlin / Heidelberg. p. 364-370.
33.Malkevitch, J., Milestones in the history of polyhedra, in Shaping Space: A Polyhedral Approach. 1988.
34.Marinoni, A., The Unknown Leonardo. 1990 ed. The writer: Leonardo''s literary legacy. 1974, New York: L. Reti.
35.Noma, M., Origami Tanteidan Newsletter.
36.O''Rourke, J., Folding and unfolding in computational geometry. Lecture Notes in Computer Science, 2000: p. 258-266.
37.O''Rourke, J., Folding and Unfolding in Computational Geometry, in Revised Papers from the Japanese Conference on Discrete and Computational Geometry. 2000, Springer-Verlag. p. 258-266.
38.O''Rourke, J., Unfolding orthogonal polyhedra. American Mathematical Society, 2008. 453: p. 307-317.
39.Pak, I., Lectures on Discrete and Polyhedral Geometry. 2010.
40.Rothemund, P.W.K., Folding DNA to create nanoscale shapes and patterns. Nature, 2006. 440(7082): p. 297-302.
41.Rotskoff, G. (2010) THE GAUSS-BONNET THEOREM.
42.Senechal, M. and G. Fleck, Shaping Space: A Polyhedral Approach. A Visit to the Polyhedron Kingdom., ed. M. Senechal and G. Fleck. 1988, Boston: Birkhauser.
43.Shephard, G.C., Convex polytopes with convex nets. Mathematical Proceedings of the Cambridge Philosophical Society, 1975. 78(03): p. 389-403.
44.Takashi, T. Method for Representing 3-D Virtual Origami. 2005.
45.Webb, R. Stella: Polyhedron Navigator. 2001; Available from: http://www.software3d.com/Stella.php.
46.wiki. Types of origami. Available from: http://en.wikipedia.org/wiki/Origami.
47.Wong, W.K., P.Y. Chen, and S.K. Yin, A Virtual Computational Paper Folding Environment Based on a Computer Algebra System. Journal of Computers, 2012. 23(2).
48.Wong, W.K., P.Y. Chen, and S.K. Yin, Polyhedron Reconstruction based on Paper Folding. International Journal of Digital Content Technology and its Applications, 2013. 7(4): p. 934.
49.Wong, W.K., et al., A Computer-assisted Environment for Understanding Geometry Theorem Proving Problems and Making Conjectures. Int. J. Intelligent Information and Database Systems (IJIIDS), 2009. 3(3): p. 231.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔