(3.237.20.246) 您好!臺灣時間:2021/04/15 10:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:羅敬諺
研究生(外文):Jing-Yan Luo
論文名稱:即時分離混合肌電訊號之回饋控制功能性電刺激系統
論文名稱(外文):Functional Electrical Stimulation System with Real-time Hybrid Muscle Signal Isolating Feedback Control
指導教授:薛雅馨薛雅馨引用關係
指導教授(外文):Ya-Hsin Hsueh
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:電子與光電工程研究所碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:74
中文關鍵詞:功能性電刺激回饋控制肌電圖混合肌電訊號即時
外文關鍵詞:feedback controlfunctional electrical stimulationhybrid muscle signalelectromyographyreal-time
相關次數:
  • 被引用被引用:0
  • 點閱點閱:131
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
腦中風會導致身體的許多機能喪失,其中偏癱患者最為常見,進行上肢動作時,損壞的大腦無法控制手部肌肉,造成日常生活中的不便。為了提升患者因部分運動單元失調造成的肌肉無力以及殘存功能,電刺激常被用來作為復健方法。針對局部肢體的殘存功能,肌肉收縮是由兩個來源產生的,一個是自主收縮,而另一個是外在電刺激所造成,我們稱為混合式肌肉活化。目前研究中證實功能性電刺激能有效恢復肢體運動功能,但其復健的成效則跟如何適當調整電刺激強度有關。此外在動態運動下的混合式肌肉活化也較少被研究。
研究指出,在具有電刺激的環境下,會造成肌電訊號擷取上的困難。本研究目的是開發出一套使用自主肌電訊號即時回饋控制功能性電刺激系統,在功能性電刺激的療程中,能夠抑制電刺激造成的干擾,透過數位訊號處理(DSP)實現,分離出自主肌電訊號與電刺激誘發肌電訊號。從獲得資訊中,做為功能性電刺激的回饋控制訊號。本研究能使用自我意志來控制電刺激,取代過去傳統式的電刺激系統。因此可以增加患者使用意願、減少肌肉快速疲勞以及提高復健的效率,讓患者能更快恢復喪失的日常功能動作。
Stroke may result in motor function loss, which is most frequently observed among hemiplegia patients. When moving their upper limbs, stroke patients often have difficulties in controlling hand movement due to brain injury, which makes it challenging for them to perform daily activities. To improve muscle weakness and enhance residual functions of patients with partial motor disorders, electrical stimulation (ES) is commonly utilized as a rehabilitation method. For paretic limb with residual function, muscle contraction during stimulation is generated from two different sources, volitional contraction and external ES induce, which together is referred as hybrid muscle activation. Current studies have proved that functional electrical stimulation (FES) can effectively improve motor function, but the rehabilitation efficacy depends on the appropriate tuning of ES. Besides, few researches have studied hybrid muscle signal during dynamic movement.
Researches have indicated that it is difficult to detect electromyography (EMG) signals during electrical stimulation . The aim of this study was to develop a volitional EMG feedback control FES system, which included a stimulus artifact suppressor and digital signal processing implementation for extracting volitional and ES-induced EMG signals in functional electrical therapy (FET). The acquired information can serve as a control strategy for the FES feedback control system. In this study, the subjects can control ES voluntarily , which can replace passive FES system in the past. Therefore, the proposed system can increase patient''s willingness to perform rehabilitation, reduce muscle fatigue and increase rehabilitation efficiency, which restores patients of their lost daily functions faster.
中文摘要 ----------------------------------------------------------------------------- i
英文摘要 ----------------------------------------------------------------------------- ii
誌謝 ----------------------------------------------------------------------------- iii
目錄 ----------------------------------------------------------------------------- iv
表目錄 ----------------------------------------------------------------------------- vi
圖目錄 ----------------------------------------------------------------------------- vii
一、 緒論----------------------------------------------------------------------- 1
1.1 研究動機----------------------------------------------------------------- 1
1.2 研究目的----------------------------------------------------------------- 2
1.3 論文架構----------------------------------------------------------------- 2
二、 文獻回顧----------------------------------------------------------------- 3
2.1 肌電訊號----------------------------------------------------------------- 3
2.2 功能性電刺激----------------------------------------------------------- 5
2.3 混合肌電訊號----------------------------------------------------------- 6
2.4 回饋控制----------------------------------------------------------------- 8
三、 研究方法----------------------------------------------------------------- 10
3.1 研究流程----------------------------------------------------------------- 10
3.2 系統架構----------------------------------------------------------------- 12
3.3 參與者-------------------------------------------------------------------- 14
3.4 實驗環境設計----------------------------------------------------------- 15
3.4.1 EMG電極貼片位置選擇---------------------------------------------- 15
3.4.2 彎曲感測器位置-------------------------------------------------------- 18
3.4.3 訊號擷取裝置----------------------------------------------------------- 19
3.4.4 電刺激裝置與電極片位置-------------------------------------------- 21
3.5 上肢動作訓練----------------------------------------------------------- 22
3.6 訊號分析與回饋控制-------------------------------------------------- 26
3.6.1 訊號處理方塊圖-------------------------------------------------------- 26
3.6.2 AD/DA模組------------------------------------------------------------- 27
3.6.3 混合肌電訊號分離----------------------------------------------------- 29
3.6.4 平均絕對值(MAV)運算----------------------------------------------- 33
3.6.5 最大自主收縮百分比(%MVC)--------------------------------------- 37
3.6.6 EMG分析---------------------------------------------------------------- 40
3.6.7 電刺激策略-------------------------------------------------------------- 44
四、 系統實作與驗證結果-------------------------------------------------- 50
4.1 驗證混合肌電訊號分離結果----------------------------------------- 50
4.2 電刺激劑量波形-------------------------------------------------------- 52
4.3 系統裝置模式----------------------------------------------------------- 54
4.4 回饋控制實現----------------------------------------------------------- 55
4.5 相關研究比較----------------------------------------------------------- 59
五、 結論與未來展望-------------------------------------------------------- 60
5.1 結論----------------------------------------------------------------------- 60
5.2 未來展望----------------------------------------------------------------- 61
參考文獻 ----------------------------------------------------------------------------- 62
[1] V.L. Feigin,“Stroke epidemiology in the developing world”, Lancet, vol. 365, pp. 2160-2161, Jun. 2005.
[2] GA. Donnan, M. Fisher and M. Macleod,“Stroke”,Lancet, vol. 371, pp. 1612-1623, May. 2008.
[3] C.S. Richard, Rossi, W. Peter and D. Karla, 1994, Living with Stroke: A Guide for Families, Contemporary Books, Chicago.
[4] 陳信壅,2001,功能性電刺激踩車系統應用於不對稱動作型態患者之臨床研究,國立成功大學,碩士論文。
[5] W. Barnes,“The relationship of motor unit activation to isokinetic muscular contraction at different contractile velocities”,Physical Therapy, vol. 60, pp. 1142-1159, 1980.
[6] W.T. Liberson, H.J. Holmquest, D. scot and M. Dow,“Functional electrotherapy: stimulation of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients”,Archives of Physical Medicine and Rehabilitation, vol. 42, pp. 101-105, 1961.
[7] D. Smith and J. Johnson,“Mechanomyographic and electromyographic response to eccentric and concentric isokinetic muscles of biceps and bradii”,Muscle and nerve, vol. 21, pp. 1438-1444, 2004.
[8] J.H. Moe and H.W. Post,“Functional Electrical Stimulation for Ambulation in Hemiplegia”,Lancet, vol. 82, pp. 285-288, 1962.
[9] E. Langzama, Y. Nemirovskyc, E. Isakovb, and J. Mizrahi, ,“Muscle enhancement using closed-loop electrical stimulation: volitional versus induced torque”, Journal of Electromyography and Kinesiology, vol. 17, pp. 275-284, June 2007.
[10] K. Limnuson, Hui Lu, H.J. Chiel, and P. A. Mohseni,“FPGA Implementation of an IIR Temporal Filtering Technique for Real-Time Stimulus Artifact Rejection”, in Proc. Biomedical Circuits and Systems Conference, pp. 49-52, Nov. 2011
[11] E. Langzama, Y. Nemirovskyc, E. Isakovb and J. Mizrahi,“Partition between volitional and induced forces in electrically augmented dynamic isometric muscle contractions”, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 14, pp. 322-335, Sep. 2006.
[12] 杜翌群,林家宏,2009,建立可攜式即時手部動作辨識系統,2009生醫工程研討會,12月。
[13] T. Handa, Y. Handa, M. Ichie, J. Kameyama and H. Takahashi, M. Yajima, T. Itoh and N. Hoshimiya,“Studies on control commands for FES in the paralyzed extremities”,in proc. IEEE Engineering in Medicine C Biology Society llTH Annual International Conference, vol. 3, pp. 945-946, Nov. 1989.
[14] C. Frigo, M. Ferrarin, W. Frasson, E. Pavan, and R. Thorsen,“EMG signals detection and processing for on-line control of Functional Electrical Stimulation”,Journal of Electromyography and Kinesiology, vol. 10, no. 5, pp. 351–360, 2000.
[15] 陳信壅,2001,功能性電刺激踩車系統應用於不對稱動作型態患者之臨床研究,國立成功大學,碩士論文。
[16] R.B. Pilkar, M. Yarossi and G. Forrest,“Empirical mode decomposition as a tool to remove the function Electrical stimulation artifact from surface electromyograms: Preliminary investigation”, in Proc. 34th Annual International Conference of the IEEE EMBS,San Diego, California USA, pp. 1847-1850,Sep. 2012.
[17] 殷傑,2010,肌電訊號應用在即時回饋控制功能性電刺激採車系統,國立雲林科技大學,碩士論文。
[18] H. Yeom, H. Park, Y. H. Chang,Y. Park and K.J. Lee,“Stimulus Artifact Suppression Using the Stimulation Synchronous Adaptive Impulse Correlated Filter for Surface EMG Application”, Journal of Electrical Engineering &; Technology, vol. 7, no. 3, pp. 451-458, 2012.
[19] W.K. Durfee and B.N. Dunn,”Experimental verification of a 2-joint, lower limb musculoskeletal model for FES-aided gait applications”, in Proc. Engineering in Medicine and Biology Society, IEEE 17th Annual Conference, vol. 17, no. 2, pp. 1149-1150, 1995.
[20] B.T. Smith, M.J. Mulcahey and R.R. Betz, “Development of an upper extremity FES system for individuals with C4 tetraplegia”, IEEE Transactions On Rehabilitation Engineering, vol. 4, no. 4, Dec. 1996.
[21] Y. Handa and N. Hoshimiya , “Functional electrical simulation for the control of the upper extremities”, Medical Progress through Technology, vol. 12, pp. 51-63, 1987.
[22] A. Phinyomark, P. Phukpattaranont and C. Limsakul,“Feature reduction and selection for EMG signal classification”, Expert Systems with Applications, vol. 39, pp. 7420-7431, Jun. 2012.
[23] K. Kiguchi, T. Tanaka and T. Fukuda,“Neuro-fuzzy control of a robotic exoskeleton with EMG signals”, IEEE Transactions on Fuzzy Systems, vol. 12, no. 4, pp. 481-490, 2004.
[24] 吳芳宸,2011,雙側上肢運動訓練結合功能性電刺激應用於中風患者之臨床療效,台灣大學,碩士論文。
[25] M.J. Ijzerman, , T. S. Stoffers, F. A. C. G. in ''t Groen, M. A. P. Klatte, G. J. Snoek, J. H. C. Vorsteveld, R. H. Nathan, and H. J. Hermens, “The NESS handmaster orthosis: Restoration of hand function in C5 and stroke patients by means of electrical stimulation”, Journal of Rehabilitation Sciences, vol. 9, no. 3, pp. 86-89, 1996.
[26] F. Widjaja, Cheng Yap Shee, P. Poignet, and Wei Tech Ang,“FES Artifact Suppression for Real-time Tremor Compensation”, in Proc. 11th International Conference on Rehabilitation Robotics, Kyoto International Conference Center, Japan, pp. 53-58,June, 2009.
[27] P. Tresadern, S. Thies, L. Kenney, D. Howard and J.Y. Goulermas ,” Artificial Neural Network Prediction Using Accelerometers to Control Upper Limb FES During Reaching and Grasping Following Stroke”, in Proc. 28th IEEE EMBS Annual International Conference New York City, USA, pp. 2916-2919,Sep, 2006.
[28] K. L. Kilgore and P.H. Peckham ,“An implanted upper-extremity neuroprostheses”, The Journal of Bone and Joint Surgery, vol. 79-A, no. 4, pp. 533-541, 1997.
[29] A. Prochzka, M. Gauthier, M. Wieler and Z. Kenwell,“The Bionic Glove: An electrical stimulator garment that provides controlled grasp and hand opening in quadriplegia”,Archives of Physical Medicine and Rehabilitation, vol. 78, pp. 1-7,1997.
[30] Xikai Tu, Jian Huang, Liguo Yu , Qi Xu and Jiping He,“Design of a Wearable Rehabilitation Robot Integrated with Functional Electrical Stimulation”, in Proc. The Fourth IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics Roma, Italy. pp. 1555-1560 June, 2012.
[31] H. Yeom and Y.H. Chang,“Autogenic EMG controlled functional electrical stimulation for ankle dorsiflexion control”, Journal of Neuroscience Methods, vol. 193, pp. 118-125, Oct. 2010.
[32] E. Langzama, E. Isakovb and J. Mizrahi,“Evaluation of methods for extraction of the volitional EMG in dynamic hybrid muscle activation”,Journal Neuroengineering and Rehabilitation, vol. 3, Nov. 2006.
[33] W.M. Murray, S.L. Delp, and T.S. Buchanan,“Variation of muscle moment arm with elbow and forearm position”, Journal of Biomechanics, vol. 28, no. 5, pp. 513-525, 1995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔