|
1.Overview of OpenMath. 2001; Available from: http://www.openmath.org/overview/index.html. 2.Abe, T. 1984: British Origami. p. 9. 3.Alexandrov, A.D., Convex Polyhedra. Springer Monographs in Mathematics. 2005: Springer Berlin Heidelberg. 4.Buchberger, B. and T. Ida, Origami Theorem Proving. 2003, SFB Scientific Computing Technical Report 2003-23-Oct, Johannes Kepler University RISC. 5.Coxeter, H.S.M., Regular Polytopes. 1973. 6.Coxeter, H.S.M., Regular and semiregular polyhedra. Shaping Space: A Polyhedral Approach, ed. M. Senechal and G. Fleck. 1988, Boston: Birkhauser. 7.Cromwell, P.R., Polyhedra. 1999: Cambridge University. 8.Demaine, E. Recent Results in Computational Origami. in Proceedings of the 3rd International Meeting of Origami Science, Math, and Education. 2001. Monterey, California. 9.Demaine, E., et al. The 85 Foldings of the Latin Cross. Available from: http://erikdemaine.org/aleksandrov/cross/photos.html. 10.Demaine, E. and J. O''Rourke, Geometric Folding Algorithms. Linkages, Origami, Polyhedra. 2007: Cambridge University Press. 11.Demaine, E.D., et al., Vertex-unfoldings of simplicial manifolds, in Proceedings of the eighteenth annual symposium on Computational geometry. 2002, ACM: Barcelona, Spain. p. 237-243. 12.Eisenberg, M. and A. Nishioka, Creating Polyhedral Models by Computer. 1997. 13.Fastag, J., eGami: Virtual Paperfolding and Diagramming Software. 2009. 14.Fujimoto, S. and M. Nishiwaki, Sojo Suru Origami Asobi Eno Shotai. 1982: Asahi Culture Centre. 15.Fusimi, K., Trisection of angle by Abe. 1980: Saiensu. 8. 16.Geretschlager, R., Euclidean Constructions and the Geometry of Origami. Mathematics Magazine, 1995. 68(5): p. 357-371. 17.Ghourabi, F., et al., Logical and algebraic view of Huzita''s origami axioms with applications to computational origami, in Proceedings of the 2007 ACM symposium on Applied computing. 2007, ACM: Seoul, Korea. p. 767-772. 18.Graebe, H.-G. The GeoProver Package for Mechanized (Plane) Geometry Theorem Proving. 2002; Available from: http://www.reduce-algebra.com/docs/geoprover.html. 19.Gurkewitz, R. and B. Arnstein, 3-D Geometric Origami-Modular Polyhedra. 1994, New York: DOVER PUBLICATION, INC. 20.Haga, K. Kazuo Haga''s first theorem. 1994; Available from: http://www.northwestmathconf.org/NWMC2007/NotesHaroldJacobs/Hagas_First_Theorem.pdf. 21.Hatori, K. 2003; Available from: http://www.jade.dti.ne.jp/~hatori/library/conste.html. 22.Hatori, K. K''s Origami: Origami Constructions. 2006; Available from: http://origami.ousaan.com/library/conste.html. 23.Hull, T. Origami and Geometric Constructions. 1997; Available from: http://web.merrimack.edu/~thull/geoconst.html. 24.Huzita, H., Axiomatic Development of Origami Geometry, in Proceedings of the First International Meeting of Origami Science and Technology, H. Huzita, Editor. 1989. p. 143-158. 25.Ida, T. Computational Origami System Eos. in Proceedings of 4th International Conference on Origami, Science, Mathematics and Education (4OSME). 2006: Tetsuo Ida, Hidekazu Takahashi, Mircea Marin, Asem Kasem, Fadoua Ghourabi. 26.Lang, R.J. Science, Mathematics, and Technology. Available from: http://www.langorigami.com/science/science.php. 27.Lang, R.J., A computational algorithm for origami design, in Proceedings of the twelfth annual symposium on Computational geometry. 1996, ACM: Philadelphia, Pennsylvania, United States. p. 98-105. 28.Lang, R.J., Origami and Geometric Constructions. 2003. 29.Ligno3D. Available from: http://www.ligno3d.com/HTMLhelp/index.html. 30.Lubiw, A. and J. O''Rourke, When can a polygon fold to a polytope?, in AMS Conference. 1996: Lawrenceville, NJ. 31.Lucier, B., Unfolding and Reconstructing Polyhedra, in Mathematics in Computer Science. 2006, Waterloo: Ontario. 32.Malkevitch, J., Cycle lengths in polytopal graphs Theory and Applications of Graphs, Y. Alavi and D. Lick, Editors. 1978, Springer Berlin / Heidelberg. p. 364-370. 33.Malkevitch, J., Milestones in the history of polyhedra, in Shaping Space: A Polyhedral Approach. 1988. 34.Marinoni, A., The Unknown Leonardo. 1990 ed. The writer: Leonardo''s literary legacy. 1974, New York: L. Reti. 35.Noma, M., Origami Tanteidan Newsletter. 36.O''Rourke, J., Folding and unfolding in computational geometry. Lecture Notes in Computer Science, 2000: p. 258-266. 37.O''Rourke, J., Folding and Unfolding in Computational Geometry, in Revised Papers from the Japanese Conference on Discrete and Computational Geometry. 2000, Springer-Verlag. p. 258-266. 38.O''Rourke, J., Unfolding orthogonal polyhedra. American Mathematical Society, 2008. 453: p. 307-317. 39.Pak, I., Lectures on Discrete and Polyhedral Geometry. 2010. 40.Rothemund, P.W.K., Folding DNA to create nanoscale shapes and patterns. Nature, 2006. 440(7082): p. 297-302. 41.Rotskoff, G. (2010) THE GAUSS-BONNET THEOREM. 42.Senechal, M. and G. Fleck, Shaping Space: A Polyhedral Approach. A Visit to the Polyhedron Kingdom., ed. M. Senechal and G. Fleck. 1988, Boston: Birkhauser. 43.Shephard, G.C., Convex polytopes with convex nets. Mathematical Proceedings of the Cambridge Philosophical Society, 1975. 78(03): p. 389-403. 44.Takashi, T. Method for Representing 3-D Virtual Origami. 2005. 45.Webb, R. Stella: Polyhedron Navigator. 2001; Available from: http://www.software3d.com/Stella.php. 46.wiki. Types of origami. Available from: http://en.wikipedia.org/wiki/Origami. 47.Wong, W.K., P.Y. Chen, and S.K. Yin, A Virtual Computational Paper Folding Environment Based on a Computer Algebra System. Journal of Computers, 2012. 23(2). 48.Wong, W.K., P.Y. Chen, and S.K. Yin, Polyhedron Reconstruction based on Paper Folding. International Journal of Digital Content Technology and its Applications, 2013. 7(4): p. 934. 49.Wong, W.K., et al., A Computer-assisted Environment for Understanding Geometry Theorem Proving Problems and Making Conjectures. Int. J. Intelligent Information and Database Systems (IJIIDS), 2009. 3(3): p. 231.
|