|
Armato, S. G. III, McLennan, G., Bidaut, L., McNitt-Gray, M. F., Meyer, C. R., Reeves, A. P., … Clarke, L. P. (2011). The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A completed reference database of lung nodules on CT scans. Medical Physics, 38(2), 915-931.
Bae, K. T., Kim, J. S., Na, Y. H., Kim, K. G., &; Kim, J. H. (2005). Pulmonary nodules: automated detection on CT images with morphologic matching algorithm – preliminary results. Radiology, 236(1), 286-294.
Diederich, S., Lentschig, M. G., Overbeck, T. R., Wormanns, D., &; Heindel, W. (2001). Detection of pulmonary nodules at spiral CT: comparison of maximum intensity projection sliding slabs and single-image reporting. European Radiology, 11(8), 1345-1350.
Fantacci, M. E., Camarlinghi, N., Gori, I., Bellotti, R., Gargano, G., Megna, R., … Retico, A. (2011). Algorithms for automatic detection of lung nodules in CT scans. 2011 IEEE International Workshop on Medical Measurements and Applications, 623-627.
Flehinger, B. J., Kimmel, M., &; Melamed, M. R. (1992). The effect of surgical treatment on survival from early lung cancer. Chest, 101(4), 1013-1018.
Frangi, A. F., Niessen, W. J., Hoogeveen, R. M., van Walsum, T., &; Viergever, M. A. (1999). Model-based quantitation of 3-D magnetic resonance angiographic images. IEEE Transactions on Medical Imaging, 18(10), 946-956.
Goldberg, J. L. (1992). Matrix Theory with Applications. Singapore: McGraw-Hill.
Jeffrey, A &; Dai, H.-H. (2008). Handbook of Mathematical Formulas and Integrals. New York, NY: Elsevier. Kopp, J. (2008). Efficient numerical diagonalization of Hermitian matrices. International Journal of Modern Physics C, 19(3), 523-548.
Koller, T. M., Gerig, G., Szekely, G., &; D&;eacute;ttwiler, D. (1995). Multiscale detection of curvilinear structures in 2-D and 3-D image data. IEEE Proceedings, 5th International Conference on Computer Vision, 864-869.
Lee, S. L. A., Kouzani, A. Z., &; Hu, E. J. (2010). Random forest based lung nodule classification aided by clustering. Computerized Medical Imaging and Graphics, 34, 535-542.
Levine, S. L. (1999). Control system fundamentals. New York, NY: CRC Press.
Li, Q. (2007). Recent progress in computer-aided diagnosis of lung nodules on thin-section CT. Computerized Medical Imaging and Graphics, 31, 248-257.
Li, Q., Arimura, H., &; Doi, K. (2004). Selective enhancement filters for lung nodules, intracranial aneurysms, and breast microcalcifications. International Congress Series, 1268, 929-934.
Li, Q. &; Doi, K. (2004). New selective nodule enhancement filter and its application for significant improvement of nodule detection on computed tomography. Proceedings of SPIE, Medical Imaging 2004: Image Processing, 5370, 1-9
Li, Q., Sone, S., &; Doi, K. (2003). Selective enhancement filters for nodules, vessels, and airway walls in two- and three-dimensional CT scans. Medical Physics, 30(8), 2040-2051.
Lipschutz, S. (1987). Theory and Problems of Linear Algebra SI (Metric) Edition. Singapore: McGraw-Hill.
Lorenz, C., Carlsen, I.-C., Buzug, T. M., Fassnacht, C., Weese, J. (1997a). A multi-scale line filter with automatic scale selection based on the Hessian matrix for medical image segmentation. In Romeny, B. H., Florack, L., Koenderink, L., &; Viergever, M. (Eds.), Lecture Notes in Computer Science: Vol. 1252. Scale-Space Theory in Computer Vision (pp. 152-163). Berlin, Germany: Springer-Verlag.
Lorenz, C., Carlsen, I.-C., Buzug, T. M., Fassnacht, C., &; Weese, J. (1997b). Multi-scale line segmentation with automatic estimation of width, contrast and tangential direction in 2D and 3D medical images. In Troccaz, J., Grimson, E., Mosges, R. (Eds.), Lecture Notes in Computer Science: Vol. 1205. CVRMed-MRCAS’97 (pp. 233-242). Berlin, Germany: Springer-Verlag.
Orlowski, P. and Orkisz, M. (2009). Efficient computation of Hessian-based enhancement filters for tubular structures in 3D images. IRBM, 30, 128-132.
Paik, D. S., Beaulieu, C. F., Rubin, G. D., Acar, B., Jeffrey, R. B., Yee, J., … Napel, S. (2004). Surface normal overlap: a computer-aided detection algorithm with application to colonic polyps and lung nodules in helical CT. IEEE Transactions on Medical Imaging, 23, 661-675.
Sato, Y., Nakajima, S., Shiraga, N., Atsumi, H., Yoshida, S., Koller, T., … Kikinis, R. (1998). Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Medical Image Analysis, 2(2), 143-168.
Sato, Y., Westin, C.-F., Bhalerao, A., Nakajima, S., Shiraga, N., Tamura, S., &; Kikinis, R. (2000). Tissue classification based on 3D local intensity structures for volume rendering. IEEE Transactions on Visualization and Computer Graphics, 6(2), 160-180.
Slumier, I., Schilham, A., Prokop, M., &; van Ginneken, B. (2006). Computer Analysis of Computed Tomography Scans of the Lung- A Survey. IEEE Transactions on Medical Imaging, 25(4), 385-405.
Sobue, T., Suzuki, T., Matsuda, M., Kuroishi, T., Ikeda, S., &; Naruke, T. (1992). Survival for clinical stage I lung cancer not surgically treated. Cancer, 69(3), 685-692.
Teramoto, A. &; Fujita, H. (in press). Fast lung nodule detection in chest CT images using cylindrical nodule-enhancement filter. International Journal of Computer Assisted Radiology and Surgery. Retrieved from http://link.springer.com/article/10.1007%2Fs11548-012-0767-5?LI=true.
Yu, Y. &; Zhao, H. (2006a). Enhancement filter for computer-aided detection of pulmonary nodules on thoracic CT images. IEEE Proceedings of the Sixth International conference on Intelligent Systems Design and Applications (ISDA''06),1200-1205.
Yu, Y. and Zhao, H. (2006b). A texture-based morphologic enhancement filter in two-dimensional thoracic CT scans. IEEE International Conference on Networking, Sensing, and Control, ICNSC ''06, 850-855.
行政院衛生署(民101)。100年國人主要死因統計。取自http://www.doh.gov.tw/CHT2006/DM/DM2_p01.aspx?class_no=25&;level_no=1&;doc_no=84788
|