跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/22 19:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊宗穎
研究生(外文):Tsung-Ying Yang
論文名稱:利用鎳摻雜氧化鋅奈米柱製作紫外光感測器
論文名稱(外文):Utilizing Ni-doped ZnO nanorods as an UV detector
指導教授:黃建盛黃建盛引用關係
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電子與光電工程研究所碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:115
中文關鍵詞:鎳摻雜水熱法紫外光奈米柱氧化鋅感測器
外文關鍵詞:photodetectorultravioletZnOHydrothermalNi-dopednanorods
相關次數:
  • 被引用被引用:0
  • 點閱點閱:415
  • 評分評分:
  • 下載下載:95
  • 收藏至我的研究室書目清單書目收藏:0
氧化鋅的製作成本較低且有良好的光電特性,被廣泛的應用於發光元件及感測器方面。氧化鋅具有較大的激子束縛能且高品質的單晶氧化鋅製作較容易,未來能夠應用於綠光、藍紫外光、白光發光二極體方面,具有很大的潛力能取代氮化鎵,氧化鋅摻雜過度元素而改變其光電特性,也被廣泛的討論及應用。
本研究主要目的在於驗證鎳摻雜氧化鋅奈米柱應用於紫外光感測器是否能改善感測特性。實驗中採用低成本的水熱法成功於玻璃基板成長鎳摻雜氧化鋅奈米柱,藉由成長溫度的控制來調整奈米柱的品質與改善缺陷。由XRD分析得知成長溫度為80℃的鎳摻雜奈米柱具有高度的(002)方向成長。由PL分析亦得知80℃所成長的鎳摻雜奈米柱具有良好的紫外光特性,並且得知內部缺陷較少。由此條件所成長的紫外光感測器具有相當良好的visible-blind並且偵測到紫外光時反應非常大,重複性很高。在不同濕度的環境對此感測器進行實驗,仍然具有良好的反應,且反應速度隨著溼度的提高而增快。氧化鋅應用於元件表現穩定,在紫外光感測器方面具有很高的潛力。
The opto-electric applications of ZnO overlap with GaN, which is extensively used of light-emitting devices. Some advantages of ZnO are better than GaN such as large exciton binding energy and obtain high-quality ZnO single crystals easily. Great potential of ZnO-based devices due to its characteristics, low cost and obtained easily. It is believed that ZnO is a great candidate for the production of green, blue ultraviolet and white light-emission diodes.
The purpose of this study was to determine if the use of Ni-doped ZnO nanorods would improve the performance of photodetector. In this investigation, Ni-doped ZnO nanorods were successfully grown on glass substrates by the hydrothermal method at various temperatures using a ZnO thin film as a seed layer, and a Ni-ZnO nanorods photodetector was fabricated. The crystal of the highest quality was utilized to construct a photodetector device. The device showed the visible blind in the response and good stability properties in UV illumination. Utilizing Ni-doped ZnO nanorods is this device as an UV detector has been a great potential application.
CHINESE ABSTRACT--------------------------------------------------------------------------- i
ENGLISH ABSTRACT-------------------------------------------------------------------------- ii
ACKNOWLEDGEMENT---------------------------------------------------------------------- iii
CONTENT----------------------------------------------------------------------------------------- iv
TABLE CAPTION------------------------------------------------------------------------------- vii
FIGURE CAPTION------------------------------------------------------------------------------ ix
1. INTRODUCTION------------------------------------------------------------------------------ 1
1.1 History of ZnO------------------------------------------------------------------------------ 1
1.2 Research motivation----------------------------------------------------------------------- 2
2. LITERATURE REVIEW---------------------------------------------------------------------- 4
2.1 ZnO characteristics------------------------------------------------------------------------- 4
2.1.1 Crystal structures---------------------------------------------------------------------- 4
2.1.2 Lattice parameters--------------------------------------------------------------------- 6
2.1.3 Electric band gap---------------------------------------------------------------------- 8
2.1.4 Physical characteristics------------------------------------------------------------- 10
2.1.5 Optical characteristics--------------------------------------------------------------- 11
2.1.6 ZnO nanostructures------------------------------------------------------------------12
2.2 Ferromagnetic properties---------------------------------------------------------------- 14
2.2.1 Curie temperature predicted-------------------------------------------------------- 14
2.2.2 Ferromagnetic mechanism--------------------------------------------------------- 16
2.2.2.1 Double exchange--------------------------------------------------------------- 16
2.2.2.2 Bound magnetic polarons----------------------------------------------------- 18
2.2.3 Ferromagnetic research------------------------------------------------------------- 20
2.3 ZnO synthesis methods------------------------------------------------------------------ 23
2.3.1 Physical vapor deposition---------------------------------------------------------- 23
2.3.1.1 Thermal evaporation----------------------------------------------------------- 23
2.3.1.2 Sputtering------------------------------------------------------------------------ 25
2.3.2 CVD----------------------------------------------------------------------------------- 28
2.3.2.1 Thermal chemical vapor deposition------------------------------------------ 28
2.3.2.2 Plasma enhanced chemical vapor deposition------------------------------- 29
2.3.3 Hydrothermal method--------------------------------------------------------------- 30
2.4 ZnO applications-------------------------------------------------------------------------- 31
2.4.1 Photo detector------------------------------------------------------------------------ 31
2.4.2 Gas sensor---------------------------------------------------------------------------- 34
2.4.3 Light emitting------------------------------------------------------------------------ 38
3. EXPERIMENTAL METHODS------------------------------------------------------------- 41
3.1 Experimental methods-------------------------------------------------------------------- 41
3.1.1 Glass substrate pre-cleaned--------------------------------------------------------- 42
3.1.2 ZnO thin-film deposited------------------------------------------------------------ 43
3.1.3 ZnO seed layer annealed------------------------------------------------------------ 46
3.1.4 Hydrothermal method synthesized------------------------------------------------ 47
3.2 Experimental machine introduced------------------------------------------------------ 49
3.2.1 Field-emission scanning electron microscope--------------------------------- 49
3.2.2 High-resolution transmission electron microscope----------------------------- 50
3.2.3 X-ray diffractometer---------------------------------------------------------------- 50
3.2.4 Photoluminescence------------------------------------------------------------------ 50
3.2.5 Alternating gradient force magnetometer---------------------------------------- 51
4. RESULTS AND DISCUSSIONS ---------------------------------------------------------- 52
4.1 The influence of nanostructure grown at various temperatures--------------------- 52
4.1.1 The analysis of nanostructure by FESEM---------------------------------------- 52
4.1.2 The analysis of nanostructure by transmittance--------------------------------- 54
4.1.3 The analysis of nanostructure by XRD------------------------------------------- 56
4.1.4 The analysis of nanostructure by Raman spectrum----------------------------- 60
4.1.5 The analysis of nanostructure by Photoluminescence-------------------------- 67
4.1.6 The analysis of nanostructure by magnetic hysteresis loops------------------- 71
4.1.7 The analysis of nanostructure by TEM------------------------------------------- 74
4.2 Using Ni-doped ZnO nanorods fabricated UV detector device--------------------- 78
4.3 The properties of photodetector--------------------------------------------------------- 81
4.4 CONCLUSIONS-------------------------------------------------------------------------- 93
5. FUTURE WORKS---------------------------------------------------------------------------- 94
REFERENCES----------------------------------------------------------------------------------- 95
PUBLICATION LIST-------------------------------------------------------------------------- 114
[1]T. J. Gray, "Sintering of Zinc Oxide," Journal of the American Ceramic Society, vol. 37, pp. 534-538, 1954.
[2]R. B. Heller, J. McGannon, and A. H. Weber, "Precision Determination of the Lattice Constants of Zinc Oxide," Journal of Applied Physics, vol. 21, pp. 1283-1284, 12/00/ 1950.
[3]R. R. Reeber, "Lattice parameters of ZnO from 4.2[degree] to 296[degree]K," Journal of Applied Physics, vol. 41, pp. 5063-5066, 1970.
[4]R. L. Weiher, "Optical Properties of Free Electrons in ZnO," Physical Review, vol. 152, pp. 736-739, 12/09/ 1966.
[5]W. Y. Liang and A. D. Yoffe, "Transmission Spectra of ZnO Single Crystals," Physical Review Letters, vol. 20, pp. 59-62, 01/08/ 1968.
[6]C. A. Arguello, D. L. Rousseau, and S. P. S. Porto, "First-Order Raman Effect in Wurtzite-Type Crystals," Physical Review, vol. 181, pp. 1351-1363, 05/15/ 1969.
[7]J. M. Calleja and M. Cardona, "Resonant Raman scattering in ZnO," Physical Review B, vol. 16, pp. 3753-3761, 10/15/ 1977.
[8]J. Grabowska, A. Meaney, K. Nanda, J. P. Mosnier, M. Henry, J. R. Ducl&;egrave;re, et al., "Surface excitonic emission and quenching effects in ZnO nanowire/nanowall systems: Limiting effects on device potential," Physical Review B, vol. 71, 2005.
[9]K. Seo, T. Lim, S. Kim, H. L. Park, and S. Ju, "Tunable-white-light-emitting nanowire sources," Nanotechnology, vol. 21, Jun 2010.
[10]U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, et al., "A comprehensive review of ZnO materials and devices," Journal of Applied Physics, vol. 98, Aug 15 2005.
[11]Z. W. Pan, Z. R. Dai, and Z. L. Wang, "Nanobelts of semiconducting oxides," Science, vol. 291, pp. 1947-1949, Mar 2001.
[12]C. S. Lao, M. C. Park, Q. Kuang, Y. L. Deng, A. K. Sood, D. L. Polla, et al., "Giant enhancement in UV response of ZnO nanobelts by polymer surface-functionalization," Journal of the American Chemical Society, vol. 129, pp. 12096-+, Oct 2007.
[13]C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, et al., "ZnO nanowire UV photodetectors with high internal gain," Nano Letters, vol. 7, pp. 1003-1009, Apr 2007.
[14]C. H. Ye, Y. Bando, X. S. Fang, G. Z. Shen, and D. Golberg, "Enhanced field emission performance of ZnO nanorods by two alternative approaches," Journal of Physical Chemistry C, vol. 111, pp. 12673-12676, Aug 2007.
[15]Y. Peng and L. Bao, "Controlled-synthesis of ZnO nanorings," Chemical Journal of Chinese Universities-Chinese, vol. 29, pp. 28-32, Jan 2008.
[16]R. Elilarassi and G. Chandrasekaran, "Synthesis, structural and optical characterization of Ni-doped ZnO nanoparticles," Journal of Materials Science-Materials in Electronics, vol. 22, pp. 751-756, Jul 2011.
[17]W. Bai, K. Yu, Q. Zhang, F. Xu, D. Peng, and Z. Zhu, "Large-scale synthesis of ZnO flower-like and brush pen-like nanostructures by a hydrothermal decomposition route," Materials Letters, vol. 61, pp. 3469-3472, 2007.
[18]F. C. Huang, Y. Y. Chen, and T. T. Wu, "A room temperature surface acoustic wave hydrogen sensor with Pt coated ZnO nanorods," Nanotechnology, vol. 20, Feb 2009.
[19]J. Suehiro, N. Nakagawa, S. Hidaka, M. Ueda, K. Imasaka, M. Higashihata, et al., "Dielectrophoretic fabrication and characterization of a ZnO nanowire-based UV photosensor," Nanotechnology, vol. 17, pp. 2567-2573, May 2006.
[20]P. Ravirajan, A. M. Peiro, M. K. Nazeeruddin, M. Graetzel, D. D. C. Bradley, J. R. Durrant, et al., "Hybrid polymer/zinc oxide photovoltaic devices with vertically oriented ZnO nanorods and an amphiphilic molecular interface layer," Journal of Physical Chemistry B, vol. 110, pp. 7635-7639, Apr 2006.
[21]J. X. Wang, X. W. Sun, Y. Yang, H. Huang, Y. C. Lee, O. K. Tan, et al., "Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications," Nanotechnology, vol. 17, pp. 4995-4998, 2006.
[22]H. J. Kim, C. H. Lee, D. W. Kim, and G. C. Yi, "Fabrication and electrical characteristics of dual-gate ZnO nanorod metal-oxide semiconductor field-effect transistors," Nanotechnology, vol. 17, pp. S327-S331, Jun 14 2006.
[23]X. W. Sun, J. Z. Huang, J. X. Wang, and Z. Xu, "A ZnO nanorod inorganic/organic heterostructure light-emitting diode emitting at 342 nm," Nano Letters, vol. 8, pp. 1219-1223, Apr 2008.
[24]K. H. Tam, C. K. Cheung, Y. H. Leung, A. B. Djurisic, C. C. Ling, C. D. Beling, et al., "Defects in ZnO nanorods prepared by a hydrothermal method," Journal of Physical Chemistry B, vol. 110, pp. 20865-20871, Oct 2006.
[25]Y. Sun, G. M. Fuge, and M. N. R. Ashfold, "Growth of aligned ZnO nanorod arrays by catalyst-free pulsed laser deposition methods," Chemical Physics Letters, vol. 396, pp. 21-26, 2004.
[26]C. H. Ye, X. S. Fang, Y. F. Hao, X. M. Teng, and L. D. Zhang, "Zinc oxide nanostructures: Morphology derivation and evolution," Journal of Physical Chemistry B, vol. 109, pp. 19758-19765, Oct 27 2005.
[27]H. J. Fan, W. Lee, R. Scholz, A. Dadgar, A. Krost, K. Nielsch, et al., "Arrays of vertically aligned and hexagonally arranged ZnO nanowires: a new template-directed approach," Nanotechnology, vol. 16, pp. 913-917, Jun 2005.
[28]B. Weintraub, Y. L. Deng, and Z. L. Wang, "Position-controlled seedless growth of ZnO nanorod arrays on a polymer substrate via wet chemical synthesis," Journal of Physical Chemistry C, vol. 111, pp. 10162-10165, Jul 19 2007.
[29]M. Purica, E. Budianu, E. Rusu, M. Danila, and R. Gavrila, "Optical and structural investigation of ZnO thin films prepared by chemical vapor deposition (CVD)," Thin Solid Films, vol. 403, pp. 485-488, Feb 2002.
[30]H. Zang, Z. G. Wang, L. L. Pang, K. F. Wei, C. F. Yao, T. L. Shen, et al., "Raman investigation of ion-implanted ZnO films," Acta Physica Sinica, vol. 59, pp. 4831-4836, Jul 2010.
[31]Y. Y. Villanueva, D. R. Liu, and P. T. Cheng, "Pulsed laser deposition of zinc oxide," Thin Solid Films, vol. 501, pp. 366-369, Apr 2006.
[32]H. J. Son, K. A. Jeon, C. E. Kim, J. H. Kim, K. H. Yoo, and S. Y. Lee, "Synthesis of ZnO nanowires by pulsed laser deposition in furnace," Applied Surface Science, vol. 253, pp. 7848-7850, Jul 2007.
[33]I. Djerdj, G. Garnweitner, D. Arcon, M. Pregelj, Z. Jaglicic, and M. Niederberger, "Diluted magnetic semiconductors: Mn/Co-doped ZnO nanorods as case study," Journal of Materials Chemistry, vol. 18, pp. 5208-5217, 2008.
[34]J. J. Wu, S. C. Liu, and M. H. Yang, "Room-temperature ferromagnetism in well-aligned Zn(1-x)Co(x)O nanorods," Applied Physics Letters, vol. 85, pp. 1027-1029, Aug 2004.
[35]J. J. Chen, M. H. Yu, W. L. Zhou, K. Sun, and L. M. Wang, "Room-temperature ferromagnetic Co-doped ZnO nanoneedle array prepared by pulsed laser deposition," Applied Physics Letters, vol. 87, p. 173119, 2005.
[36]T. Wakano, N. Fujimura, Y. Morinaga, N. Abe, A. Ashida, and T. Ito, "Magnetic and magneto-transport properties of ZnO : Ni films," Physica E, vol. 10, pp. 260-264, May 2001.
[37]C. H. Bates, W. B. White, and R. Roy, "New High-Pressure Polymorph of Zinc Oxide," Science, vol. 137, p. 993, 1962.
[38]S. K. Kim, S. Y. Jeong, and C. R. Cho, "Structural reconstruction of hexagonal to cubic ZnO films on Pt/Ti/SiO2/Si substrate by annealing," Applied Physics Letters, vol. 82, pp. 562-564, Jan 2003.
[39]Y. Ding, Z. L. Wang, T. J. Sun, and J. S. Qiu, "Zinc-blende ZnO and its role in nucleating wurtzite tetrapods and twinned nanowires," Applied Physics Letters, vol. 90, Apr 2007.
[40]J. E. Jaffe, J. A. Snyder, Z. Lin, and A. C. Hess, "LDA and GGA calculations for high-pressure phase transitions in ZnO and MgO," Physical Review B, vol. 62, pp. 1660-1665, 07/15/ 2000.
[41]L. Guo, Y. L. Ji, H. B. Xu, P. Simon, and Z. Y. Wu, "Regularly shaped, single-crystalline ZnO nanorods with wurtzite structure," Journal of the American Chemical Society, vol. 124, pp. 14864-14865, Dec 2002.
[42]V. A. Coleman and C. Jagadish, "Chapter 1 - Basic Properties and Applications of ZnO," in Zinc Oxide Bulk, Thin Films and Nanostructures, J. Chennupati and P. Stephen, Eds., ed Oxford: Elsevier Science Ltd, 2006, pp. 1-20.
[43]A. Schleife, F. Fuchs, J. Furthmuller, and F. Bechstedt, "First-principles study of ground- and excited-state properties of MgO, ZnO, and CdO polymorphs," Physical Review B, vol. 73, Jun 2006.
[44]F. Decremps, F. Datchi, A. M. Saitta, A. Polian, S. Pascarelli, A. Di Cicco, et al., "Local structure of condensed zinc oxide," Physical Review B, vol. 68, Sep 1 2003.
[45]H. Karzel, W. Potzel, M. Kofferlein, W. Schiessl, M. Steiner, U. Hiller, et al., "Lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressures," Physical Review B, vol. 53, pp. 11425-11438, May 1 1996.
[46]J. Serrano, A. H. Romero, F. J. Manjon, R. Lauck, M. Cardona, and A. Rubio, "Pressure dependence of the lattice dynamics of ZnO: An ab initio approach," Physical Review B, vol. 69, Mar 2004.
[47]S. Limpijumnong and S. Jungthawan, "First-principles study of the wurtzite-to-rocksalt homogeneous transformation in ZnO: A case of a low-transformation barrier," Physical Review B, vol. 70, Aug 2004.
[48]J. M. Recio, M. A. Blanco, V. Luana, R. Pandey, L. Gerward, and J. S. Olsen, "Compressibility of the high-pressure rocksalt phase of ZnO," Physical Review B, vol. 58, pp. 8949-8954, Oct 1 1998.
[49]S. Desgreniers, "High-density phases of ZnO: Structural and compressive parameters," Physical Review B, vol. 58, pp. 14102-14105, Dec 1 1998.
[50]E. H. Kisi and M. M. Elcombe, "u parameters for the wurtzite structure of ZnS and ZnO using powder neutron diffraction," Acta Crystallographica Section C, vol. 45, pp. 1867-1870, 1989.
[51]J. E. Jaffe and A. C. Hess, "Hartree-Fock study of phase changes in ZnO at high pressure," Physical Review B, vol. 48, pp. 7903-7909, 09/15/ 1993.
[52]"."
[53]F. Wen, W. Li, J.-H. Moon, and J. H. Kim, "Hydrothermal synthesis of ZnO:Zn with green emission at low temperature with reduction process," Solid State Communications, vol. 135, pp. 34-37, 7// 2005.
[54]B. X. Lin, Z. X. Fu, and Y. B. Jia, "Green luminescent center in undoped zinc oxide films deposited on silicon substrates," Applied Physics Letters, vol. 79, pp. 943-945, Aug 13 2001.
[55]S. A. M. Lima, F. A. Sigoli, M. Jafelicci, and M. R. Davolos, "Luminescent properties and lattice defects correlation on zinc oxide," International Journal of Inorganic Materials, vol. 3, pp. 749-754, Nov 2001.
[56]M. Liu, A. H. Kitai, and P. Mascher, "Point defects and luminescence centres in zinc oxide and zinc oxide doped with manganese," Journal of Luminescence, vol. 54, pp. 35-42, 8// 1992.
[57]M. S. Ramanachalam, A. Rohatgi, W. B. Carter, J. P. Schaffer, and T. K. Gupta, "Photoluminescence study of ZnO varistor stability," J. Electron. Mater., vol. 24, pp. 413-419, 1995.
[58]M. H. Huang, Y. Y. Wu, H. Feick, N. Tran, E. Weber, and P. D. Yang, "Catalytic growth of zinc oxide nanowires by vapor transport," Advanced Materials, vol. 13, pp. 113-116, Jan 16 2001.
[59]J. Q. Hu and Y. Bando, "Growth and optical properties of single-crystal tubular ZnO whiskers," Applied Physics Letters, vol. 82, pp. 1401-1403, Mar 3 2003.
[60]S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, "Recent progress in processing and properties of ZnO," Superlattices and Microstructures, vol. 34, pp. 3-32, 7// 2003.
[61]A. Janotti and C. G. V. d. Walle, "Oxygen vacancies in ZnO," Applied Physics Letters, vol. 87, p. 122102, 2005.
[62]B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, et al., "Bound exciton and donor-acceptor pair recombinations in ZnO," Physica Status Solidi B-Basic Solid State Physics, vol. 241, pp. 231-260, Feb 2004.
[63]Q. Ahsanulhaq, A. Umar, and Y. B. Hahn, "Growth of aligned ZnO nanorods and nanopencils on ZnO/Si in aqueous solution: growth mechanism and structural and optical properties," Nanotechnology, vol. 18, Mar 2007.
[64]F. Xie, A. Centeno, B. Zou, M. P. Ryan, D. J. Riley, and N. M. Alford, "Tunable synthesis of ordered Zinc Oxide nanoflower-like arrays," Journal of Colloid and Interface Science, vol. 395, pp. 85-90, Apr 2013.
[65]J. Y. Lao, J. Y. Huang, D. Z. Wang, Z. F. Ren, D. Steeves, B. Kimball, et al., "ZnO nanowalls," Applied Physics a-Materials Science &; Processing, vol. 78, pp. 539-542, Mar 2004.
[66]J. C. She, Z. M. Xiao, Y. H. Yang, S. Z. Deng, J. Chen, G. W. Yang, et al., "Correlation between Resistance and Field Emission Performance of Individual ZnO One-Dimensional Nanostructures," Acs Nano, vol. 2, pp. 2015-2022, Oct 2008.
[67]F. F. Wang, L. Cao, A. L. Pan, R. B. Liu, X. Wang, X. Zhu, et al., "Synthesis of tower-like ZnO structures and visible photoluminescence origins of varied-shaped ZnO nanostructures," Journal of Physical Chemistry C, vol. 111, pp. 7655-7660, May 31 2007.
[68]T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, "Zener model description of ferromagnetism in zinc-blende magnetic semiconductors," Science, vol. 287, pp. 1019-1022, Feb 2000.
[69]P. W. Anderson and H. Hasegawa, "Considerations on Double Exchange," Physical Review, vol. 100, pp. 675-681, 10/15/ 1955.
[70]D. A. Schwartz and D. R. Gamelin, "Reversible 300 K Ferromagnetic Ordering in a Diluted Magnetic Semiconductor," Advanced Materials, vol. 16, pp. 2115-2119, 2004.
[71]J. M. D. Coey, M. Venkatesan, and C. B. Fitzgerald, "Donor impurity band exchange in dilute ferromagnetic oxides," Nature Materials, vol. 4, pp. 173-179, Feb 2005.
[72]A. C. Durst, R. N. Bhatt, and P. A. Wolff, "Bound magnetic polaron interactions in insulating doped diluted magnetic semiconductors," Physical Review B, vol. 65, Jun 2002.
[73]C. Song, S. N. Pan, X. J. Liu, X. W. Li, F. Zeng, W. S. Yan, et al., "Evidence of structural defect enhanced room-temperature ferromagnetism in Co-doped ZnO," Journal of Physics-Condensed Matter, vol. 19, May 2007.
[74]V. Vaithianathan, B.-T. Lee, C.-H. Chang, K. Asokan, and S. S. Kim, "Characterization of As-doped, p-type ZnO by x-ray absorption near-edge structure spectroscopy," Applied Physics Letters, vol. 88, pp. 112103-3, 03/13/ 2006.
[75]Y. B. Zhang, Q. Liu, T. Sritharan, C. L. Gan, and S. Li, "Pulsed laser ablation of preferentially orientated ZnO:Co diluted magnetic semiconducting thin films on Si substrates," Applied Physics Letters, vol. 89, pp. 042510-3, 07/24/ 2006.
[76]Z. R. Dai, Z. W. Pan, and Z. L. Wang, "Novel Nanostructures of Functional Oxides Synthesized by Thermal Evaporation," Advanced Functional Materials, vol. 13, pp. 9-24, 2003.
[77]E. Klaus, "Magnetron sputtering of transparent conductive zinc oxide: relation between the sputtering parameters and the electronic properties," Journal of Physics D: Applied Physics, vol. 33, p. R17, 2000.
[78]P. X. Gao, C. S. Lao, Y. Ding, and Z. L. Wang, "Metal/semiconductor core/shell nanodisks and nanotubes," Advanced Functional Materials, vol. 16, pp. 53-62, Jan 2006.
[79]P. C. Chang, Z. Y. Fan, D. W. Wang, W. Y. Tseng, W. A. Chiou, J. Hong, et al., "ZnO nanowires synthesized by vapor trapping CVD method," Chemistry of Materials, vol. 16, pp. 5133-5137, Nov 2004.
[80]B. S. Li, Y. C. Liu, D. Z. Shen, J. Y. Zhang, Y. M. Lu, and X. W. Fan, "Effects of RF power on properties of ZnO thin films grown on Si(001) substrate by plasma enhanced chemical vapor deposition," Journal of Crystal Growth, vol. 249, pp. 179-185, Feb 2003.
[81]K. Haga, M. Kamidaira, Y. Kashiwaba, T. Sekiguchi, and H. Watanabe, "ZnO thin films prepared by remote plasma-enhanced CVD method," Journal of Crystal Growth, vol. 214–215, pp. 77-80, 6/2/ 2000.
[82]R. A. Laudise, E. D. Kolb, and A. J. Caporaso, "Hydrothermal Growth of Large Sound Crystals of Zinc Oxide," Journal of the American Ceramic Society, vol. 47, pp. 9-12, 1964.
[83]E. D. Kolb and R. A. Laudise, "Hydrothermally Grown ZnO Crystals of Low and Intermediate Resistivity," Journal of the American Ceramic Society, vol. 49, pp. 302-305, 1966.
[84]M. Katsumi, S. Mitsuru, N. Ikuo, and F. Tsuguo, "Growth of 2 inch ZnO bulk single crystal by the hydrothermal method," Semiconductor Science and Technology, vol. 20, p. S49, 2005.
[85]Y. M. Liu, T. Wang, X. Sun, Q. Q. Fang, Q. R. Lv, X. P. Song, et al., "Structural and photoluminescent properties of Ni doped ZnO nanorod arrays prepared by hydrothermal method," Applied Surface Science, vol. 257, pp. 6540-6545, May 15 2011.
[86]A. Escobedo-Morales and U. Pal, "Defect annihilation and morphological improvement of hydrothermally grown ZnO nanorods by Ga doping," Applied Physics Letters, vol. 93, p. 193120, 2008.
[87]U. Pal and P. Santiago, "Controlling the morphology of ZnO nanostructures in a low-temperature hydrothermal process," Journal of Physical Chemistry B, vol. 109, pp. 15317-15321, Aug 18 2005.
[88]M. Guo, P. Diao, and S. Cai, "Hydrothermal growth of well-aligned ZnO nanorod arrays: Dependence of morphology and alignment ordering upon preparing conditions," Journal of Solid State Chemistry, vol. 178, pp. 1864-1873, 2005.
[89]R. Savu, R. Parra, B. Jancar, M. A. Zaghete, and E. Joanni, "Influence of Hydrothermal Synthesis Conditions and Device Configuration on the Photoresponse of UV Sensors Based on ZnO Nanorods," Ieee Sensors Journal, vol. 11, pp. 1820-1825, Sep 2011.
[90]L. Zhang, J. Zhao, J. Zheng, L. Li, and Z. Zhu, "Hydrothermal synthesis of hierarchical nanoparticle-decorated ZnO microdisks and the structure-enhanced acetylene sensing properties at high temperatures," Sensors and Actuators B: Chemical, vol. 158, pp. 144-150, 2011.
[91]L. Li, H. Yang, H. Zhao, J. Yu, J. Ma, L. An, et al., "Hydrothermal synthesis and gas sensing properties of single-crystalline ultralong ZnO nanowires," Applied Physics A, vol. 98, pp. 635-641, 2009.
[92]N. S. Liu, G. J. Fang, W. Zeng, H. Zhou, F. Cheng, Q. A. Zheng, et al., "Direct Growth of Lateral ZnO Nanorod UV Photodetectors with Schottky Contact by a Single-Step Hydrothermal Reaction," Acs Applied Materials &; Interfaces, vol. 2, pp. 1973-1979, Jul 2010.
[93]R. Savu, R. Parra, E. Joanni, B. Jancar, S. A. Eliziario, R. de Camargo, et al., "The effect of cooling rate during hydrothermal synthesis of ZnO nanorods," Journal of Crystal Growth, vol. 311, pp. 4102-4108, Aug 2009.
[94]Y. L. Zuo, S. H. Ge, Z. Q. Chen, L. Zhang, X. Y. Zhou, and S. M. Yan, "Morphology, optical and magnetic properties of Zn1-xNixO nanorod arrays fabricated by hydrothermal method," Journal of Alloys and Compounds, vol. 470, pp. 47-50, Feb 2009.
[95]Z. H. Yu, S. H. Ge, Y. L. Zuo, G. W. Wang, and F. Zhang, "Vacancy-induced room-temperature ferromagnetism in ZnO rods synthesized by Ni-doped solution and hydrothermal method," Applied Surface Science, vol. 256, pp. 5813-5817, Aug 2010.
[96]T. J. Hsueh, C. L. Hsu, S. J. Chang, Y. R. Lin, S. P. Chang, Y. Z. Chiou, et al., "Crabwise ZnO nanowire UV photodetector prepared on ZnO : Ga/Glass template," Ieee Transactions on Nanotechnology, vol. 6, pp. 595-600, Nov 2007.
[97]J. B. K. Law and J. T. L. Thong, "Simple fabrication of a ZnO nanowire photodetector with a fast photoresponse time," Applied Physics Letters, vol. 88, p. 133114, 2006.
[98]C.-L. Hsu, S.-J. Chang, Y.-R. Lin, P.-C. Li, T.-S. Lin, S.-Y. Tsai, et al., "Ultraviolet photodetectors with low temperature synthesized vertical ZnO nanowires," Chemical Physics Letters, vol. 416, pp. 75-78, 2005.
[99]M. Chen, L. Hu, J. Xu, M. Liao, L. Wu, and X. Fang, "ZnO Hollow-Sphere Nanofilm-Based High-Performance and Low-Cost Photodetector," Small, Jul 21 2011.
[100]K. W. Liu, M. Sakurai, M. Y. Liao, and M. Aono, "Giant Improvement of the Performance of ZnO Nanowire Photodetectors by Au Nanoparticles," Journal of Physical Chemistry C, vol. 114, pp. 19835-19839, Nov 25 2010.
[101]Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, et al., "Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors," Applied Physics Letters, vol. 84, pp. 3654-3656, 05/03/ 2004.
[102]O. Lupan, V. V. Ursaki, G. Chai, L. Chow, G. A. Emelchenko, I. M. Tiginyanu, et al., "Selective hydrogen gas nanosensor using individual ZnO nanowire with fast response at room temperature," Sensors and Actuators B: Chemical, vol. 144, pp. 56-66, 2010.
[103]T.-J. Hsueh, S.-J. Chang, C.-L. Hsu, Y.-R. Lin, and I. C. Chen, "Highly sensitive ZnO nanowire ethanol sensor with Pd adsorption," Applied Physics Letters, vol. 91, p. 053111, 2007.
[104]T.-J. Hsueh, Y.-W. Chen, S.-J. Chang, S.-F. Wang, C.-L. Hsu, Y.-R. Lin, et al., "ZnO nanowire-based CO sensors prepared on patterned ZnO:Ga/SiO2/Si templates," Sensors and Actuators B: Chemical, vol. 125, pp. 498-503, 2007.
[105]T.-J. Hsueh, Y.-W. Chen, S.-J. Chang, S.-F. Wang, C.-L. Hsu, Y.-R. Lin, et al., "ZnO Nanowire-Based CO Sensors Prepared at Various Temperatures," Journal of The Electrochemical Society, vol. 154, p. J393, 2007.
[106]H. Ahn, J.-H. Park, S.-B. Kim, S. H. Jee, Y. S. Yoon, and D.-J. Kim, "Vertically Aligned ZnO Nanorod Sensor on Flexible Substrate for Ethanol Gas Monitoring," Electrochemical and Solid-State Letters, vol. 13, p. J125, 2010.
[107]T.-J. Hsueh, C.-L. Hsu, S.-J. Chang, and I. C. Chen, "Laterally grown ZnO nanowire ethanol gas sensors," Sensors and Actuators B: Chemical, vol. 126, pp. 473-477, 2007.
[108]B. Viana, "Directional and magnetic field enhanced emission of Cu-doped ZnO nanowires/p-GaN heterojunction light-emitting diodes," Journal of Nanophotonics, vol. 5, p. 051816, 2011.
[109]O. Lupan, T. Pauporté, B. Viana, I. M. Tiginyanu, V. V. Ursaki, and R. Cortès, "Epitaxial Electrodeposition of ZnO Nanowire Arrays on p-GaN for Efficient UV-Light-Emitting Diode Fabrication," ACS Applied Materials &; Interfaces, vol. 2, pp. 2083-2090, 2010.
[110]K.-K. Kim, S.-d. Lee, H. Kim, J.-C. Park, S.-N. Lee, Y. Park, et al., "Enhanced light extraction efficiency of GaN-based light-emitting diodes with ZnO nanorod arrays grown using aqueous solution," Applied Physics Letters, vol. 94, p. 071118, 2009.
[111]J.-W. Kang, M.-S. Oh, Y.-S. Choi, C.-Y. Cho, T.-Y. Park, C. W. Tu, et al., "Improved Light Extraction of GaN-Based Green Light-Emitting Diodes with an Antireflection Layer of ZnO Nanorod Arrays," Electrochemical and Solid-State Letters, vol. 14, p. H120, 2011.
[112]C. H. Chen, S. J. Chang, S. P. Chang, M. J. Li, I. C. Chen, T. J. Hsueh, et al., "Fabrication of a White-Light-Emitting Diode by Doping Gallium into ZnO Nanowire on a p-GaN Substrate," Journal of Physical Chemistry C, vol. 114, pp. 12422-12426, Jul 29 2010.
[113]Y. Q. Bie, Z. M. Liao, P. W. Wang, Y. B. Zhou, X. B. Han, Y. Ye, et al., "Single ZnO nanowire/p-type GaN heterojunctions for photovoltaic devices and UV light-emitting diodes," Adv Mater, vol. 22, pp. 4284-7, Oct 8 2010.
[114]J. R. Sadaf, M. Q. Israr, S. Kishwar, O. Nur, and M. Willander, "Forward- and reverse-biased electroluminescence behavior of chemically fabricated ZnO nanotubes/GaN interface," Semiconductor Science and Technology, vol. 26, p. 075003, 2011.
[115]L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, et al., "General route to vertical ZnO nanowire arrays using textured ZnO seeds," Nano Letters, vol. 5, pp. 1231-1236, Jul 2005.
[116]S. J. Young, L. W. Ji, S. J. Chang, Y. P. Chen, K. T. Lam, S. H. Liang, et al., "ZnO metal-semiconductor-metal ultraviolet photodetectors with Iridium contact electrodes," Optoelectronics, IET, vol. 1, pp. 135-139, 2007.
[117]M. H. Mamat, M. I. C. Khalin, N. N. H. N. Mohammad, Z. Khusaimi, N. D. M. Sin, S. S. Shariffudin, et al., "Effects of Annealing Environments on the Solution-Grown, Aligned Aluminium-Doped Zinc Oxide Nanorod-Array-Based Ultraviolet Photoconductive Sensor," Journal of Nanomaterials, 2012 2012.
[118]L. Thomas, A. Rahmani, P. Renaudin, and A. Wack, "High-sensitivity in-plane vector magnetometry using the alternating gradient force method," Journal of Applied Physics, vol. 93, pp. 7062-7064, May 2003.
[119]H. K. Yadav, K. Sreenivas, V. Gupta, and R. S. Katiyar, "Structural studies and Raman spectroscopy of forbidden zone boundary phonons in Ni-doped ZnO ceramics," Journal of Raman Spectroscopy, vol. 40, pp. 381-386, Apr 2009.
[120]B. Pandey, S. Ghosh, P. Srivastava, D. Kabiraj, T. Shripati, and N. P. Lalla, "Synthesis of nanodimensional ZnO and Ni-doped ZnO thin films by atom beam sputtering and study of their physical properties," Physica E: Low-dimensional Systems and Nanostructures, vol. 41, pp. 1164-1168, 2009.
[121]G. J. Huang, J. B. Wang, X. L. Zhong, G. C. Zhou, and H. L. Yan, "Synthesis, structure, and room-temperature ferromagnetism of Ni-doped ZnO nanoparticles," Journal of Materials Science, vol. 42, pp. 6464-6468, Aug 2007.
[122]D. Wu, M. Yang, Z. Huang, G. Yin, X. Liao, Y. Kang, et al., "Preparation and properties of Ni-doped ZnO rod arrays from aqueous solution," J Colloid Interface Sci, vol. 330, pp. 380-5, Feb 15 2009.
[123]A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, et al., "MgxZn1-xO as a II–VI widegap semiconductor alloy," Applied Physics Letters, vol. 72, p. 2466, 1998.
[124]R. Cusc&;oacute;, E. Alarc&;oacute;n-Llad&;oacute;, J. Ib&;aacute;&;ntilde;ez, L. Art&;uacute;s, J. Jim&;eacute;nez, B. Wang, et al., "Temperature dependence of Raman scattering in ZnO," Physical Review B, vol. 75, 2007.
[125]T. C. Damen, S. P. S. Porto, and B. Tell, "Raman Effect in Zinc Oxide," Physical Review, vol. 142, pp. 570-574, 02/11/ 1966.
[126]P. K. Sharma, R. K. Dutta, and A. C. Pandey, "Effect of nickel doping concentration on structural and magnetic properties of ultrafine diluted magnetic semiconductor ZnO nanoparticles," Journal of Magnetism and Magnetic Materials, vol. 321, pp. 3457-3461, Oct 2009.
[127]M. Rajalakshmi, A. K. Arora, B. S. Bendre, and S. Mahamuni, "Optical phonon confinement in zinc oxide nanoparticles," Journal of Applied Physics, vol. 87, pp. 2445-2448, 03/01/ 2000.
[128]H. J. Fan, R. Scholz, F. M. Kolb, M. Zacharias, U. G&;ouml;sele, F. Heyroth, et al., "On the growth mechanism and optical properties of ZnO multi-layer nanosheets," Applied Physics A, vol. 79, pp. 1895-1900, 2004/12/01 2004.
[129]X. Q. Wei, B. Y. Man, M. Liu, C. S. Xue, H. Z. Zhuang, and C. Yang, "Blue luminescent centers and microstructural evaluation by XPS and Raman in ZnO thin films annealed in vacuum, N-2 and O-2," Physica B-Condensed Matter, vol. 388, pp. 145-152, Jan 15 2007.
[130]B. D. Yao, Y. F. Chan, and N. Wang, "Formation of ZnO nanostructures by a simple way of thermal evaporation," Applied Physics Letters, vol. 81, p. 757, 2002.
[131]E. De la Rosa, S. Sepulveda-Guzman, B. Reeja-Jayan, A. Torres, P. Salas, N. Elizondo, et al., "Controlling the growth and luminescence properties of well-faceted ZnO nanorods," Journal of Physical Chemistry C, vol. 111, pp. 8489-8495, Jun 21 2007.
[132]A. B. Djurišić, Y. H. Leung, K. H. Tam, L. Ding, W. K. Ge, H. Y. Chen, et al., "Green, yellow, and orange defect emission from ZnO nanostructures: Influence of excitation wavelength," Applied Physics Letters, vol. 88, p. 103107, 2006.
[133]A. Janotti and C. G. Van de Walle, "Native point defects in ZnO," Physical Review B, vol. 76, 2007.
[134]S. Zhang, S. H. Wei, and A. Zunger, "Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO," Physical Review B, vol. 63, 2001.
[135]J. H. Cai, G. Ni, G. He, and Z. Y. Wu, "Red luminescence in ZnO films prepared by a glycol-based Pechini method," Physics Letters A, vol. 372, pp. 4104-4108, 2008.
[136]S. Singh, D. Nakamura, K. Sakai, T. Okada, and M. S. R. Rao, "Investigation of low-temperature excitonic and defect emission from Ni-doped ZnO nanoneedles and V-doped ZnO nanostructured film," New Journal of Physics, vol. 12, Feb 2010.
[137]H. S. Hsu, J. C. A. Huang, Y. H. Huang, Y. F. Liao, M. Z. Lin, C. H. Lee, et al., "Evidence of oxygen vacancy enhanced room-temperature ferromagnetism in Co-doped ZnO," Applied Physics Letters, vol. 88, p. 242507, 2006.
[138]Z. L. Lu, H. S. Hsu, Y. H. Tzeng, F. M. Zhang, Y. W. Du, and J. C. A. Huang, "The origins of ferromagnetism in Co-doped ZnO single crystalline films: From bound magnetic polaron to free carrier-mediated exchange interaction," Applied Physics Letters, vol. 95, p. 102501, 2009.
[139]G. Venkataiah, M. R. S. Huang, H. L. Su, C. P. Liu, and J. C. A. Huang, "Microstructure and Magnetic Properties of Ni/ZnO Nanorod/Zn/NiO Nanowall Composite Structures," Journal of Physical Chemistry C, vol. 114, pp. 16191-16196, Oct 7 2010.
[140]J. Iqbal, B. Wang, X. Liu, D. Yu, B. He, and R. Yu, "Oxygen-vacancy-induced green emission and room-temperature ferromagnetism in Ni-doped ZnO nanorods," New Journal of Physics, vol. 11, p. 063009, 2009.
[141]C. Y. Geng, Y. Jiang, Y. Yao, X. M. Meng, J. A. Zapien, C. S. Lee, et al., "Well-aligned ZnO nanowire arrays fabricated on silicon substrates," Advanced Functional Materials, vol. 14, pp. 589-594, Jun 2004.
[142]L. Luo, Y. Zhang, S. S. Mao, and L. Lin, "Fabrication and characterization of ZnO nanowires based UV photodiodes," Sensors and Actuators A: Physical, vol. 127, pp. 201-206, 2006.
[143]Y. W. Heo, B. S. Kang, L. C. Tien, D. P. Norton, F. Ren, J. R. La Roche, et al., "UV photoresponse of single ZnO nanowires," Applied Physics A, vol. 80, pp. 497-499, 2004.
[144]W. Y. Weng, T. J. Hsueh, S. J. Chang, S. P. Chang, and C. L. Hsu, "Laterally-grown ZnO-nanowire photodetectors on glass substrate," Superlattices and Microstructures, vol. 46, pp. 797-802, 11// 2009.
[145]Y. Li, F. Della Valle, M. Simonnet, I. Yamada, and J.-J. Delaunay, "Competitive surface effects of oxygen and water on UV photoresponse of ZnO nanowires," Applied Physics Letters, vol. 94, p. 023110, 2009.
[146]S.-P. Chang, L. Chien-Yuan, C. Shoou-Jinn, Y. Chiou, H. Ting-Jen, and H. Cheng-Liang, "Electrical and Optical Characteristics of UV Photodetector With Interlaced ZnO Nanowires," Selected Topics in Quantum Electronics, IEEE Journal of, vol. 17, pp. 990-995, 2011.
[147]X. H. Zhang, X. Y. Han, J. Su, Q. Zhang, and Y. H. Gao, "Well vertically aligned ZnO nanowire arrays with an ultra-fast recovery time for UV photodetector," Applied Physics a-Materials Science &; Processing, vol. 107, pp. 255-260, May 2012.
[148]C. L. Lai, X. X. Wang, Y. Zhao, H. Fong, and Z. T. Zhu, "Effects of humidity on the ultraviolet nanosensors of aligned electrospun ZnO nanofibers," Rsc Advances, vol. 3, pp. 6640-6645, 2013.
[149]F. Fang, J. Futter, A. Markwitz, and J. Kennedy, "UV and humidity sensing properties of ZnO nanorods prepared by the arc discharge method," Nanotechnology, vol. 20, p. 245502, Jun 17 2009.
[150]T. C. W. Bureau, "," p. 2.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊