(18.206.177.17) 您好!臺灣時間:2021/04/11 02:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊士鋒
研究生(外文):Shih-Feng Yang
論文名稱:以改良之選擇性強化濾波器檢測肺結節
論文名稱(外文):Detecting Lung Nodules Using Improved Selective Enhancement Filter
指導教授:鄭景俗鄭景俗引用關係
指導教授(外文):Ching-Hsue Cheng
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:資訊管理系碩士班
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:40
中文關鍵詞:電腦斷層掃描電腦輔助診斷電腦輔助檢測選擇性強化濾波器肺結節強化濾波器
外文關鍵詞:selective enhancement filterComputed tomographyCTcomputer-aided diagnosiscomputer-aided detectionCADlung noduleenhancement filter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:116
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
電腦斷層掃描(CT)是檢測肺結節(lung nodule)相當有效之影像學檢查方法。然而,由於其取得之影像數量相當龐大,故有不少研究人員致力於開發電腦輔助診斷/檢測(computer-aided diagnosis/detection, CAD)系統,以降低放射科醫師之負擔,並提出「第二意見」(second opinion)供其參考。在肺結節檢測CAD系統中,會利用強化濾波器(enhancement filter)來進行前置處理,以減少在候選結節識別上之誤判情形。在各種強化濾波器中,選擇性強化濾波器(selective enhancement filter)兼具有良好之靈敏度(sensitivity)與專一性(specificity),可有效地降低候選結節識別上之誤判情形。然而,由於選擇性強化濾波器需要耗費龐大之計算量來計算矩陣之特徵值(eigenvalue),以得到其輸出值,故其處理速度相當緩慢。本論文之主要目的,即在藉由減輕由計算矩陣特徵值所引起之計算負擔,來提升選擇性強化濾波器之處理速度。藉由矩陣特徵多項式係數之性質,以及控制工程領域中廣為人知之Routh-Hurwitz判準(Routh-Hurwitz criterion),在某些特定條件下,無須計算矩陣之特徵值,即可得到選擇性強化濾波器之輸出值,因而得以減輕其計算負擔。實例測試結果顯示,本論文所提出之演算法,可顯著地提升選擇性強化濾波器之處理速度。
Computed tomography (CT) is a very effective imaging modality for the detection of lung nodules. However, the number of images obtained is large. Therefore, many researchers are devoted to the development of computer-aided diagnosis/detection (CAD) systems to mitigate the workload of radiologists and provide computer output as a “second opinion”. In a CAD system for lung nodule detection, an enhancement filter can be employed as a pre-processing step to reduce the erroneous detection of nodule candidates. Among various enhancement filters, the selective enhancement filters possess good sensitivity and specificity and can effectively reduce the erroneous detection of nodule candidates. However, the processing speeds of selective enhancement filters are slow since they require much computational effort to compute eigenvalues of matrices to obtain output values. The purpose of this master thesis is to increase the processing speeds of selective enhancement filters by reducing the computation burden caused by the computation of eigenvalues of matrices. By using the property of the coefficients of the characteristic polynomial of a matrix and the well-known Routh-Hurwitz criterion in the field of control engineering, under certain conditions, the output values of selective enhancement filters can be obtained without having to compute the eigenvalues of matrices. The computational burden thus can be reduced. Experimental results show that the algorithms proposed in this master thesis can significantly increase the processing speeds of selective enhancement filters.
中文摘要 --------------------------------------------------------------------- i
英文摘要 -------------------------------------------------------------------- ii
誌謝 ----------------------------------------------------------------------- iii
目錄 ------------------------------------------------------------------------ iv
表目錄 ---------------------------------------------------------------------- vi
圖目錄 --------------------------------------------------------------------- vii
一、 緒論--------------------------------------------------------------------- 1
1.1 問題描述------------------------------------------------------------------ 1
1.2 研究目的------------------------------------------------------------------ 3
二、 文獻回顧----------------------------------------------------------------- 4
三、 相關理論與資料來源------------------------------------------------------- 6
3.1 選擇性強化濾波器---------------------------------------------------------- 6
3.2 Routh-Hurwitz 判準------------------------------------------------------- 10
3.3 矩陣之特徵值------------------------------------------------------------- 13
3.4 2*2與3*3對稱矩陣特徵值之計算--------------------------------------------- 13
3.5 有限差分近似------------------------------------------------------------- 15
3.6 LIDC-IDRI 資料庫--------------------------------------------------------- 16
四、 研究方法---------------------------------------------------------------- 18
4.1 2D 影像選擇性強化濾波器之改良-------------------------------------------- 18
4.1.1 2D 影像點狀物體選擇性強化濾波器之改良---------------------------------- 18
4.1.2 2D 影像線狀物體選擇性強化濾波器之改良---------------------------------- 20
4.2 3D 影像選擇性強化濾波器之改良-------------------------------------------- 21
4.2.1 3D 影像點狀物體選擇性強化濾波器之改良---------------------------------- 21
4.2.2 3D 影像線狀物體選擇性強化濾波器之改良---------------------------------- 23
4.2.3 3D 影像面狀物體選擇性強化濾波器之改良---------------------------------- 25
五、 實例測試結果------------------------------------------------------------ 28
5.1 2D影像選擇性強化濾波器實例測試結果----------------------------------------28
5.2 3D影像選擇性強化濾波器實例測試結果----------------------------------------32
六、結論與未來展望------------------------------------------------------------36
6.1 結論----------------------------------------------------------------------36
6.2 未來展望------------------------------------------------------------------36
參考文獻----------------------------------------------------------------------37
Armato, S. G. III, McLennan, G., Bidaut, L., McNitt-Gray, M. F., Meyer, C. R., Reeves, A. P., … Clarke, L. P. (2011). The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A completed reference database of lung nodules on CT scans. Medical Physics, 38(2), 915-931.

Bae, K. T., Kim, J. S., Na, Y. H., Kim, K. G., &; Kim, J. H. (2005). Pulmonary nodules: automated detection on CT images with morphologic matching algorithm – preliminary results. Radiology, 236(1), 286-294.

Diederich, S., Lentschig, M. G., Overbeck, T. R., Wormanns, D., &; Heindel, W. (2001). Detection of pulmonary nodules at spiral CT: comparison of maximum intensity projection sliding slabs and single-image reporting. European Radiology, 11(8), 1345-1350.

Fantacci, M. E., Camarlinghi, N., Gori, I., Bellotti, R., Gargano, G., Megna, R., … Retico, A. (2011). Algorithms for automatic detection of lung nodules in CT scans. 2011 IEEE International Workshop on Medical Measurements and Applications, 623-627.

Flehinger, B. J., Kimmel, M., &; Melamed, M. R. (1992). The effect of surgical treatment on survival from early lung cancer. Chest, 101(4), 1013-1018.

Frangi, A. F., Niessen, W. J., Hoogeveen, R. M., van Walsum, T., &; Viergever, M. A. (1999). Model-based quantitation of 3-D magnetic resonance angiographic images. IEEE Transactions on Medical Imaging, 18(10), 946-956.

Goldberg, J. L. (1992). Matrix Theory with Applications. Singapore: McGraw-Hill.

Jeffrey, A &; Dai, H.-H. (2008). Handbook of Mathematical Formulas and Integrals. New York, NY: Elsevier.
Kopp, J. (2008). Efficient numerical diagonalization of Hermitian matrices. International Journal of Modern Physics C, 19(3), 523-548.

Koller, T. M., Gerig, G., Szekely, G., &; D&;eacute;ttwiler, D. (1995). Multiscale detection of curvilinear structures in 2-D and 3-D image data. IEEE Proceedings, 5th International Conference on Computer Vision, 864-869.

Lee, S. L. A., Kouzani, A. Z., &; Hu, E. J. (2010). Random forest based lung nodule classification aided by clustering. Computerized Medical Imaging and Graphics, 34, 535-542.

Levine, S. L. (1999). Control system fundamentals. New York, NY: CRC Press.

Li, Q. (2007). Recent progress in computer-aided diagnosis of lung nodules on thin-section CT. Computerized Medical Imaging and Graphics, 31, 248-257.

Li, Q., Arimura, H., &; Doi, K. (2004). Selective enhancement filters for lung nodules, intracranial aneurysms, and breast microcalcifications. International Congress Series, 1268, 929-934.

Li, Q. &; Doi, K. (2004). New selective nodule enhancement filter and its application for significant improvement of nodule detection on computed tomography. Proceedings of SPIE, Medical Imaging 2004: Image Processing, 5370, 1-9

Li, Q., Sone, S., &; Doi, K. (2003). Selective enhancement filters for nodules, vessels, and airway walls in two- and three-dimensional CT scans. Medical Physics, 30(8), 2040-2051.

Lipschutz, S. (1987). Theory and Problems of Linear Algebra SI (Metric) Edition. Singapore: McGraw-Hill.


Lorenz, C., Carlsen, I.-C., Buzug, T. M., Fassnacht, C., Weese, J. (1997a). A multi-scale line filter with automatic scale selection based on the Hessian matrix for medical image segmentation. In Romeny, B. H., Florack, L., Koenderink, L., &; Viergever, M. (Eds.), Lecture Notes in Computer Science: Vol. 1252. Scale-Space Theory in Computer Vision (pp. 152-163). Berlin, Germany: Springer-Verlag.

Lorenz, C., Carlsen, I.-C., Buzug, T. M., Fassnacht, C., &; Weese, J. (1997b). Multi-scale line segmentation with automatic estimation of width, contrast and tangential direction in 2D and 3D medical images. In Troccaz, J., Grimson, E., Mosges, R. (Eds.), Lecture Notes in Computer Science: Vol. 1205. CVRMed-MRCAS’97 (pp. 233-242). Berlin, Germany: Springer-Verlag.

Orlowski, P. and Orkisz, M. (2009). Efficient computation of Hessian-based enhancement filters for tubular structures in 3D images. IRBM, 30, 128-132.

Paik, D. S., Beaulieu, C. F., Rubin, G. D., Acar, B., Jeffrey, R. B., Yee, J., … Napel, S. (2004). Surface normal overlap: a computer-aided detection algorithm with application to colonic polyps and lung nodules in helical CT. IEEE Transactions on Medical Imaging, 23, 661-675.

Sato, Y., Nakajima, S., Shiraga, N., Atsumi, H., Yoshida, S., Koller, T., … Kikinis, R. (1998). Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Medical Image Analysis, 2(2), 143-168.

Sato, Y., Westin, C.-F., Bhalerao, A., Nakajima, S., Shiraga, N., Tamura, S., &; Kikinis, R. (2000). Tissue classification based on 3D local intensity structures for volume rendering. IEEE Transactions on Visualization and Computer Graphics, 6(2), 160-180.


Slumier, I., Schilham, A., Prokop, M., &; van Ginneken, B. (2006). Computer Analysis of Computed Tomography Scans of the Lung- A Survey. IEEE Transactions on Medical Imaging, 25(4), 385-405.

Sobue, T., Suzuki, T., Matsuda, M., Kuroishi, T., Ikeda, S., &; Naruke, T. (1992). Survival for clinical stage I lung cancer not surgically treated. Cancer, 69(3), 685-692.

Teramoto, A. &; Fujita, H. (in press). Fast lung nodule detection in chest CT images using cylindrical nodule-enhancement filter. International Journal of Computer Assisted Radiology and Surgery. Retrieved from http://link.springer.com/article/10.1007%2Fs11548-012-0767-5?LI=true.

Yu, Y. &; Zhao, H. (2006a). Enhancement filter for computer-aided detection of pulmonary nodules on thoracic CT images. IEEE Proceedings of the Sixth International conference on Intelligent Systems Design and Applications (ISDA''06),1200-1205.

Yu, Y. and Zhao, H. (2006b). A texture-based morphologic enhancement filter in two-dimensional thoracic CT scans. IEEE International Conference on Networking, Sensing, and Control, ICNSC ''06, 850-855.

行政院衛生署(民101)。100年國人主要死因統計。取自http://www.doh.gov.tw/CHT2006/DM/DM2_p01.aspx?class_no=25&;level_no=1&;doc_no=84788
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔